Yoshikiro Shikata, Dept of Nath. Nagorga Univ... (名下理 四方義啓)

Some remarks on a cohomology for foliated structures.

1. Let L be a topological vector space with a continuous linear map d into itself so that d = 0, then we see that

Im d C Ker d, Im d C Ker d

and so that

 $\widetilde{\text{Ker }}d = \text{Ker }d,$

therefore we have

Imd C Kerd .

The following notion is suggested by Prof. K. Shiga,

Definition We set

H (L, d) = $Kerd/\overline{Imd}$.

Let V be a normed vector space with a linear map ∂ into itself so that $\partial \circ \partial$ = 0 and denote the conjugate object with

. Introducing the weak topology into V, we see that \mathfrak{I}^* turns out to be cominuous linear.

Then it is obtained that ([S])

Prop. 1. $\dim \overline{H}(V^*, \delta^*) \leq \dim \overline{H}(V, \delta)$.

In case that 3 itself is continuous, Prop. 1 is sharpened as follows:

Theorem 1 (Suzuki-Shikata-Sakai)

 $\dim \overline{H}(V^*, \partial^*) = \dim \overline{H}(V, \partial) \leq \dim H(V, \partial)$

Proof. Take linearly independent elements $a_1 cdots a_m$ in Ker ∂ onver $\overline{Im} \partial$, and define V_m to be a subspace in V generated by $a_1 cdots a_m$ and by $\overline{Im} \partial$. Since $Vm/\overline{Im} \partial$ is canonically homeomorphic to the euclidean m space, we can define continuous linear functionals $\overline{a_1 cdots a_m}$ on Vm so that

$$a_{i}(a_{j}) = \delta_{ij}, \quad a_{i} = 0 \text{ on } \overline{\text{Im } \delta}.$$

The functionals $\tilde{a_1}...\tilde{a_m}$ extend to functionals $a_1^*...a_m^*$ on V^* by Hahn-Banach's theorem and satisfy that

$$a_i^*(a_j) = \delta_{ij}, \quad a_i^* = 0 \text{ on } \overline{\text{Im } \partial}.$$

Thus we have that

$$\begin{array}{lll} (\partial^* \ a_i^*)(x) = a_i^*(\partial x) = 0 \ , \ \text{for any} & x \in V \,, \\ \\ (\lim \ \partial^* \xi_i)(a_j) = \lim \ (\xi_i(\partial a_j)) = 0 \, , \ \text{for} \ (\lim \ \partial^* \xi_i) \in \overline{\text{Im} \, \partial^*} \\ \\ (\Sigma \ C_i a_i^* + \mu)(a_j) = C_j \, , \ \text{for} \ \mu \in \overline{\text{Im} \, \partial^*} \end{array}$$

Hence we see that $a_1^*\dots a_m^*$ define linearly independent elements in $H(V^*,\ \partial^*)$ and that

$$\dim \overline{H}(V^*, \partial^*) \ge \dim \overline{H}(V,\partial)$$

Conversely, take linearly independent elements $\alpha_1 \dots \alpha_m$ in Ker $\partial *$ over $\overline{\text{Im}\,\partial^*}$ and define similarly $\alpha_1 * \dots \alpha_m *$ to be (weak) continuous functionals on V* satisfying that

$$\alpha_1^*(\alpha_j) = \delta_{ij}, \quad \alpha_i^* = 0 \quad \text{on } \widehat{\text{Im } \partial^*}.$$

Then by Mackey's weak duality theorem, we find $a_1 \dots a_m \in V$ so that

$$\alpha_{i}^{*}(x) = x(\alpha_{i}), \text{ for any } x \in V^{*}$$

thus we have that

 $x(\partial a_{i}) = (\partial *x)(a_{i}) = \alpha_{i} *(\partial^{*}x) = 0, \text{ for } x \in V*$ $a_{j}(\lim \partial b_{i}) = \lim \alpha_{j}(\partial b_{i}) = \lim (\partial^{*}\alpha_{j})(b_{i}) = 0, \text{ for } \lim \partial b_{i} \in \overline{\lim \partial a_{j}}(\Sigma c_{i}a_{i} + \mu) = C_{j}, \text{ for } \mu \in \overline{\lim \partial a_{j}}.$

Hence we also see that $a_1 \dots a_m$ define linearly independent elements in $H(V, \partial)$ and that

$$\dim H(V^*, \partial^*) \leq \dim H(V, \partial)$$

finishing the proof . As a corollary to Th. 1, we have that

Corollary 1,

dim
$$H(V^*, \partial^*) \ge \dim H(V, \partial)$$
.

2. Let M be a smooth manifold with two foliated structures F, G which are dual to each other. The flat norm $\| \|^b$ in the cosheaf $\Psi_q(\mathbb{R}^S)$ of q-chain in \mathbb{R}^S (s=dimF) space extends naturally to that in the cosheaf $\Psi_q(\mathbb{F})$ through the (local) identification of the leaf of F to \mathbb{R}^S . Let Ψ_q denote the completion of $\Psi_q = \Psi_q \mathcal{F}$ under the flat norm, then the Cech chain $C_p(\{U\}; \mathcal{H}_q) = \Psi_q \mathcal{F}$ for a finite open covering $\{U\}$ turns out to be a normed linear space with the norm given by $\| \alpha \| = \sup \{\| \alpha_{j_0} \dots_{j_p} \|^b/(j_0 \dots j_p) \colon p\text{-Cech simplex} \}$ for $\alpha \in C_p(\{U\}; \mathcal{H}_q)$; \mathcal{H}_q .

Since the complemation $\dot{\Psi}_{\ell}$ and $\dot{\Psi}_{\ell}$ have the same dual space F $^{\vartheta}$, we have that

Prop. 2 For the sheaf F^q of flat q-cochain on R^s , it holds that

 $\dim \ \widetilde{H}(C^p(\{U\}:F^q),\Delta^*) = \dim \ H(C_p(\{U\}: p^q),\Delta)$ where $\widetilde{H}_{\bigoplus}$ indicates the difference of the weak topology in F^q . Corollary 3

$$\dim \overline{H}_{\underline{\Psi}}(C^{\mathbf{p}}(\{U\}; \mathbf{F}^{\mathbf{q}}), \Delta^{*}) \leq \dim H(C_{\mathbf{p}}(\{U\}; \underline{\Psi}_{\mathbf{q}}), \Delta))$$

$$\dim \overline{H}_{\underline{\Psi}}(C^{\mathbf{p}}(\{U\}; \mathbf{F}^{\mathbf{q}}), \Delta^{*}) \leq \dim H(C_{\mathbf{p}}(\{U\}; \underline{\Psi}_{\mathbf{q}}), \Delta))$$
Corollary $\underline{\Psi}$

$$\begin{array}{l} \operatorname{dim} \ \widetilde{H} \ (C_{\mathbf{p}}(\{U\}, \widehat{\Psi}_{\mathbf{q}}), \Delta) \leq \operatorname{dim} \ H(C^{\mathbf{p}}(\{U\}, \widehat{\Psi}_{\mathbf{q}}), \Delta) \\ \operatorname{dim} \ \widetilde{H} \ (C_{\mathbf{p}}(\{U\}, \widehat{\Psi}_{\mathbf{q}}), \Delta) \leq \operatorname{dim} \ H(C^{\mathbf{p}}(\{U\}, X), \Delta^*) \\ \end{array}$$

Taking $H_{p,q}$ (resp $H_{p,q}$) to be (resp. the completion of) the , the Weil's chain gives isomorphisms between homologies Cosheaf of (pq)-chains

of cosheaves;

Prop. 3. For a finite simple (adimissible) covering to the that

$$L(C_{p}(\{u\}, \oplus_{q}): \Delta) = L(\{\psi_{p,q}; \partial_{x}),$$

where

$$L = H \text{ or } \widetilde{H}_{\oplus}$$
,
 $\bigoplus_{q} \Phi_q \text{ or } \widehat{\Phi}_q$, $\bigoplus_{p,q} H_{p,q} \text{ or } \widehat{H}_{p,q}$.

Since we know that

dim H(
$$H_{p,o}$$
; ∂_x) = $\begin{cases} independent p-cycles \\ in the leaf of F \end{cases}$

we have that

Corollary 4

$$\stackrel{\sharp}{\text{ [indep. p-cycles in the leaf]}} = \dim H(C_p(\{U\}: \Phi_o), \Delta)$$

$$\stackrel{\sharp}{\text{ dim } H_{\Psi}(C^p(\{U\}: F^o), \Delta)}$$

Introducing the notion of pseudo closed cycles in the

leaf, we also have that

dim H(
$$H_{p,0}$$
: ∂_x) = {indep. pseudo closed cycles} in the leaf of F

and that

Corollary 5

[S] Y. Shikata On the cohomology of bigradesed forms associated with foliated structures.