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ON DECOMPOSITION OF LATTICE Ideals of A LATTICE-ORDERED SEMIGROUP

KENTARO MURATA

Our purpose of the present note is to obtain a unique
decomposition theorem of lattice ideals of l-semigroups
treated in [2]. The decomposition theorem is a generali-
zation of the unique factorization of elements in the
arithmetical l-groups [7]. Applying our theorem to sub-
modules over a maximal bounded order of a ring, we obtain

a decomposition of the modules [5].

1. PRELIMINARIES. Let L = (L,:,<) be a (conditionally) complete
l-semigroup with multiplicative unity e. We assume the following two
conditions:

(1) L has a map ag_;a—l into itself with two properties (i)

aa—las a and (ii) axa < a implies a< a~l.
(2) e is maximally integral: czfgc and e< ¢ imply c = e.
For any a of L we define a* = (a™1)71, and define a*ob* = (a*b*)*

= (ab)* [2]. Then the set L* = {a*; a € L} is a complete l-group

under o and < [3]. Hence the group (L*,o) is commutative by the well
known theorem of l-groups. If we classify L by the gquasi-equal rela-
tion a ~ b defined by a—l = b_l, then the set L/~» of all cosets forms

an l-group canonically and it is isomorphic to (L*,.,<). We now put
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the ascending chain condition in the sense of quasi-equafiyjl.tAyﬁf;)rv

integral elements of L.. Then we can prove that p* = p for any prime
p which is not quasi-equal to e [2]. 1In the following [P will denote
the set of all primes not quasi-equal to e. Then any element a of“L

is factored into a finite number of primes:

a N_[T pv(p'a)

pelP
where VY(p,a) is the p~exponent of a. We have then (1°) V(p,a) =0
for all but finite many p € P, (2°) a ~b if and only if V(p,a) =
V(p,b) for all p€lP, (3°) y(p,a) = V(p,a*), (4°) Y(p,ab) = vip,a) +
V(p,b), (5°) V(p,aub) = min{ Y(p,a), V(p,b)}, (6°) a =b* (i.e. a*
< b*) if and only if W(p,a) > V(p,b) for all p e P.

A lattice ideal (abbr. l-ideal) J is called closed if a € J implies
a*€ J. Let A be any non-empty subset of L, and let A' be the join
semi-lattice generated by A. Then the set-theoretical union of all-
principai closed l-ideals J(a*)’s generated by a€A' is the closed
l1-ideal generated by A. Let P be any subset of P. 1fp is non~void,
the closed l-ideal generated by {pil--'p;l ; pie P} is called a P-
component of the cone I and denoted by IP' If P is void, I, means I

P

itself. A P-component J_, of the closed 1l-ideal J will be defined to

P
be the closed l-ideal generated by JeI, = {xy; x €J, yGIP}. For
convenience the closed 1-ideal generated by the l-ideal J will be

denoted by J*. For two l-ideals Jl and J2 we define quasi-equal

relation by J,~~ J2¢=> Jl* =)J2*. J,oJ, means the closed 1-ideal
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generated by {xy; x€Jy, YE JZ} for any two l-ideals J; and J,. Then
the set of all'closed l-ideals g= (g,o,g_) forms a complete l-semi-
group V;Vhich contains the cl-semigroup (L*,.,<) isomorphically. It

can be seen that (g/,o) is a commutative semigroup.

of the rational integers Z and

The set-theoretical union Z__,

the symbol -o© is a totally ordered additive semigroup. For any 1l-

ideal J of L we define

V(p,J) = inf {Y¥(p,a); a€ J}.

Fixing J and moving p over P, V (p,J) is considered as a map from P
into z_,,. The map is written by VJ, that is )]J(p) = Y(p,J).

Let now O be a map from ]P into Z_ such that Of(p) < 0 for

(-]
almost all pE]P, and let S be the set of all such maps. Then the
set G of all vectors [ ¢(p)] forms a complete l-semigroup under the
usual addition and the order < defined by [T (p)]1 R [ 0'(p)] <>

O(p)> o' (p) for all pe P. 1In symbol: G = (G,+,%).

2. LEMMAS AND MAIN RESULTS.

LEMMA 1. For each G €S, the set K[o'] of all x€L such that
V(p,x) > o(p) for all pelP forms. a closed 1l-ideal of L.

Proof. This is immediate by (2°), (5°) and (6°) in Section 1.

LEMMA 2. For each closed l-ideal J we have K[VJ] = J.

Proof. Similarly obtained as the proof of Lemma 3 in [7].

LEMMA 3. For each G € S we have ) c.

K[o]
Proof. Similarly obtained as the proof of Lemma 4 in [7].
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By using LEMMAS 2 and 3 we obtain the following

THEOREM 1. The map f: J+—>£f(J) = [VJ(p)] gives an l-semigroup

isomorphism from ( 3,0, €) onto (G,+,3).

Let P, (J), Py(J), P_(J) and P__(J) be the sets of primes p in
P such that va(p) is positive, zero, negative and -9, respectively.

LEMMA 4. Let J be a closed 1l-ideal such that both P+(J) and
P_(J) are void. If P,(J) is contained in the set-theoretical union
of PO(J(a)) and P+(J(a)), then a is contained in J and conversely.

By using Corollary to Theorem 2.3 in [2] we get the following

LEMMA 5. Let J be a closed l-ideal. If J is multiplicatively
closed, the vector f£(J) has no integral coordinate except zero, and
vice versa.

LEMMA 6. Let J be a closed l—ideél containing the cone I. If

J is closed under multiplication, J is the P;N(J)—Component of I.
THEOREM 2. Any l-ideal J of L is decomposed as follows:
Vo DY
* Py. U Pyy,
(*) 3 ’Vp'e'pj‘P 1 (VI s p 21,

where Vp = VJ(p), P, =P (J*), P_=P_(J*¥), \J' denotes a finite

+
. %
join and \/ denotes the set-theoretical union of all J(U'p Py. con-
versely, let A, B, C be any three subsets of ]P such that they are
disjoit and one of them is finite, e. g. so is A, and let O(q and —-@q

be positive and negative integers respectively such that O(q corre-

sponds g€ A and -ﬁq corresponds to g€ B. Then

(%) T 5 ) -
qeAq(q )~(\/J(qk€JBq q))'IC
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is an l-ideal of L. Moreover if J of (*) is quasi-equal to (*¥*),

~w=Ci V, =0 (PEP), V, = —f, (PEP)

by suitable enumeration of p; that is, the decomposition (*) is

then P+ =A, P_=B, P

unique within quasi-equality.

Proof. Let J be any l-ideal of L. Firstlylwe suppose that J
isrciosed. £(J) is represented as £(J) = u, (J) + u_(J) + u_(J),
where u, (J), u_(J), u_q(J) are the vectors whose p-coordinates are
\)J(p) if p is positive-~, negative-, —0-gpots (zero otherwise),
respectively. It is clear that f-l(u+(J)) = W,OPE P J(pvp) . Take
any elemént a oqu_l(u_(J)); and let a* = pllo...opﬁin, PiG]P- If
)\i 5> 0 for all i, then a* is integral, hence so is the element a.
Therefore a is contained in V J( \o)'pvp). If 7\1 <0, ..., )\r L0,
>‘£+l> 0,.cc., )\,n > 0 for r with 0 < r <n, then we obtain a < a*<
p;lo...opr)\r < (prpl U--e J perr)* = plvpl 1\ Oprvpr. This
implies a € J(pl‘)pl Oy perr) . Hence f—l(u_(J)) <V a( O'pivpi) .
The converse inclusion is easy to see. Next, by using LEMMAS 5 and 6

1

we obtain £ (u_g(J)) = Ip .. The last part of the theorem can

—00(J)
be proved easily.

3. APPLICATION.

1. Let R be a noncommutative ring with a bounded maximal order
A, and let Ji be all the non-zero fractional two-sided -“U-ideals
(abbr. ideals) in R [4]. Jﬁ is then a conditionally cpmplete l-semi-
group under module-product and set—inclusion._ We assume throughout

this paragraph that the ascending-cain condition in the sense of
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quasi-—equality holds for integral ideals [1]. The term submodule
means a two-sided “AU-submodule of R which contains»a regular element
of R. A submodule M of R is said to bé closed if Ol € M implies @ *
= (0\_—1)—l C M, where 0Ol is an ideal and (}fl is the inverse of OL.
The set-theoretical union M* of ¢l* for the ideals ¢l contained in M
is the closed submodule generafed by M. Two submodules My and M, are
said to be quasi-equal iff Ml* = Mz*. In symbol: MlNMZ. If we
define MIMZ of any two closed submodules Ml and M2 to be the set-
theoretical union of all ideals (> 0_; ov;f;)* where 0oL, C M, J-ig
Mo, then the set Wwe* = (Wl*,-, € ) of all closed svubmodules of R
forms a commutative cl-semigroup. If we classify the cl-semigroup
77U consisting of all submodules of R by the quasi-equal relation ~v,
then U/~ , the set of all cosets [Ml‘], [Mz],..., is a commutative
cl-semigroup which is isomorphic to ( #(*,-, <), where the product of

two cosets is the coset containing (Ml-M * and the order < is defined

2)
by [Ml] < [M2] = Ml* - M2*. Let J be any closed-1-ideal of I, .
Then the set-theoretical union M(J) of all ideals in J is a closed
submédule of R. Conversely the correction J(M) of all ideals in the
closed submodule M is an l-ideal of . Then we have J+> M(J)+>
JM(J)) = J and Mr>J(M)> M(T(M)) = M. Let (L*,o,C) be the cl-
semigroup consisting of all closed l-ideals in L , where "o" is
defined as in the former section. Then the map M+>J(M) gives an 1-

semigroup isomorphism from (¥ *,o,&£) onto (fL*,0,<). Under that

isomorphism the cl-group consisting of all ideals corresponds to the
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principal lattice ideals. By using THEOREM 2 we obtain:
M . )
~F n (zg}n )0,

where P _(J(M) ={f;r s §o}o = V. B_(@n) = {95, B-=- o
P is the complement of'P_m(J(M)) in the set of all prime ideals not

quasi-equal to O, S/ denotes the restricted sum, and 43§ is the P-
component of “J. Moreover the above decomposition is unique within
quasi-equality. If in particular AJ is Asano, each (non-zero) sub-

module of R is uniquely decomposed (within commutativity) as follows:

M = fl‘xl...(;n (qup"m‘

Furthermore the P,-component M, of M is represented as follows:
1

&1
= f it § S G T,

where {;l,..., J;r} ={}l,...,}n} ~ P, and {%}={ah}——Pl (CE.

[4] and [5]:)

2. Let 0 be a Dedekind domain withits quotient field K. Then
any non-zero “UJ-submodule M of K can be decomposed as in the case of
the former paragraph. By using the decomposition we can prove the
following statements.

The map p: x|~—>50(x) from a non-zero O’—submddule Ml to a
non-zero “J-submodule M, is an 4j;i$0morphism if and only if there
exists a non-zero element t of K such that P(x) = tx for all xeMl.
Two non-zero -U-submodules Ml and M2 are said to have the same -00;

= U

type iff 47 P_polM,) Then in order that M; and M, have

oolMp)

(7)



175

the same -9 -type, it is necessary and sufficient that there is an

ideal Ol such that M, = MIUL. Let 4 be the ideal generated by

2

all prime ideals in P__(M), and let ¢l be an ideal. Then M is O-

isomorphic to MUl if and only if g1 is represented as O0l= - (a)

for a non-zero element a of K. Any intermediate ring T of AJ and K

is a P-component of U, and it is a Dedekind ring. An integral T-

ideal "12 of T is prime if and only if ‘42= OBT, where J’, is a prime

'ideal in PO(T).
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