ON DECOMPOSITION OF LATTICE Ideals of A LATTICE-ORDERED SEMIGROUP

KENTARO MURATA

Our purpose of the present note is to obtain a unique decomposition theorem of lattice ideals of 1-semigroups treated in [2]. The decomposition theorem is a generalization of the unique factorization of elements in the arithmetical 1-groups [7]. Applying our theorem to submodules over a maximal bounded order of a ring, we obtain a decomposition of the modules [5].

- 1. PRELIMINARIES. Let $L = (L, \cdot, \leq)$ be a (conditionally) complete 1-semigroup with multiplicative unity e. We assume the following two conditions:
- (1) L has a map $a \mapsto a^{-1}$ into itself with two properties (i) $aa^{-1}a \le a$ and (ii) $axa \le a$ implies $a \le a^{-1}$.
- (2) e is maximally integral: $c^2 \le c$ and $e \le c$ imply c = e.

 For any a of L we define $a^* = (a^{-1})^{-1}$, and define $a^* \circ b^* = (a^*b^*)^*$ $= (ab)^* [2]$. Then the set $L^* = \{a^*; a \in L\}$ is a complete 1-group under \circ and $\le [3]$. Hence the group (L^*, \circ) is commutative by the well known theorem of 1-groups. If we classify L by the quasi-equal relation $a \sim b$ defined by $a^{-1} = b^{-1}$, then the set L/\sim of all cosets forms an 1-group canonically and it is isomorphic to (L^*, \circ, \le) . We now put

the ascending chain condition in the sense of quasi-equality for integral elements of L. Then we can prove that p* = p for any prime p which is not quasi-equal to e [2]. In the following \mathbb{P} will denote the set of all primes not quasi-equal to e. Then any element a of L is factored into a finite number of primes:

$$a \sim \prod_{p \in \mathbf{P}} p^{\nu(p,a)}$$

where $\mathcal{V}(p,a)$ is the p-exponent of a. We have then (1°) $\mathcal{V}(p,a) = 0$ for all but finite many $p \in \mathbb{P}$, (2°) a \sim b if and only if $\mathcal{V}(p,a) = \mathcal{V}(p,b)$ for all $p \in \mathbb{P}$, (3°) $\mathcal{V}(p,a) = \mathcal{V}(p,a^*)$, (4°) $\mathcal{V}(p,ab) = \mathcal{V}(p,a) + \mathcal{V}(p,b)$, (5°) $\mathcal{V}(p,a \cup b) = \min \{ \mathcal{V}(p,a), \mathcal{V}(p,b) \}$, (6°) a $\leq b^*$ (i.e. a* $\leq b^*$) if and only if $\mathcal{V}(p,a) \geq \mathcal{V}(p,b)$ for all $p \in \mathbb{P}$.

A lattice ideal (abbr. 1-ideal) J is called closed if $a \in J$ implies $a * \in J$. Let A be any non-empty subset of L, and let A' be the join semi-lattice generated by A. Then the set-theoretical union of all principal closed 1-ideals J(a*)'s generated by $a \in A$ ' is the closed 1-ideal generated by A. Let P be any subset of \mathbb{P} . If P is non-void, the closed 1-ideal generated by $\{p_1^{-1}\cdots p_n^{-1}:p_i\in P\}$ is called a P-component of the cone I and denoted by I_p . If P is void, I_p means I itself. A P-component J_p of the closed 1-ideal J will be defined to be the closed 1-ideal generated by $J \cdot I_p = \{xy; x \in J, y \in I_p\}$. For convenience the closed 1-ideal generated by the 1-ideal J will be denoted by J^* . For two 1-ideals J_1 and J_2 we define quasi-equal relation by $J_1 \sim J_2 \iff J_1^* = J_2^*$. $J_1 \circ J_2$ means the closed 1-ideal

generated by $\{xy; x \in J_1, y \in J_2\}$ for any two 1-ideals J_1 and J_2 . Then the set of all closed 1-ideals $\mathcal{J} = (\mathcal{J}, \circ, \subseteq)$ forms a complete 1-semi-group which contains the c1-semigroup (L^*, \circ, \leq) isomorphically. It can be seen that (\mathcal{J}, \circ) is a commutative semigroup.

The set-theoretical union $Z_{-\infty}$ of the rational integers Z and the symbol $-\infty$ is a totally ordered additive semigroup. For any lideal J of L we define

$$\mathcal{V}(p,J) = \inf \{ \mathcal{V}(p,a); a \in J \}.$$

Fixing J and moving p over ${\mathbb P}$, ${\mathcal V}(p,J)$ is considered as a map from ${\mathbb P}$ into $Z_{-\infty}$. The map is written by ${\mathcal V}_J$, that is ${\mathcal V}_J(p) = {\mathcal V}(p,J)$.

Let now σ be a map from \mathbb{P} into $Z_{-\infty}$ such that $\sigma(p) \leq 0$ for almost all $p \in \mathbb{P}$, and let S be the set of all such maps. Then the set G of all vectors $[\sigma(p)]$ forms a complete 1-semigroup under the usual addition and the order \preceq defined by $[\sigma(p)] \preceq [\sigma'(p)] \iff \sigma(p) \geq \sigma'(p)$ for all $p \in \mathbb{P}$. In symbol: $G = (G, +, \preceq)$.

2. LEMMAS AND MAIN RESULTS.

LEMMA 1. For each $\sigma \in S$, the set $K[\sigma]$ of all $x \in L$ such that $V(p,x) \geq \sigma(p)$ for all $p \in \mathbb{P}$ forms a closed 1-ideal of L.

Proof. This is immediate by (2°), (5°) and (6°) in Section 1.

LEMMA 2. For each closed 1-ideal J we have $K[V_T] = J$.

Proof. Similarly obtained as the proof of Lemma 3 in [7].

LEMMA 3. For each $\sigma \in S$ we have $\gamma_{K[\sigma]} = \sigma$.

Proof. Similarly obtained as the proof of Lemma 4 in [7].

By using LEMMAS 2 and 3 we obtain the following

THEOREM 1. The map $f: J \mapsto f(J) = [\nu_J(p)]$ gives an 1-semigroup isomorphism from $(\mathcal{J}, \circ, \subseteq)$ onto $(G, +, \preceq)$.

Let $P_+(J)$, $P_0(J)$, $P_-(J)$ and $P_{-\infty}(J)$ be the sets of primes p in \mathbb{P} such that $\mathcal{V}_J(p)$ is positive, zero, negative and $-\infty$, respectively.

LEMMA 4. Let J be a closed 1-ideal such that both $P_+(J)$ and $P_-(J)$ are void. If $P_0(J)$ is contained in the set-theoretical union of $P_0(J(a))$ and $P_+(J(a))$, then a is contained in J and conversely.

By using Corollary to Theorem 2.3 in [2] we get the following LEMMA 5. Let J be a closed 1-ideal. If J is multiplicatively closed, the vector f(J) has no integral coordinate except zero, and vice versa.

LEMMA 6. Let J be a closed 1-ideal containing the cone I. If J is closed under multiplication, J is the $P_{-\infty}(J)$ -component of I.

THEOREM 2. Any 1-ideal J of L is decomposed as follows:

$$(*) \qquad \qquad \mathbf{J} \sim \prod_{\mathbf{p} \in \mathbf{P}_{+}} \mathbf{J}(\mathbf{p}^{\mathbf{\nu}\mathbf{p}}) \cdot (\mathbf{\nabla} \mathbf{J}(\mathbf{p} \in \mathbf{P}_{-}^{\mathbf{p}} \mathbf{p}^{\mathbf{\nu}\mathbf{p}})) \cdot \mathbf{I}_{\mathbf{p}}.$$

where $V_p = V_J(p)$, $P_+ = P_+(J^*)$, $P_- = P_-(J^*)$, U' denotes a finite join and V denotes the set-theoretical union of all $J(U'p^{Vp})$. Conversely, let A, B, C be any three subsets of P such that they are disjoit and one of them is finite, e. g. so is A, and let α_q and α_q be positive and negative integers respectively such that α_q corresponds $q \in A$ and $\alpha_q \in A$ and $\alpha_q \in A$. Then

(**)
$$\prod_{q \in A} J(q^{q}) \cdot (\bigvee J(Q \in B \mid q^{-\beta \mid q})) \cdot I_{C}$$

is an 1-ideal of L. Moreover if J of (*) is quasi-equal to (**), then $P_+ = A$, $P_- = B$, $P_{-\infty} = C$, $V_p = \alpha_q$ ($p \in P_+$), $V_p = -\beta_q$ ($p \in P_-$) by suitable enumeration of p; that is, the decomposition (*) is unique within quasi-equality.

Proof. Let J be any 1-ideal of L. Firstly we suppose that J is closed. f(J) is represented as $f(J) = u_+(J) + u_-(J) + u_-(J)$, where $u_+(J)$, $u_-(J)$, $u_-(J)$, $u_-(J)$ are the vectors whose p-coordinates are $\mathcal{V}_J(p)$ if p is positive-, negative-, $-\infty$ -spots (zero otherwise), respectively. It is clear that $f^{-1}(u_+(J)) = \prod_{p \in P}^{\bullet} J(p^{\gamma_p})$. Take any element a of $f^{-1}(u_-(J))$, and let $a^* = p_1^{\lambda_1} \bullet \ldots \bullet p_n^{\lambda_n}$, $p_i \in \mathbb{P}$. If $\lambda_i > 0$ for all i, then a^* is integral, hence so is the element a. Therefore a is contained in $V_J(\circlearrowleft^{\bullet} p^{\gamma_p})$. If $\lambda_1 < 0$, ..., $\lambda_r < 0$, $\lambda_{r+1} > 0$,..., $\lambda_n > 0$ for r with $0 < r \le n$, then we obtain $a \le a^* \le p_1^{\lambda_1} \bullet \ldots \bullet p_r^{\lambda_r} \le (p_1^{\nu_{p_1}} \cup \ldots \cup p_r^{\nu_{p_r}})^* = p_1^{\nu_{p_1}} \circ \ldots \circ p_r^{\nu_{p_r}}$. This implies $a \in J(p_1^{\nu_{p_1}} \circ \ldots \circ p_r^{\nu_{p_r}})$. Hence $f^{-1}(u_-(J)) \subseteq V_J(\circlearrowleft^{\bullet} p_i^{\nu_{p_i}})$. The converse inclusion is easy to see. Next, by using LEMMAS 5 and 6 we obtain $f^{-1}(u_-(J)) = I_{p_-(J)}$. The last part of the theorem can be proved easily.

3. APPLICATION.

1. Let R be a noncommutative ring with a bounded maximal order σ , and let \mathcal{L} be all the non-zero fractional two-sided σ -ideals (abbr. ideals) in R [4]. \mathcal{L} is then a conditionally complete 1-semi-group under module-product and set-inclusion. We assume throughout this paragraph that the ascending cain condition in the sense of

quasi-equality holds for integral ideals [1]. The term submodule means a two-sided σ -submodule of R which contains a regular element of R. A submodule M of R is said to be closed if $\alpha \subseteq M$ implies α^* = $(\sigma^{-1})^{-1} \subseteq M$, where σ is an ideal and σ^{-1} is the inverse of σ . The set-theoretical union M* of π^* for the ideals π contained in M is the closed submodule generated by M. Two submodules M_1 and M_2 are said to be quasi-equal iff $M_1^* = M_2^*$. In symbol: $M_1 \sim M_2$. If we define M₁M₂ of any two closed submodules M₁ and M₂ to be the settheoretical union of all ideals ($\sum_{i=1}^n \sigma_i \ell_i$)* where $\sigma_i \subseteq M_i$, $\ell_i \subseteq M_i$ M_2 , then the set $\mathfrak{M}^* = (\mathfrak{M}^*, \cdot, \subseteq)$ of all closed submodules of R forms a commutative cl-semigroup. If we classify the cl-semigroup ${m m}$ consisting of all submodules of R by the quasi-equal relation ${m \sim}$, then $\mathcal{M}/_{\sim}$, the set of all cosets $[\mathrm{M_1}]$, $[\mathrm{M_2}]$, . . . , is a commutative cl-semigroup which is isomorphic to ($\mathfrak{M}(*,\cdot\,,\stackrel{\boldsymbol{\leq}}{\smile})$, where the product of two cosets is the coset containing $(M_1M_2)^*$ and the order \leq is defined by $[\mathbf{M}_1] \leq [\mathbf{M}_2] \longleftrightarrow \mathbf{M}_1^* \subseteq \mathbf{M}_2^*$. Let J be any closed l-ideal of \mathcal{X} . Then the set-theoretical union M(J) of all ideals in J is a closed submodule of R. Conversely the correction J(M) of all ideals in the closed submodule M is an 1-ideal of \mathcal{L} . Then we have $J \mapsto M(J) \mapsto$ $J(M(J)) = J \text{ and } M \mapsto J(M) \mapsto M(J(M)) = M.$ Let $(\pounds^*, \circ, \subseteq)$ be the clsemigroup consisting of all closed 1-ideals in $\boldsymbol{\mathcal{L}}$, where " \circ " is defined as in the former section. Then the map $M \mapsto J(M)$ gives an 1semigroup isomorphism from $(\mathcal{M}^*, \circ, \leq)$ onto $(\mathcal{L}^*, \circ, \subseteq)$. Under that isomorphism the cl-group consisting of all ideals corresponds to the

principal lattice ideals. By using THEOREM 2 we obtain:

$$M \sim f_1^{\alpha_1} \cdots f_n^{\alpha_n} (\sum_{\kappa} g_{\kappa}^{-\beta_{\kappa}}) \cdot \mathbf{0}_{p}$$

where $P_+(J(M)) = \{f_1, \dots, f_n\}$, $\alpha_i = \mathcal{V}_{g_i}$, $P_-(J(M)) = \{\mathcal{J}_{\mathcal{A}}\}$, $\beta_{\mathcal{A}} = -\mathcal{V}_{g_{\mathcal{A}}}$, $P_+(J(M)) = \{\mathcal{J}_{\mathcal{A}}\}$, $\beta_{\mathcal{A}} = -\mathcal{V}_{g_{\mathcal{A}}}$, $P_+(J(M)) = \{\mathcal{J}_{\mathcal{A}}\}$, $P_+(J(M)) = \{$

$$M = \int_{1}^{\alpha_{1}} \dots \int_{n}^{\alpha_{n}} (\sum_{\kappa} q_{\kappa}^{-\beta \kappa}) \mathcal{O}_{p}.$$

Furthermore the P_1 -component M_{P_1} of M is represented as follows:

$$M_{P_1} = \beta_1^{\alpha_1} \cdots \beta_r^{\alpha_r} (\sum_{\lambda} q_{\lambda}^{-\beta_{\lambda}}) \mathcal{O}_{P \vee P_1}$$

where $\{f_1, \dots, f_r\} = \{f_1, \dots, f_n\} - P_1 \text{ and } \{g_{\lambda}\} = \{g_{\lambda}\} - P_1 \text{ (Cf. [4] and [5].)}$

2. Let $\mathfrak V$ be a Dedekind domain withits quotient field K. Then any non-zero $\mathfrak V$ -submodule M of K can be decomposed as in the case of the former paragraph. By using the decomposition we can prove the following statements.

The map $\varphi: x \mapsto \varphi(x)$ from a non-zero σ -submodule M_1 to a non-zero σ -submodule M_2 is an σ -isomorphism if and only if there exists a non-zero element t of K such that $\varphi(x) = tx$ for all $x \in M_1$. Two non-zero σ -submodules M_1 and M_2 are said to have the same $-\infty$ -type iff $\sigma_{P_{-\infty}(M_1)} = \sigma_{P_{-\infty}(M_2)}$. Then in order that M_1 and M_2 have

the same $-\infty$ -type, it is necessary and sufficient that there is an ideal \mathcal{R} such that $M_2 = M_1 \mathcal{R}$. Let \boldsymbol{w} be the ideal generated by all prime ideals in $P_{-\infty}(M)$, and let $\boldsymbol{\pi}$ be an ideal. Then M is \mathcal{N} -isomorphic to $M\mathcal{R}$ if and only if $\boldsymbol{\pi}$ is represented as $\mathcal{N} = \boldsymbol{w}(a)$ for a non-zero element a of K. Any intermediate ring T of $\boldsymbol{\sigma}$ and K is a P-component of $\boldsymbol{\mathcal{V}}$, and it is a Dedekind ring. An integral T-ideal $\boldsymbol{\mathcal{V}}$ of T is prime if and only if $\boldsymbol{\mathcal{V}} = \boldsymbol{\mathcal{V}}$, where $\boldsymbol{\mathcal{V}}$ is a prime ideal in $P_0(T)$.

REFERENCES

- [1] K. Asano, Zur Arithmetik in Schiefringen I, Osaka Math. J. 1 (1949) 98-134.
- [2] K. Asano and K. Murata, Arithmetical ideal theory in semigroups, Journ. Institute of Polytec., Osaka City Univ. 4 (1953) 9-33.
- [3] L. Fuchs, Partially ordered algebraic systems, International Series of Monographs in Pure and Applied Math., 28 (1963).
- [4] N. Jacobson, The theory of rings, Mathematical Surveys II, Amer. Math. Soc. (1943).
- [5] K. Murata, On submodules over an Asano order of a ring, Proc. Japan Acad. **50** (1974) 584-588.
- [6] K. Murata, On lattice ideals in a conditionally complete latticeordered semigroup (Forthcoming).
- [7] K. Murata, On lattice ideals in arithmetical lattice-ordered groups, "Sugaku (Math. Soc. of Japan)" 29 No.1 (in Japanese) (1977).