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Summary
This paper describes a programming language and a verification system

to construct and prove programs* with user-defined abstract data types.
The design objective of the language is to uniformly describe programs,
their formal specifications and supporting formal theories together with
the characterization of the interrelations among these programming and
verification concepts. On this language, rigorous program proofs become
possible which match the modular and hierarchical program structures and

concepts in the data abstruction environment.

§ 1. Introduction

The 1 - iota system 1s an integrated system for developing and
verifying well-structured programs whose design and implemeﬁtaiton are in
progress on DEC 20 System at Kyoto. The ! system provides an evironment
in which a programmer cooperates with the system to build a good program,
to prove it correct and to run it. These three functional facets are

undertaken by the following subsystems:

(1) Program Developer [automates major part of coding job and helps
the user to build structured and correct programs in intelligent

ways. ]

(2) Verifier

(3) Translator

These subsystems are highly integrated with each other on a newly
developed language 1 to constitute the whole 1t system to provide an
environment in which program verification is organically combined with
programming methodology. This paper presents the method adopted for the

1 verifier.

Author's present address: +t Mathematics Institute, Oslo University, Oslo,
"~ Norway, % Research Institute for Mathematical Sciences, Kyoto University,

Kyoto, Japan. .

* Some examples of programs and program proofs are given in the appendices.
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The 1 verification system attempts to integrate program verification
with the recently noted programming méthodology—data abstraction. . Data
abstraction was originally introduced in [1], and has been remarkably
developed and established the last few years. [e.g., 7, 12]

"Data abstraction should be useful in program proving." .This is the
point which is generally accepted. Until now, however, this seemingly
obvious assertion has been repeatedly made without any sound evidence.

[In [12] efforts have been made in order to combine verification with data
abstraction, but thefe, consideration is taken only to prove the specifications
of abstract data types of restricted kind (such as queues or stacks) to be
correct for their implementations using some formalized models of particular
kind (such as the abstract sequence.) Nothing is said about how these
specifications can be applied to proVe a program of an upper level which

uses the abstract types.]

No example has been given in which a complete program with user-defined
abstract data types is proved correct on a logically solid foundatiom.

No discussion has been made as to how and on which foundation the correctness

of such programs should be establised.

The programming and verification scheme in the 1 verifier offers an
answer to this issue. By the language and the proof method in this system,
a complete program with data abstraction can be verified rigorously on a
logically sound foundation.

1: With the scheme, one is able to organize various progfamming and
verification concepts (such as operational and data abstractions, formal
specifications and supporting formal theories ) on all abstraction levels
in such a way that the relations between these concepts and levels are
clearly understood. 4

2: So called background theories or formal theories, which support the
formal descriptions and verification discussions, are now disposed within
the same syntactic frame work as the program itself, which makes the whole
discussion lucid. ' '

3: The user enjoys flexibility in that, to describe ‘and proVe part of
a program, he can introduce a formal theory appropriate for the abstraction

"level on which the part is written.

We give the language description in §2 and the verification method in

§3. - The language features and the verificaiton method, however, are closely

connected and hard to be seperately described.
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§2. The 1 Language - Language for describing programs, their formal

specifications and supporting formal theories.

An input to the ' system is called a pfogram object which consists

of one or more modules. There are four kinds of modules, procedure
modules, type modules, category modules and theory modules.
Procedure modules and type modules represent operational and data
abstractions, respectively. A category modules defines a class of data
types. A theory module defines a formal theory (in mathematical logic sense:
on which program specifications are formulated and correctness proofs
are conducted [See Apendix 1 for the description of category modules.]
Each module consists of an interfa:e part and some bther par+s,
which are either a syecification part, a rre-spec part or a realizatich
part.

An interface part is prepared for every module and contains the declara-

tion of the operations (ops) (which are like procedures in Pascal) and
functions (fns) with their domains and ranges. Syntactically, the interface
part determines the external aspect of the module, i.e., only these
operations and functions are visible to outer modules.

A rezlization part is prepared for each of the type and procedure

medules and contains the implementation of the type and operational
abstraction, respectively. (We borrow many of the syntactic constructs
used in the realization  part of a typemodule from CLU [4].)

A srecification part is prepared for each module and contains the

formal description of the module. 1t comsits of axioms, lemmas and rules

(of inference).
A pre-gspec part, which may appear in a type or procedure module,

contains the formal description of the modulé which reflects directly
the implementation in the realization part. Usually, the specification
part, which contains a more abstract description, is bridged to the
realization part by the pre-spec part . Only the formulas in the
specification part (not the pre-spec part) can be invoked in the
verification discussion concerning the correctness of the other modules
that refer to the module. Thus, the specification part determines the
semantic aspect of the module seen from outer modules. The realization
part and the pre-spec part are hidden from outer modules. To outer modules,
only the <nterface and specificatior parts are visible which are
independent of the actual representation and implementation taken in the

realization part. [Refer to Figure 1 & 2 to materialize the language

description]
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We have adopted the "axiomatic description” (acccr&iné to [5]) to
write the formulas in the specification and pre-spec parts. (The free
variables are universally quantified.) Note that the interface part
provides the so called "functionality definitions” of the "algebraic
specifications" proposed in {s1.

In addition to the user-defined modules, some system modules are
implicitly built in by the syste& and can be referred from all modules
without‘explicit declaration of refer. The modules for the primitive.
types are such examples [Refer to Figure 3 for the system type module for
sequence (afray like structure of variable length)].

Fihally the reader might have noticed that this language requires
many syntactic redqndancies. These features are intensiqnally introduced
to clarify the pfogram structure and concept. Sinbe major part of coding
is automatated in the 1 system, this does not. cause a burden on the
user's side. ' ’ A

Moreover, a program object need not be complete when it is inputed
to the languége translator or the verifier of . Some parts of some
modules may be left open. The_syétem requires only those components

which are logically needed to perform the task indicated by the user.

§3. Verification method

A. A specification part consists of some formulas which are either
an axtom, a lemma or a rule(of inference). '

In the case of a theory module, the axioms are implicit or explicit
definitions of the functions‘which are declared in the interface of the
module. The validity of the azioms and rules of a theory module is
assumed to have been established in advance and need not be proved .

In a procedure or type module, however, the arioms and rules must be
proved to be satisfied by the realization part of the module. 1In a
category module, the axioms and rules must be validated for those type

modules which are declared to belong to this category.. -

* The rules are generated from the axtoms by the 'rule genrator' which

isbbuilt in the system.
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The lermas are formulas which are proved in the formal theory
determined by the arioms and rules. When it comes to proving the
spectification part to be valid for the realization part, the less formulas
has the specification part, the less trouble. So we want to keep the
number of the uxioms minimum. When the specification part is invoked
in attempting to verify another module, it will be nicer if the specifica-
tion part contains some more useful formulas. This is why we introduce
the lemmas.

In addition to the user-defined rules, generator induction is

implicitly built in each type module, which can be applied in the same‘

way as user-defined rules.

B. Here, we describe how verification proceeds typically in 1. Suppose
the user wants to verify the specification part of his 'main' procedure
module. The axioms placed in the specification part are to be proved
correct for the realization part. For each the axrioms, the corresponding
verification condition (V.C.) 1is to be generated from the code in the
realtization part together with the loop invariants attached by the user.

To generate and prove the V.C., we adopt the 'top-~down method'
which is suggested in [3]. (Each operation call is replaced by the
equivalent simultaneous execution of assignmments by introducing some new
functions.) Since some functions and operations defined in outer modules
are called in the realization part concerned, the resulting V.C. contains
these functions (some have been introduced to replace an operation). On
the other hand, the axiom being proved may contain some functions defined
in a theory module, and if so, these functions will appear in the V.C., too.

Now, to prove the V.C., invoked are the specification part of each
module which defines some of these functions and operations. Often, to
complete the proof, the user-system interaction finds it necessary to add
some formulas as lemmas or axioms in some of the specification parts (each
of which; of course, must be validated in due time.)

We suggest this top-down process of generating and verifying V.C.'s.
suits the data abstraction and modular programming environments since it
reflects the modular and hierarchical program structures. [See Appendix 2

for an illustration of this process.]

' On the other hand, it often happené that the proof of a program requires
to be conducted on a formal theory appropriate for the abstraction level on

which the program is written. Thus we introduce the syntactic concept - theory

module so that the user can prepare a formal theory as appropriate.
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In the conventional verification schemes, the dispositions of the
supporting formal theories or back ground theories among the other programming
and verification concepts were left rather vague. Here, after putting and
arranging all thing together in the same sphere using modules and parts, we
feel that the programming and verification concepts such as data and
operational abstractions, their formal descriptions, and formal theories are
disposed in the right position suitable for their roles.

(Moreover what is striking is that, in the scheme of the 1 verifier, there
is no longer distinction between formal theories and program. They are

. treated in the same way.)

C. Many of the formulas, which are needed to enter into the épecification
part of a type module, tend to be in the form of an equivalent relation
between compositions of functions (e.g. axriom 2 in specification type
POLYNOMIAL in Figure 2). If one‘uses Hoare's system [1], however, it is
generally difficult to prove such an equivalence relation to be valid for
the implementations of the functions especially when the implementatiorns
contain some'loops. This is the mainvreasonvwhy we introduce the pre-spec
parts.

The pre-spec part of a type module contains such formulas that are
written assuming the knowledge of the actual representation of the abstract
data in the realization part , and so, is easier to prove valid for the
realization part. In stead of trying to verify the axioms in the
specification part directly from the realization part, one deduces them
from those formulas in the pre-spec part and then validates these formulas
for the realization part. This usually makes the things easier. [Appendix 4

illustrates how this verification process works.]
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APPENDICES

Figure 1 - Program Object to Compute G.C.D. of Two Polynomials

module procedure GCD
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(1)

module type POLYNOMIAL
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[ realization |
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module type
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interface

module category FIELD

interface = specification |

Lgre-sgvec ]
module type SEQ

frealization]

lzi ~5{ B ] reads part A refers module B (represented by the interface part
of B). If the interface part of a module C refers module D, it means that
all parts of C refer to D. Note that a module (the specification and

interface parts of it) is visible only to those outer 'nodules (or parts)

from which an arrow is directed to the module.

Figure 2 — Program Object to Compute G.C.D. of Two Polynomials (II )

ﬁnterface category FIELD;
thru fn ZERO: +@as 0 ;

MULT:
|end interface

@ denotes one of the tyves which . |
belong to FIELD.

(@,@) » @as @x@;

[specification category FIELD;
var X,Y,Z: @;
axiom 1: 0 + X = 0;

Lend specification interface tyre RATIONAL;
thru fn ZERO: + @ as 0;

ﬁnterf_ace type RATIONAL; :

18 FIELD

and thru fn ORDER: (@,@) = bool as @<@;

lend interface

[@ ‘denotes RATIONAL]

MULT:(@,@) > @ as @*@ ;
ORDER:(@,@) ~ kool as @<@:
end interface
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[interface procediure GCD;
thru fn GCD: (POLYNOMIAL (RATIONAL), POLYNOMIAL (RATIONAL))

-+ POLYNOMIAL(RATIONAL);
|end interface

Mspecification procelure GCD; DIVISION # GCD denotes the GCD
refer NIVISION: : defined in module DIVISION,
var X,Y: POLYNOMIAL(RATIONAL); while GCD(X,Y) is the function
axziom 1l: GCD(X,Y) = DIVISION # GCD(X,Y); defined in module GCD,

Lend specification

[realinaiion rrocedure GCD; -
fn GCD(X,Y:POLYNOMIAL(RATIONAL)) return (Z:POLYNOMIAL{(RATIONAL))
<= gvee  POLYNOMIAL do
if DEG(X) < DEG(Y) then <X,Y> := <Y,X>end if, [simultaneous assigment]
while Y#0 do
X :=(TERM(COEF(DEG(Y),Y),0)*X)- (TERM(COEF (DEG (X),X) ,DEG(X)-DEG(Y) ) *Y);
if DEG(X)<DEG(Y) then  <X,Y> := <Y ,X> end if
end while

end avec avec POLYNOMIAL is used to omit POLYNOMIAL # . Similar to
end fn with in PASCAL.

|end realization

[interface theory DIVISION(T :FIELD);
thru fn GCD: (POLYNOMIAL(T), POLYNOMIAL(T)) > POLYNOMIAL(T);
DIV: (POLYNOMIAL(T), POLYNOMIAL(T)) = bool;
EQUIV: (POLYNOMIAL(T), POLYNOMIAL(T)) -+ bool as POLYNOMIAL(T)POLYNOMIAL(T) ;

Lend interface

{epecifi ation theory DIVISION(T:FIELD);
‘var W,X,Y:POLYNOMIAL(T:FIELD) ;
ariom 1 : DIV(X,Y) = FW. X=Wxy;

|end specification

rinter'face type POLYNOMIAL(T:FIELD);
thru fn MULT: (@,@) + @ as @*@; [MULT(X,Y) can be abbreviated as X*Y by as]

ZERO: ~ @ as 0;
COEF: (@,int) > T;
- DEG: @ > int;

Lend interface

Trealization type POLYNOMIAL(T:FIELD);

rep =SEQ(T);
fr_t MULT(X,Y:rep) return (Z:rep) [rep is like cvt in CLU]

end _fn

Lend realization
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[epecification type POLYNOMIAL(T:FIELD);
var X,Y,2: @ ... ; [@ stands for POLYNOMIAL(T)]

axiom 1: X*1 = X;
2: X*(Y*Z2) = (X*Y)*Z;
lemma 1: X#0 3 COEF(X,DEG(X)) # O;

Lend specification

[pre-spec type POLYNOMIAL(T:FIELD); _
refer SUM(T); : -

rep = SEQ(T); For COEF : POLYNOMIAL +T, ¥COEF:
var X,Y:rs:; 1: int; SEQ(T) T is the implementation of
avec SUM, SEQ; COEF. .

SUM(1,I, X, Y);

axicom 1l: CONT( X* Y,I) =
= CONT( X,I);

. 2: +COEF( X,I)
|Lend pre-spec

[Znterface type SEQ(T:FIELD);
thru fn CONT: (@,int ) -+ T;
LENGTH:@ » int; For operations, the parameters on the left of |

op SET: (3|int,T); are called by variables and those on right of |
. are by value like PASCAL.

| end interface

[specification type SEQ(T:FIELD);
var X,Y: @; I:int;
aziom 1:L.CONT(X,I) = CONT(Y,I))A LENGTH(X) = LENGTH(Y) D X=Y;

|Lend specification

[interface theory SUM(T:FIELD); _ )
thru fn SUM: (int,i#t,SEQ(T),SEQ(T)) - T;
|end interface

[specification theory SUM(T:FIELD);
refer SEQ(T);
var X,Y: SEQ(T); 1,J:int;
ariom 1: J<02SUM(I,J,X,Y) = O;

rule (P) 1: goal P(SUM(I,J,X,Y¥)); [P is a formula variable]
subgoal 1: J<0DP(0); ‘
2: 0<JDP(SUM(I,J-1,X,Y,)+CONT(X,J)*CONT(Y,I-J));

lend specification
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Figure 3 — System Module for Type Sequence

interface type sequence (T:any);
thru fn create: int » @;
length: @ > int;
cont: (@, int) -+ T;
op assign: (@|int,T); [denoted as x[1]:=<exp> in the actual contexts]
end interface

‘gpecification type sequence (T: any);
var X,Y: @; I,J:int; S:T;
axiom 1t length(create(l)) = 1;
2: 0<I<length (X)D cont(assig (X,1,S8),1) = S;
3: 0<I<length(XIA 0<J<length(X) A 1 #J
D contlassign(X,1,S),J) = cont(X,J);
4: length(X)=length(Y)AVI.(0<I<length(X) D cont(X,I) = cont(Y,I))
. £ X=Y; .
end spectfication

Appendix 1 - Category Modules

CLU [4] offers a programming mechanism called '"type generator" by which a
cluster can define a class of types by receiving a type as a parameter. >Here,
the implementation of the cluster can not assume any structure of the type passed
as a parameter. (e.g. cluster STACK (T:type) defines the class of all stacks
whose entries containanelement of an arbitrary type T.)

This approach does not cause any inconvenience for such data types as stacks
and queues. This is not the case, however, for the type of polynomials, for example

In figure 2, module POLYNOMIAL defines the type of the polynimials with one
variable over a coefficient field T which is passed as a parameter. Obviously
the structure of T 1is involved in the implementation and specification of
POLYNOMIAL, i.e. each part of module POLYNOMIAL is written assuming the structure
of T as a field. '

- From a different stand point, it can be said that module POLYNOMIAL is written.

with no assumption other than that T has the abstract property of field.
The abstract property is that, on T, are defined such functions as ZERO, ONE,
ADD, ... , MULT which are bound by such axrioms as associativiﬁy}and commutativity.

Category module FIELD defines a class of the data types which have this
property. The interface part of FIELD contains all the functions such as ZERO,
ONE, ..., MULT and the specification part contains the axrioms mentioned above.

Now the parameter T to type module POLYNOMIAL is declared as T: FIELD.
(Ouf éonvention includes the mechanism of type generator in CLU since there is a
aategory any, which is the class of all types) Type module RATIONAL in Figure i
defines one of the data types which belong to FIELD. [See the two way in which
the interface part of RATIONAL 1s written.]

- iv -
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Appendix 2 - Proving Procedure Module GCD

We want to prove the correctness of procedure module GCD which is intended
to compute the g.c.d. of two given polynomial with one variable over the field
rational. [Figure 1 & 2]

On module DIVISION, the formal theory of polynomial division and g.c.d. is
developed, where function GCD is defined from another (predicate) fumction DIV
(DIV(X,Y) reads X 1is divisable by Y). Now, ariom 1 in specification procedure
GCD: "

GCD(X,Y) = DIVISION # GCD(X,Y) for POLINOMIAL X,Y

asserts that function GCD computed by module GCD is = to the other GCD defined
in module DIVISION. (X = Y means that X = c*Y for some c¢ in field T)
Now to prove axtom 1, Z = DIVISON # GCD(Xo, YO) is the goal formufa since 2Z
receives the value of GCD(X,Y) in module GCD. (Xo, YO stand for intial values
for X, Y). From this goal, the V.C.:

(DEG(Y) < DEG(X) A GCD(X,Y) =GCD(Xy,Y )AY = 0) D X =GCD(X,,Y,) etc.
are generated. Now, these V.C.'s are to be deduced from the axioms and

lemmas in the specification parts of modules DIVISION and POLYNOMIAL.

Appendix 3. Proving Equalities

Here we discuss the important issue of the equality. As explained in
[4], the equality predicate equal : (@, @) + boolcan as @ = @ (for the
program notations, see Figure 2) is asshmed to be placed implicitly'in each
type module. _ 4 ’

If one wants to prove an equality equal (X, Y) on an abstract data
type, this equality is to be translated into an equality on the type structure
which represents the abstract data type. [In Figure 2, to prove POLYNOMIAL#
equac(X, Y) for POLYNOMIAL X, Y, .realization type POLYNOMIAL is
looked at. Since t?ype SEQ 1is used as the representation for POLYNOMIAL
(rep = SEQ(T)), SEQ#zjual(X', Y') should be proved for SEQ X', Y'
representing X, Y, respectivelyt Now specification type SEQ 1is
searched and axiom 1 is found which gives a condition for SEQ equality.]

The user should place some axioms for the equality in the specification
par+ of a type module if he wants to establish the equality on the data type.

Incidentally, if one wants to prove an equality on type SEQ, which
is represented by a primitive type sequence, then the system type module
for sequence is referred, in which axiom 4 is the equality axiom. [See

Figure 3 and Appendix 4.]



