goooboooogn
0 3010 19770 118-128

118

BERABTLI ) L A0 FrottEOTEn >\ ¢

i S ®m|m Rk
(BRBGEAT STRBETH)

AR RS EE "F‘n\{r. z# 3 Dijkstra T TN K4
DV o xR T AR LR 3 350
EFEE oL RS R0R ) Y5 RICELS T Y T R

-

e >

\.’I

2, B2 0¥ 35~ A% T R 3 Dijkstra i5 2 § 4 2
SR HCTEEPE TS Y R T 3 ER T U - 2 2
THAZIET w 1/8 RT3 3R iMoo 5T
=9 2%, ERLOBEF BT oS AR I LRI
Ao FFEIMMULYL, TAT ) Zar T F3tiod
FOREAO LMY 53, 20 RELALERET 3.
FAEo % oy, BEBAALEH3 Prindhmow 2t B
5h3. RREL, LOBRSwAATFoR 2Rl U\
Ay 0 FEEST R = 3 RS TR Y 523

..‘




119

On the Expected Behaviors of the Dijkstra's Shortest Path
Algorithm for Complete Graphs

Kohei NOSHITA and Etsuo MASUDA
Depértment of Computer Sciernce
The University of Electro-Communications

Chofu, Tokyo 182, Japan

Summary

Several interesting phenomena observéd in the computing
experiment on the Dijkstra's shortest path algorithm for complete
graphs with non-negatively weighted edges are presented. Those
results suggest anyexpectedly efficient implementation of the
algorithm. The similar phenomena are observed in the Prim's
shortest spanning tree algorithm. An intuitive elucidation of

the underlying grounds for those results jis briefly described.

1. Introduction

The purpose of this paper is to report some experimental
phenomena observed in the Dijkstra's shortest path algorithm [1]
for complete graphs. Those results suggest an expectedly
efficient implementation of the algorithm. The similar phenomena
are observed in the Prim's shortest spanning tree algorithm [2].

We shall consider the single-source shortest path problem
for complete graphs with non-negatively weighted edges [3].

The complexity of the algorithms will be evaluated in terms of
binary comparisons between two distances from the source vertex.

It is well-known that the Dijkstra's algorithm is most efficient,
and in fact optimal, in the sense of the worst case complekity [4]1.
Certain implementation techniques of this algorithm have been

proposed for various types of graphs (e.g., [5],[6],[71,I[81).



12¢

In some experiments those techniques have been demonstrated to

be effective in reducing the expected number of ¢omparisons.
Furthermore they are also effective even for "complete" graphs [8],
However, to the authors' knowledge, the expected behaviors of the
algorithm have not yet been investigated in detail. This paper
experimentally shows some basic properties of the expected
behaviors by counting the number of times of updating the distance,

assigned to each vertex in each iterative step of the algorithm,

2. Description of the Algorithm

We shall briefly describe the Dijkstra's algorithm. For
general terminologies and previous results, see [3].

Let G be a complete directed graph with set V of n vertices.
For each edge (vi,vj) a non-negative real number l(vi,vj) is
initially given as an edge weight, where»viand Vj are in V such

that vifvj. Let v, denote the specified "source" vertex in V.

0
The following Dijkstra's algorithm finds the set of all shortest

paths from v. to any other vertices in V. In the algorithm the

value of D[V? stands for the path-distance assigned tentatively
or permanently to vertex v.
begin
Initialize: for each v in V do D[v]:=00;
DFVO]:=O; W=V P;= {VOB';
Iterative step:
for s:=1 step 1 EEEil n-1 do
begin
UPDATE: for each v in V-P do
 if DIv]) DIwl+l(w,v) then D[v]:=D[wl+1(w,v);
FINDMIN: find w such that D[wl=min {D[v]l v in V-P | ;
P:=pU {w}
end

end

Note that P denotes the set of vertices each of whose path-

distances has been permanently determined.



Throughout the algorithm the number of comparisons required
in the UPDATE step is m/2, where m denotes the number of edges
(m=n2-n). This is "obligatory" in the algorithm. If the relation
in UPDATE (line 8) always holds, it is necessary in the FINDMIN
step to find a vertex with the minimum distance out of all the
tentative vertices,.each of whose distances has been updated
to ‘a new smaller value in just the previous UPDATE step. Hence
the total number of comparisons necessary in FINDMIN will be (n-1)*
(n-2)/2 n2/2 in the worst case. In such cases the set of
tentative vertices should be represented in a linear array in
order to enable each actual updating within a certain constant
time. On the other hand, in the expected case, it is quite
natural to expect that the number of updating times will be far
less than the number of tentative vertices in V-P in each
UPDATE step. Then, as stated in 1, the number of comparisons
in FINDMIN can be decreased by employing a priority queue to

represent the set V-P of tentative vertices.

3. Counting Results in the Experiment*

3.1. The Number of Updating Times for Uniform Distributions

The first experiment gives the counting results of the total
number of ﬁpdating times in UPDATE throughout the algorithm.
See Table 1. The input data initially assigned to edges are
taken from the uniform random real numbers in the interval [0,1).
It will be worth while to mention that the linear, not'square,
amount of memory space is sufficient for this experiment, because
of the property of random numbers.

In the table each entry is computed as an average value of
10 trials. The parenthesized value is the standard deviation

for the corresponding average value.

1' The experiments have been independently performed by each of
the authors. The one is on HITAC 8350 in FORTRAN, while the
other on MELCOM 70 in PRIMAL-75. The pseudo-random number
generators are due to [9].



122

In order to examine the more detailed behaviors, the number
of updating times in each iterative step of the algorithm has been
counted. The average values of 10 trials for n=512 and 2048 are
plotted in Figure 2.
Let p(n,s) denote the probability with which, for each vertex
in V—P, its value is updated in the s-th UPDATE step for the
complete graph of ﬁ vertices. 1In our experiment we observe the
following simple phenomena:
"For uniformly distributed input data, the number of vertices
whose values are updated may be well approximated to be (n-s)/s.
Equivalently p(n,s) will be approximately 1/s for such input data."
Note that the above formula is much closer to the observed results
for small s than for large s (near to n).
Let F(n) denote the expected total number of updating times
throughout the algorithm for the complete graph of n Vertices.
The above result leads to the following consequence under the
same assumption for input data: n-1
"The simple approximated formula for F(n) will be éza(n—s)/s‘ﬂz
n loge n - 0.4228n, for sufficiently large n."

3.2. An Efficient Implementation
Those experimental results suggest the efficient implementation
offthe algorithm. For our discussion we shall use a k-ary heap to
represent the set V-P of tentative vertices. Then we can estimate
the upperbound of the total number of comparisons, denoted by C(n),
as follows [6]:
>C(n)=m/2 + F(n) 1ogkn + nk logkn .
The first term is obligatory, while the middle term is for the
rearrangement of the k-ary heap in each updating. The last term
is derived from n deletions of the minimum-valued vertex in the
FINDMIN step.
By the above approximation, we can assume that F(n)=n logen.
In order to minimize C(n) we will choose logen for k. Then
C(n) will be expectedly bounded by
m/2 + 2n(1ogen)2/logelogen .
Thus, we can expect that the number of comparisons required in the
algorithm is asymptotically equal to half the number in the worst

case, since the dominant term of C(n) will be m/2 (::n2/2).

-4~



123

3.3. Prim's Shortest Spanning Tree Algorithm

The similar phenomena have been observed in the second
computing experiment on the Prim's shortest spanning tree algorithm
for complete graphs (where 1l(u,v)=1l(v,u) for any u,v). The Prim's
algorithm is obtained by deleting two D[w]'s in line 8 in the
description of the Dijkstra's algorithm. This algorithm is also
optimal for complete graphs in the worst case [4].

See Table 3 for the counting results. in the second experiment,
which corresponds to Table 1 in the first experiment. This result
seems to show almost the same behaviors for n as the result on the
Dijkstra's algorithm for the uniform distribution. On more detailed
examination of the computing results, the number of updating times
in the Prim's case is a little (by about 0.6n) larger than that in
the Dijkstra's case. The quite similar phenomena to Figure 2
have been observed. The plotted curves are almost identical to
those in Figure 2 for small s for the same n's. The observed
results in the second experiment are summarized as follows:

"The probability of updating for each vertex in V-P in the s~th
UPDATE step may be well approximated to ke l/s feoxr complete
graphs. Hence the expected total number of updating times
will be bounded by n logen.“

Note that in this case the experimental results hold not only for
the uniform distribution but also for other types of distribution (3.4).

The analogous considerations based on those counting results
may be applied to the efficient implémentation of the Prim's
aigorithm.

3.4. Various Types of Distribution
In the third experiment several other types of distribution

of input data have been considered. They are exponential, Erlang
and normal. More specifically, those distributions have been
generated by the following formulas:

X=—(l/4)logeU , for exponential

Y=—(%/2)§§i 1ogeUi , for Erlang with parameter k

Z=

Ti=1
where U and U, are chosen from the uniform distribution in [0,1).
i

Ui , for normal,
Note that the Erlang distribution with k=1 is identical to be

—-5-



1

24

exponential.

The total numbers of updating times for such distributions
have been counted in just the same manner as in the former two
experiments. See Figure 4 for the counting results in the
Dijkstra’'s algorithm. For the exponential case, the values
are average out of 5 trials, while for the Erlang and normal
cases, they are counted once for each. ’

As an extreme case suppose the distribution is constant, i.e.,
every edge has been weighted, say, 0.5. Obviously no updating will
occur throughout the algorithm except the first initializing
UPDATE step. This extreme case, along with the case of uniform
distribution, suggests the following result cbserved in the third
experiment:

"The uniform distribution causes the expected number of updating
times greater than other types of distribution, except the
exponential distribution which shows the same behaviors as the
uniform distribution."

Hence the proposed implementation technique for the uniform
distribution seems to be effectively applicable to other types of
distribution in _.order to bound the expected number of comparisons.

For the Prim's algorithm, those types of distribution have
shown the same results as the uniform distribution, as reported

in 3.3.

4, Intuitive Elucidation of the Results

_'We shall give an intuitive elucidation Qf the underlying
grounds for our experimental results. In order to see asymptotic
behaviors of the algorithms; the number of updating times will be
considered only for relatively small s for sufficiently large n.

Suppose the following two conditions:

(a) for each vertex v in V , any edge in the set of incoming
edges to v may have the properly minimum weight with an
equal probability, ' '

(b) the value of D[w] in line 8 is negligibly small.



125

Then p(n,s) will be "roughly" equal to 1/s under those conditions.
~ In most applications we can generally assume that condition

(a) holds. In the Prim's algorithm condition (b) is always true,
since D[w]=0. Hence the 1ndependence of several types of
distribution considered in the Prim's case will be derlved ‘In 1
the Dijkstra's algorithm it is reasonable to guess that condltlon
(b) holds for the uniform distribution. Assume that the initial
weights of outgoing edges from‘any'vertex are i/n (for i=1,2,...,n-1)
as a very simplified model. Then it is easy to see that D[w] in the
s-th’ step has a value almost equal to (logzs)/n for small s. For
sufflclently 1arge n this value may be neglected for small s. In
fact, the value of D[w] in the s-th step has been demonstrated to
be approximately (logés)/n in the computing experiment. Note that
the expected shortest distance may be conjectured to be bounded

by (1092n)/n for the unlform dlstrlbutlon between 0 and 1.

As already p01nted out, for other types of distribution

considered here, except the exponential one, the probablllty of
updating will be'smallei, because the previously determined value

of D[w] can not be neglected.

5. Conclusions

We have shown some expected behaviors of two algorithms
for finding shortest paths and shortest spanning trees in coﬁplete
graphs, and proposed their expectedly efficient implementations.t
Those results will be useful for practical applications of the
algorithms.

For the completeness of our study more rigorous treatments of
our results should be given. The mathematical analysis based on
the elementary probabilistic model has been partly elaborated by
the first author, collaborated with Hajime Machida, which will be

reported elsewhere.

%t The present paper is based on the results obtained during the

work of the second author [10], supervised by the first author.

The second author is now with Musashino Electrical Communication
Laboratory, NTT, Musashino, Tokyo 180, Japan.

-7~



126

References

11

(21

Dijkstra, E.W., "A Note on Two,Problems in Connexion with
Graphs,"” Num. Math., 1 (1959), 269-271.

Prim, R.C., "Shortest Connectlon Networks and Some

' Generalizations," BSTJ (1957), 1389 -1401.

[3]

[41]

[5]

[6]

[7]

[8]

(o]

Aho, A., J. Hopcroft and J. Ullman, The D351gn and Analyszs
of Computer.Algorithms, Addison-Wesley (1974).

Spira,; P.M.. and A. Pan, "On Finding and Updating Spanning
Trees and Shortest Paths," SIAM J. Comp., 4 (1975), 375-380.
Johnson, E., "On Shortest Paths apd.sdrting," Proc. ACM 25th
Annual Conf. (1972), 510-517.

Johnson, D., "Algorithms fox Shortest Paths," Ph.D. Thesis,
Cornell Univ. (1973). ‘
Johnson, D., "Efficient Algorithms for Shortest Paths in
Sparse Networks," JACM, 24 (1977), 1-13.

Noshita, K., "On Data Structures for Manipulating Graphs and
a New Efficient Program for the<Dijkstra's Method for ‘
Shortest Path Problems," Third Sympgsium on Theory of
Programs, Kyoto Univ. (1973).

Knuth, D.E., The Art of Computer Programming, Vol. 2 (Semi-
numerical Algorithms), Addison-Wesley (1969).

[10] Masuda, E., "A Study on the Computational Efficiency of

Shortest Path Algorithms," Master Thesis, Univ. Electro-
Communications (Feb. 1977), 108 pp.



n 256 512 1024 - 2048 ... . &
Updating 1317 2994 6654. 14717
1 (18) (38) = (597 (109) .
Z(n-s) /s 1311 - 2977 - 6663 . 14746
s=1

i

Table 1. The Total Number of Updating Times for the
Uniform Distribution in the Dijkstra's Algorithm

updating times

2000 T (average of 10 trials)

~
1000

500

n= 2048
——— (el
0 5 10 15 20)) 50 )
s (step)

Pig. 2. Stepwise updating times for n=512 and 2048



128

n 256 512 1024 2048
Uniform 1473 : 3323 7296 15906
(26) ) (48) :: (64) (76) . -
Exponential 1445 ° 3322 -~ 7324 16145
(¥Exrlang k=1) ’
Erlang k=2 1450 3220 7353 16047
Erlang k=3 1443 " 3205 - 7193 16037
Erlang k=4 1449 3330 7333 15981
Normal - 1465 3366 7340 16418

Table 3. The Total Number of Updating Times for Various
Types of Distribution in the Prim's Algorithm

(The entries for Uniform are computed as average
values of 10 trials. The parenthesized values
indicate standard deviations. All other entries
are the observed values of only one trial.)

n 256 512 1024 2048
Exponential 1311 2984 6698 14770
(SErlang k=1) | (10) (29) (29) (99)
Erlang k=2 1068 2419 5592 12416
Erlang k=3 892 1979 - 4504 10326
Erlang k=4 832 1824 4104 9225
Normal 262 546 1151 2439

Table 4. The Total Number of Updating Times for Other
Types of Distribution in the Dijkstra's algorithm

(The entries for Exponential are computed as average
values of 5 trials. The parenthesized values indicate
standard deviations. All other entries are the
observed values of only one trial.)

~10-



