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§ Introduction.
Let Ep : M—>M De a homeomorphism of a metric space (M, d) with

distarice function d. A (double) sequence {Xi} of points xié M

i€7
(i€ Z) is called, by definition, a 8 —pseudo—orbito§ @ iff

dl §(xy)s x5,9) €8

for every i € Z, where 8>0 1is a constant (cf. [2]). Given £>0,

a 8 -pseudo-orbit {Xi} is called to be € -traced by a point y € M iff
i
£
a 9 (), x) S €

for every 1 € Z. We shall call 50 stochastically stable, iff for any
£ > 0 there exists & >0 such that every 8 ~-pseudo-orbit  of q) can
be £ -traced by some point .y & M.

R. Bowen [2] proves that every Anosov diffeomorphism 9 of a compact
manifold is stochastically stable. |

In this note we shall first prove that every topologically stable
homeomorphism @ (cf. Def. 1) of a compact manifold (or euclidean space)
M 1is stochastically stable in case dim M 2 3 (Th. 1). Using this

result we give a positive answer to the conjecture of F. Takens in



tolerance stability [9] (Th. 2). By virtue of these resulté it seems
to be significant to give necessary and//or sufficient conditions for
diffecmorphisms to be stochastically stable and to clarify tﬁe relations
with other stabilities of diffeomorphisms.

We shall in fact characterize linear automorphisms of ﬁn (resp.
group automorphisms of a torus Tn) to be stochastically stable (Th. 3
and 4). MbreoVer, we shall see that every isometry of a compact connected
Riemarmian manifold M (dim M2 1) is not stochastically stable.

We shallAfurther shéw a result due to H. Urakawa which says that
if there is ékstochastically.stable group automorphisﬁl q>'of a compact

connected Lie group G, then G 1s necessarily a torus.

§l. Definitions and preparatory lemas.
let ~ ¢ : M—M. be a homeomorphism of a metric space (M, d)." We:

denote by H(M) the group of dll homeomorphisms of M.

Definition 1. We call ¢ _topologically stable iff for any §> 0

there exists §> 0 with the property that for any W €H(M) with
acg(x), ‘//',(X))< S for every x € M there is a continuous map“ h:M—=—M
such that ‘ , .
i) hey =Qen,
ii) d(h(x), x) <& for every x¢g M.
e : ; —-00< g <

Definition 2. A sequence of points {Xi} 1€ (a,b) (=00 <a<h <+00)

is called a § —pseudo-orbit of q) iff
a(P(x;), x,9) £ & |

for i € (atl, b-2). If a > -e and b< oo , this sequence will be

called a finite § -pseudo-orbit of 99 and if a=-00and b = +00 , the
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sequence will be (sometimes) called an (ihfinite) S ~pseudo-orbit
of ¢. {Xi} is called to be § -traced by x€& M iff
i
acg=(x), xi) s £
holds for i € (a, b).

® is called stochastically stable iff for any £ >0 there exists

&> 0 such that any (infinite) § -pseudo-orbit of ¢ can be &€ -traced

by some point X € M. We shall call such q? also a Bowen homeomorphism.

Definition 3. We denote by Orbs((})) the set of all (finite or

infinite) § -pseudo-orbit of ¢ and € ( {xi} »$) =Tr ( {xi} ) the

set of all y€ M such that {xi} is & -traced by y.

Assumption. In the sequel we assume that every bounded subset of M

is relatively compact unless otherwise stated.

We shall now staté several lemmas, some of whose proofs will be

omitted, since the proofs will be more or less standard.

Lemma 1. Let h € H(M) be a homeomorphism of M such that h and
b~ are both uniformly continuous. Take PEH(M) and set Y = hePon o,

Then 9) is a Bowen homeomorphism if and only if ‘l’ is.

Lemma 2. Let @€ H(M) be stochastically stable. Then, for any

integer k > 0, $¥ is also stochastically stable.
Lemma 3. Let ¢ € H(M) be uniformly continuous, and fix an integer
N > 0. Then for any £€> 0, there is §>0 such that if {Xi j_EO (=
§ N
Orb (@) then Xy £ —traces {Xi} 120"

Lemma 4. ILet @ € H(M) be uniformly continuous. If ¢ 1is a Bowen

homeomorphism, then ?_1 is.
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Lemma 5. Let Q€ H(M) be uniformly continuous. If ?k is a

Bowen homeomorphism for some integer k > 0, then SO is.

Lemma 6. Let @€ H(M), and Y€ H(M'). The direct product M X M
is a metric space by the distance function ai(x, y), (x', y")) =
Max -{d(x, x'), d(y, y')} for x, x'€ M and y, y'€ M'. Then g?x \/f
is a Bowen homeomorphism if and only if 9 and \/f are both Bowen.
Lemma 7. Let @€ H(M) and assume that for any ‘€ > 0 there exists
. k 8
& > 0 such that for any integer k> 0 and any {Xi]fi=0 € Orb (P)

we have Tré ( { xi}k >P) # ¢ Then ¢ is a Bowen homeomorphism.

Lemma 8. Let Cp be a Bowen diffeomorphism of a compact Riemannian

manifold M. Then 9) is Bowen with respect to any Riemanmnian metric on M.

Lemma 9. Let M be a differentiable manifold of dim M 2> 3. Let
Xi ={pi, ql} (i= 1,...,k) be a subset of M consisting of at most
two points p; ‘a.nd q; with d(pi, qi)< S . Suppose Xi'(\ Xj = g
for i # j. Then there is a diffeomorphism 9 : M~—>M such that
d(P(x), x)<§ for xe M and thafc 7)) =q; for i= 1,2,.‘.., X.

Lemma 10. Let 9 : M—M be a homecmorphism of a manifold M

with dim M2 1 and suppose M - Fix(?) is dense in M. Take and fix

a constant 8‘>O and an integer k > 0. Then for any {Xi} € Orbsl(@)
o) g 38, N
and £1> 0, there is {Xi}é Orb°“1(9) such that 1) d(xi, Xi)<£1f‘or
i=0,1,..., k and ii) Xy = {9(%), x:!Lﬂ} (i = 0,1,..., k-1) are
disjoint.
Proof. We can assume E,<8,. For this 51, there is € Il > 0 such

that €, > e’l" and that d(x, y)< €] implies A@(x), P()) < €.

First, we can find x! € M (i =0,1,..., k) such that x} # x§(1 #J)
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and that d(Xi’ xi) < Ei (i =0,1,..., k). Next, we shall show by induction

that X are disjoint by taking x:'L suitably. For that, suppose

NPT S
= {g?(xi), X]!_+l} (i =0,1,..., k-2) are disjoint. We shall show that,

y s
by changing Xk 1 and Xy if necessary, Xi (1=0,1,..., k-1) e
disjoint.
. k-2
. + Dl ! -y [}
Consider the point %(Xk_l) and suppose gu(xk_l) € };{Xl Then

there is a unique i<k - 1 such that Qf(x = x:!L, since Xf{—l # XJ'.

k- l)

s < - . . n 4 g _ 1
(j £ k-2) implies 9(}{}'(—1) #@(XJ!). If i< k-2, wecen find x4

' Oof ! L 1 TR P s e = x! .
near  xy_, such that %’(Xk_l) # X If i=k-1 i.e. @?(xk_l) X5
" 1 £~ "
then we can find Xy q near xp o such that SQ\X ) # X 1s since
M - Fix( 9>) is dense and open in M. We denote x" by x! again.
-2 o Kl k=l
Then'we can assume that Xk ¢ \\j X » since U X is a finite set.
i=0
Thus we have proved that XO,XA oo Xk | are disjoint.
- R L S
For 1< 0 (resp. 1> k) we define x' g) (x ) (resp. X} 9) (Xk))'

Then we see that {X'} € Or‘b38‘1(99) For', we have
A0 P, x3,) < AP, @ (x)) + AP (xy), x,,9) + Alxgqs %140
< £+ 8 +E/<38
for 1 =20,1,..., k-1. This completes the proof of Lemma 10.

Lemma 11. Let Pe H(M), where M is a differentiabie manifold of
dimension > 1. Assume 99 is topologically stable. Then for any integer
k>0, M- Fix( (yk) is dense in M, where Fix( q)k) ={X € M, ?k(x) = x} .

Proof. Induction on k. First, we prove the lemma for k = 1.

To prove that M - Fix( 93) is dense in M, we assume that there is
an open set U #p’ such that U C Fix(so). We can suppose that U is a

coordinate neilghborhood of a point x., € U with coordinate system

0
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(Xyseees Xn). Take € >0 such that Q£1 C U, where Q€1 = Q€I(XO) means

the cubic neighborhood with center x, and of breadth 2§;. Take £>0

0
such that 4E< E,, . For this €> 0, we can find 8 20 with the property
in Definition 1. Now, take a differentiable function & on M such that

K(x) =1 for x € Q X(x) =0 for x qt QME; . Define a differentiable

3¢°
vector field Y on M by
. r:
%0 () x € Q,
Y(x)= ' .
0 , Q
x ¢ o,

where 8‘>O is a constant. Let {7]’5} be the one~parameter group of

diffeomorphisms 171: of *M generated by. Y and put 77 = 771. It is clear

that if 81<S is sufficiently small, then we have d( '72(}(), x)<d for x€M,

Set ‘\}/="2050 , then we have d( g)(x), \[’(x))<'8 for x€& M and hence there
is a continuous map h :;M‘——}M such that ho#’ ‘=50oh and d(h(x), x)< &

for x€& IVI,-' Since (=1 on Q3E, » we see that there i; a sufficiéntly
large integer k > 0 such that \},k(xo) =v,zk(xo) ¢ Q38 and hence

n( \Pk(xo)) ¢ Q2£ . On the other hand, since d(h(}'c); x)<£ we-have

h(xo) € QEC U C Fix(SO), and so we have h( \PK(XO)) =sék(h(xo)) = ﬁ(xo)
€ QE , which is a contradiction. Thus we have proved the lemma f’or*—‘, k = 1.

Assume that k 2 2 and that the Lemma is true for any k'< k - 1.

Suppose that Mv— Fix( (Pk) is not dense. Then there will be a non-empty
open set U C Fix( ™). Since M- Fix(¢") is dense in M for i< k-1
there exists X € U such that (]Ii<x0) # X, for any i<k~ 1. Hence

we can assume that U 1is a coordinate neighborhood of Xy With coordinate
system (xl,..., xn), n=dim M and that {goi(U)} lité is disjoint.

Take 51 such that U D Q£1(XO), and take £> 0 with 4€{ €. Since

30 is topologically stable there exists a 8)0 with the property in
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Definition 1. For this § >0 we can find a diffecmorphism 7 MM
such that "'Z(U) = U, d("[(x), X)ﬁg (x €& M), 7(){) ¥X (xé:— U) and that

')2 [Qllﬁ - is a parallel translation along the xl—axm as in the proof of
the Lemma for k = 1. Define gé‘ H(M) by

9 ) | x¢9’
703”@‘ Xé?

Since U =(5?k(U), g is in fact a homecmorphism of M and d(g,?)é S

g(x) =

holds. Therefore, there is a continuous map h : M—*M such that
heg=@oh and d(h(x), x)<& (x€ M) \
holds. We see easily that gk(x) = 72(x) for x € U. Hence we can find

a sufficiently large integer m > 0 such that gkm(xo) =7Zm(xo) $ Q3£

On the other hand, we get ho gkm(xo) = Qka(h(xO)) = h(xo) = Qg since
h(xo) € U and d(h(xo), X, ) < €. Hence we have gkm(xo)' € Q2£ , which

is a cdntradiction. This completes the proof of Lemma 171.

Remark ~ The author does not know whether the topological -stability

of ? J.mplles that of Cf for k # 0.

§2. Topological and stochastic stabilities, and Takens conjecture.

Theorem 1. Let M be a differentiable (metric) manifold of
dim M 2 3 and assume that there exists £o> 0 such that Eo -neighborhood
er(X) of any point x € M is relatively compact. Let 9) : M—»M be
a topologically stable homeomorphism. of | M. Then 50 is stochastically
stable. In particular, if M 1s compact .or M =R is the euclidean
spaée then the topological stability implies the stochastic stability.

Remark. The author has a proof of Theorem 1 in case M = Sl ( the
circle). However since the proof is quite different, he Will treat it

in a future paper.
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Proof of Theorém 1. Since SO is topologically stable, for any £ >0
there is 8 >0 with the property in Definition 1. We can assume
§< Min(E , €,).
First, we shall prove, for any { xl} € Or'bs/éﬁ(
k >0, that 8 ({x,}5,9) ¢ .
By Lemma 10, 11 we can find {Xi} € Orb 8A7t($0) such that d(xi, xj'.‘)<’8.

?) and any integer

(i=0,..., k) and that the sets {?(X:!L), xiﬂ} are disjoint for -
i=o0,l,..., k= 1. By Lemma 9, there is a 72& H(M) such that
d(72(x), x)<§ for x€&€ M and 7(?(}(&)) =x},, for i=0,1,...;, k-1
Put Y’ ="2°€f , then d( ?(x),Y’(x)) <& . Hence by the property for
8 > 0, we can find a continuous map h : M—>M such that ho\// =9o h
and d(h(x), x)E for x& M. Put y = h(xé). Now we have for i = o,
1,...,5 Kk,
1 _ i _ i
a(@7(y), %) = AP (h(xy)), %) = Ah(P(xp)), x;)

< 1 Ve -

£ d(a(x, x{) +dx, x)< £+8<2€ ,
which shows y € Tr'2 € ( { Xi} k,(f). Thus we have proved that g) satisfies
the condition in Lemma 7, which concludes that ? is stochastically

stable.

Now we shall recall the notion of extended orbits of a homeomorphism
of a compact metric space (cf. [9]). '

Let 50 : M—>3>M be a homeomorphism of a compact metric space (M, 4d).
The set of all non-empty closed subsets of M will be a compact metric

space by the distance function d defined by’

d(a, B) = Max{ Max d(A, b), Max d(a, B)}
e B aeh

for Ak, B &€ C(M), where d(A, b) = inf d(a, b) (cf. [5]). We denote by
aeh '

(5;{)8 ( 3?) the set of all A &€ C(M), for which there is -{Xi} & OrbS(SO)

8
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such that A = Cl { X5 [ ié Z}, Cl1 denoting the closure.

Definition 5. We denote by E‘}’ the set of all A & C(M) such that
for any £>0 there is Ag € OrpE (¢) with daqa, AE)< €. An element
A of E, is called an extended orbit of @ .

¢
On the other hand, we define Og = 01{09(;() [ x € M}c C(M), where

O?(x) = Cl(Orbg,(x)) with Orb?(x) ={(fi(x) j 1€ Z}. We can easlily see
that E,, is closed in C(M) and O, C E,, holds for any @€ H(M).
¢ $< Ty y
Lemma 12. If ?(- H(M) 1is stochastically stable, then 0‘5’ = ESo holds.

Proof omitted.
Now, we shall give an affirmative answer to a conj eéture by F. Takens[9].

Theorem 2 (Conjecture of Takens). Let ()0 be a . Cl—diffeomorphis;n
of a compact connected manifold M with dim M 2> 1. Assume that 50 is
an AS-diffeomorphism, i.e., (P satisfies the Axiom A and the strpng trans-
versality condition. Then O,, = ES’ holds.

® ,
Proof. Consider the direct product Px @x§, a qiffeomorphism of

Mx MX M onto itself. Since 9’ is an AS-diffeomorphism, we see that
SOXEPX Cf is also AS. By a result of Nitecki[6], SOxSN Cf is topologically
stable. Hence by Theorem 1 ?x ffx 50 is a Bowen homeomorphism. Now Lemma 6
says that’ (f is also a Bowen homeomorphism and so by Lemma 12, O‘}’ = E(P
holds.

Definition 4. @¢H(M) is called expansive, iff there exists £°>O
(called an expansiveness constant of (59 ) with the property that for any

X, YEM with x #y, there is n € Z such that
a9 =), 9 "GN 2 E,.

The following Proposition is essentially proved in [2].
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Proposition 1. Let M be a metric space such that every bounded set
is relatively compact. Let 9 : M—>M Dbe a stochastically stable homeo-

morphism of M. If is expansive, then is topologically stable.
140

§ 3. Stochastic stability of linear and toral automorphisms.

In this section we shall characterize affine transformations of Rn

and toral automorphisms of 'I’l’l = Rn/ Zn to be stochastically stable.

Proposition 2. Let ? : Rn—eRn be a linear aufomor’phism of Rn.
Then q> is stochastically stable if and orily if SO is hypérbolic, i.e.,
if A 1is an eigenvalue of @ then l)\' 1.

'Préof. Assﬁme 50 is stochastically stable. Consider the compl‘}e‘xi—
fication @° : "——>c". Identifying O with R'x R, we can identify
?C with gaxcy . By virtue of Lemma 6 and 8, (}p is stochastically -
stabie if énd'only if (PC is. -Since a linéar'map is uniformly continuous,
it follows f‘roni Lemma 1 that (PC is stochasticaily stable if and only if

every factor of the Jordan canonical form of ?C .1s stochastically stable.

Al
AT

Now, it suffices to show that if ‘// = : 0" (resp. \}3=>\‘lc:l)

.‘)\ |
is stochastically stable, then l)\l # 1. Suppose I)\I = 1. Set ZJ. =

J- >\J8 for- j € Z. Since
A Yo(zp)s 2449) = ' \//O(Zj) T %54 ‘
we have {zj\; € orb® <+o)' ‘However, since A
Ay, z) =| A" E-X"n§|=]|E - ng|,

there is no E such that d( \f/g( g ), zn) is bounded for any small X} 0.

It

[ 3N8 - G N8 =8,

In particular, for any 8>o we have Trl( {Zj’f’ V/O) =/Z(. Hence YJO is

not stochastically stable.

10
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Similarly, consider the vector VJ. =(0,..., 0, Zj) for j€ Z,we
see that {ijé Orbg(\f/) and that Tr’l({vj},'\ll) =ﬁ\, which means
\f is not stochastically stable. Thus we have proved that Y«’ is hyperbolic.
Conversely, assume that ()O is hyperbolic. Then it is well known that
there are subspaces E° and E of R? and constants C >0, 0< A <1
such that
i) R'=©r"@"
1) 9E7) =£5% o=s,u,
111) | 9%l < cXivl vE€E
_ 19l < c N iwll - we B
for n20. Set V=95 and 7= ®|.u, then identifying R" with
E°X E we can identify SO with \P" 72 . By virtue of Lemma 6, it suffices
to show that \// and "2 are stochastically stable.
First consider 72 : B —EY and take €>0. Putg = (1 —>\)£/C
: by . . £ .
We assert that. §xi‘[ € orb® (7)) implies Tr (-§xi},72) #ﬁ. For ke 7
= U i
we set o{k =X —7(xk) € E°. Then we have ”o(kﬂgg for k€& Z. By
induction we see that for k> 0
_ k k-1 ) k-2 '
X, = '72 (XO) +72 (O(O) + 72 (0(1) + ... +O(k——1
-l K | K ,
holds. Put E—QZ . Then we have “E ”ﬁ cA® for k>0 (ef. iii) ).
We have also : ‘ ’ | ‘
_ k ; 2, kK, _ k
x, = PECxg + 5O + EEE) + o EK ) = P F v,
_ 2, K,
where we put v, = }'(O(O) + E (0(1) + ... +§ (o(k_l) for k> 0.

We shall show that % Vk} is a Cauchy sequence. In fact, for any

[+ a]
k=1
p > k> 0, we have

v, - vl - ” i%}rl g, o <€ i,“gvi«xi_l) I

i=k+1

L c %‘_, N ”o(i_llig 0-8->\k+1/(1—)\)—90 (k=>00).

i=k+1

11
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Hence there is Q€ EY  such that  1im v, = @ Put y = x, + @ . Then
: k-—»00

we have

'7]k(y)—x 7] (%, +@—x -—v
=7 (ZS (¢ 1)) = Z El—k((xll

1=kl Yy

and hence we have
AW, 5 = 7w - xk([<ZHEH‘ I8 <c8 /- -

By Lemma 12, we see that '7] is stochastically stable. Similarly we con-
clude that \}/_l is stochastically stable. By Lemma 4, \I/ is also stochas—

tically stable. Thus we have proved that fy is stochastically stable.

Theorem 3. Let (53 : *—> R’ be a linear automorphism. Then the
following conditions are equivalent :

1) @ is hyperbolic

2) SJ is expansive

3) (9 is structurally stable

4) @ is stochastically stable

5) Cy is topologlcally stable.

Proof. Eqmvalence 1)6—93) was proved by Hartman (see Theorem 2.3[7]
for details).

1)¢—>2) is standard.

)& L4) is by Proposition 2.

5)—3»L4) for n>2 is by Theorem 1. For n =1, SO . =3 RY is
given by Cf(x) =r>\~x for some %7‘ 0. If 99 is topologically stable,
then \ #41. For if )\ =41, then @7 =1 and Fix($%) = R, which
contradicts Lemma 11. Thus | Al f 1, which means SU is hyperbolic and
so stochastically stable. Finally 4)-—5), since U4)—32) and so we

can apply Theorem 2. This completes the proof of Thecrem 3.

12



Proposition 3. Let f: Rn-——9Rn be a linear automorphism and E € r?

a fixed vector. Define the affine transformation 33: Rn——) R? by
Q) = £(x) + £
for x & Rn. Then Cf is stochastically stable if and only if f is.
§
Proof. Let {x;} € 0ro® (P). Put
2 o i-2
xp=x - (0THE) + 0TNE) 4 L +E)

for 1€ Z. We see that -{Xi} € onS (f). It is easy to verify that
Slxi} ﬁ}xi} is a one-one correspondence between Or'bs( ?) and Or'bg(f)
and that Tr'e( -}xi'l;,q:) = T}(%xi}, ) for every E>0. Thus 93 is

stochastically stable if and only if f is.

Proposition 4. Let M aﬁd M be metric spaces and [ : ﬁ'——m be
a locally isometric covering map of M onto M. Assume that M 1Is compact
and that every §g -neighborhood UE(X) of X€ M is cornected for small
£>0. Let fe H() and @€ HOD such that Tof = @oTC . Then,
f is stochastically stable if and only if ¢ is.

Proof omi’t_:ted .

Lemma 13. Let f Dbe a linear automorphism and Sﬂ L _..>Tn be a
group automorphism of ™  such that TMef = ?o’?t , Where TC : Rn%}Tn =
Rn/ 'Zr1 is the projection. Then f is expansive if 9) is.

Proof’ omitted.

Theorem 4. Let ? : T N ™ be a group automorphism of the torus
™ = Rn/ 7",  Then the following conditions are equivalent : |

1) @ 1is an Anosov diffeomorphism,

2) SO is expansive,
3) Cf is structurally stable,
L) 83 is stochastically stable,

13
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5) ? is topologically stable,
6) @ satisfies Axiom A and the strong transversality condition.
Proof. 1)=-—5) 1is proved by Walters [10].
5)—>14) is proved by Theorem 1 for case n2> 2. Incase n =1,
it @ : Tl——) ™ is a group automorphism SJ 2.4 Ipt and so ? is not
topologically stable by Lemma 11.
To prove 4)~—1), we denote by f : Rn_—éﬁRn the linear automor-
phism covering Cf > l.e., To £ =Q@eT. Since SO is stochastically stable,
f 1is also so by Proposition 4. Hence by Theorem 3, -f is hyperbolic.
Then ‘? is clearly an Anosov diffeocmorphism.
1) —>3) 1is proved by Anosov [1].
3) — 1), since Tog) (the differential of @ at the neutral element
0 of Tn) is;hyperbolic by a result of Franks 3], and hence'99 is an-
Anosov diffe&ﬁbrphism. k e
1)~>2) dis proved also by Anbsovi[l].
2) _f>l),’SinCG f is éxpansive by Lemma 13, and hence £ is hyper-
belic by Theorem 3 and SO SO is Anosov.
1) —6) is verified by the very definition and a result of Anosov [1].
6) —>3) 1is proved by Robbin [8].

This completes the proof of. Theorem 4.

§I,L Isometries of compact Riemarmian manifolds.

In this section we shall prove that any isometry of a compact connected

Riemannian manifold M with dim M 21 is not stochastically stable.

Lemma 14. Let M be a compact connected Riemannian manifold. Suppose
¢ € H(M) is an isometry of M. Then, M €& E,.

b

Proof omitted.

14



Theorem 5. Let §> : M=—M be an isometry of a compact connected
Riemannian manifold M with dim M2 1. Then CP is not stochastically
stable.

Proof. Suppose ff is stochastically stable. Since M 1is compact,
the non-wandering set _Q_(?) of (f 1is not empty. Take and fix a point
Py € Q( 97). For &€ = diameter(M)/?, there exists 8)0 such that
£>8 and that {x,y€ ot} (@) implies ({5 },9) #F. Put
U= US/z(pO)' Then, since p, € _Q((f), there is an integer k > 0 such
that (Pk(U) NU #,Z( We can assume that g’i(U) NnU =Qf for i=1,...,

, k -
k - 1. Take a point x, € U such that ¢ (XO)E U. Now, set X .. =

i , _ |
¢ (XO) for n€ Z and 0< i< k. We see easily that { %5 V1€7

Hence we can find a point yg M such that d( SP;(y), Xi>S € for i€ Z.

In particular, we have d((fnk(y), xnk)s € and hence d((fnk(y), xo)s' &g

for n€ Z. Put Y/=Sok and yn=}l/n(y). We have yné UE(XO) for ne¢ Z.

Now, since \l/ is an iscmetry, we have M ¢ Ey, by Lemma 14. Since
y/ is stochastically stable by Lemma 2, we have E.‘//= O;b by Lemma 12.
Therefore, M € 0y and 5o there is z€ M such that
(4 1) E(o),,(z), M<E .
Since y € M, there is mé€ Z such that y € ‘UE‘( Sbm(z)). Since y/ is

. m ' n, jm n

an isometry we have \}/ (z) € Ua(y), and hence Y/ (\/1 (z)) € U&()lf 62D
- U2£(x0) and finally we get
(¥. 2) Orb\y(z)C U2£(XO).'

Now (¥.1) and (4.2) dimply MCUE;(OY,/(Z))CU (x,) and we have

3€
diam(M) < 6§, which is a contradiction.
Proposition 5. Let G be a compact conmnected Lie group. Suppose

that there is a group automorphism (f : G-~—>G, which 1s sto'chasticélly

stable with respect to some Riemannian metric on G. Then, G 1s a torus.

15
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Proof. Let A ‘(‘re_s\p.,, TS).‘ be tjne max1ma1 qbelian (resp. semi-simple) .
normal subgroup of G, and set Z = A() S. . Then we know (cf. [4]) that
G=A-S and Z is a finite group. itrivs well known that @(A) = A and
@(s)=s. Put =9, and ’7=§7‘S Since TC: AX S—G defined by
- (a, x) = a.x for ag€h, x€S isa (finite) covering map and since
T e ( Zx? ) = Qo , we see, by Proposition 3, that fx’z and hence '? is -
stochastically stable. ’ Since_»/? 1s anyagt{omor*phism of S, 7 leavesk
invariant the Killing form @ of the Lie group S, Which is negative ,
definite and so 7] is an isometry of the invariant Riemannian métr’ic on

S induced by —@. By Theorem 5, dim M = O, and hence G = A 1is a torus.

§5 . Final remarks

Remark 1. The author has examples of diffeomorphisms, which are

stochastically stable but not structurally stable.

Remark 2. In case M = S1 (the circle), we can prove that a C2—diffeo—
morphism 50 : Sl—-) Sl is stochastically stable if and only if there
exists an integer k > 0  such that Sok is topologically stable. The

authof does not know whether we can take k = 1 in the above statement.

Remark 3. The author has a characterization for projective transfor-

mations to be stochastically stable.
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