8

Stochastically stable diffeomorphisms and Takens conjecture Akihiko Morimoto

Department of Mathematics, Nagoya University

§ Introduction.

Let $\varphi: \mathbb{M} \longrightarrow \mathbb{M}$ be a homeomorphism of a metric space (M, d) with distance function d. A (double) sequence $\left\{x_i\right\}_{i \in \mathbb{Z}}$ of points $x_i \in \mathbb{M}$ (i \in Z) is called, by definition, a δ -pseudo-orbit φ iff $d(\ \varphi(x_i), x_{i+1}) \leq \delta$

for every $i\in Z$, where $\delta>0$ is a constant (cf. [2]). Given $\epsilon>0$, a δ -pseudo-orbit $\{x_i\}$ is called to be ϵ -traced by a point $\gamma\in M$ iff $d(\ \varphi^i(\gamma),\ x_i)\leq \epsilon$

for every $i \in Z$. We shall call φ stochastically stable, iff for any $\xi > 0$ there exists $\delta > 0$ such that every δ -pseudo-orbit of φ can be ξ -traced by some point $y \in M$.

R. Bowen [2] proves that every Anosov diffeomorphism ${\pmb g}$ of a compact manifold is stochastically stable.

In this note we shall first prove that every topologically stable homeomorphism φ (cf. Def. 1) of a compact manifold (or euclidean space) M is stochastically stable in case dim M \geq 3 (Th. 1). Using this result we give a positive answer to the conjecture of F. Takens in

tolerance stability [9] (Th. 2). By virtue of these results it seems to be significant to give necessary and/or sufficient conditions for diffeomorphisms to be stochastically stable and to clarify the relations with other stabilities of diffeomorphisms.

We shall in fact characterize linear automorphisms of \mathbb{R}^n (resp. group automorphisms of a torus \mathbb{T}^n) to be stochastically stable (Th. 3 and 4). Moreover, we shall see that every isometry of a compact connected Riemannian manifold M (dim M \geq 1) is not stochastically stable.

We shall further show a result due to H. Urakawa which says that if there is a stochastically stable group automorphism ϕ of a compact connected Lie group G, then G is necessarily a torus.

Let $\mathfrak{P}: \mathbb{M} \longrightarrow \mathbb{M}$ be a homeomorphism of a metric space (M, d). We denote by $H(\mathbb{M})$ the group of all homeomorphisms of M.

Definition 1. We call φ topologically stable iff for any $\xi > 0$ there exists $\delta > 0$ with the property that for any $\psi \in H(M)$ with $d(\varphi(x), \psi(x)) < \delta$ for every $x \in M$ there is a continuous map $h: M \longrightarrow M$ such that

i)
$$h \cdot \psi = g \cdot h$$
,

ii) $d(h(x), x) < \xi$ for every $x \in M$.

Definition 2. A sequence of points $\left\{x_i\right\}_{i\in(a,b)}$ $(-\infty \le a < b \le +\infty)$ is called a δ -pseudo-orbit of ϕ iff

$$d(\varphi(x_i), x_{i+1}) \leq \delta$$

for i \in (a+1, b-2). If a $> -\infty$ and b $< \infty$, this sequence will be called a finite δ -pseudo-orbit of ϕ and if a = $-\infty$ and b = $+\infty$, the

sequence will be (sometimes) called an (infinite) δ -pseudo-orbit of φ . $\{x_i\}$ is called to be ξ -traced by $x \in M$ iff $d(\varphi^i(x), x_i) \leq \xi$

holds for $i \in (a, b)$.

 φ is called stochastically stable iff for any $\varepsilon>0$ there exists $\delta>0$ such that any (infinite) δ -pseudo-orbit of φ can be ε -traced by some point $x\in M$. We shall call such φ also a Bowen homeomorphism.

Definition 3. We denote by $\operatorname{Orb}^{\delta}(\varphi)$ the set of all (finite or infinite) δ -pseudo-orbit of φ and $\operatorname{Tr}^{\xi}(\left\{x_{i}\right\},\varphi)=\operatorname{Tr}(\left\{x_{i}\right\})$ the set of all $y\in\mathbb{M}$ such that $\left\{x_{i}\right\}$ is ξ -traced by y.

Assumption. In the sequel we assume that every bounded subset of M is relatively compact unless otherwise stated.

We shall now state several lemmas, some of whose proofs will be omitted, since the proofs will be more or less standard.

Lemma 1. Let $h \in H(M)$ be a homeomorphism of M such that h and h^{-1} are both uniformly continuous. Take $\mathcal{G} \in H(M)$ and set $\psi = h \circ \mathcal{G} \circ h^{-1}$. Then \mathcal{G} is a Bowen homeomorphism if and only if ψ is.

Lemma 2. Let $\varphi \in H(M)$ be stochastically stable. Then, for any integer k>0, φ^k is also stochastically stable.

Lemma 3. Let $\varphi \in H(M)$ be uniformly continuous, and fix an integer N > 0. Then for any $\xi > 0$, there is $\delta > 0$ such that if $\left\{x_i\right\}_{i=0}^N \in$

Orb^{$$\delta$$}(φ) then x_0 ξ -traces $\{x_i\}_{i=0}^N$.

Lemma 4. Let $\varphi \in H(\mathbb{M})$ be uniformly continuous. If φ is a Bowen homeomorphism, then φ^{-1} is.

Lemma 5. Let $\varphi \in H(M)$ be uniformly continuous. If φ^k is a Bowen homeomorphism for some integer k>0, then φ is.

Lemma 6. Let $\mathfrak{G} \in H(\mathbb{M})$, and $\psi \in H(\mathbb{M}')$. The direct product $\mathbb{M} \times \mathbb{M}'$ is a metric space by the distance function $d((x, y), (x', y')) = \mathbb{M} \times \{d(x, x'), d(y, y')\}$ for $x, x' \in \mathbb{M}$ and $y, y' \in \mathbb{M}'$. Then $\mathfrak{G} \times \psi$ is a Bowen homeomorphism if and only if \mathfrak{G} and ψ are both Bowen.

Lemma 7. Let $\varphi \in H(\mathbb{M})$ and assume that for any $\xi > 0$ there exists $\delta > 0$ such that for any integer k > 0 and any $\left\{ x_i \right\}_{i=0}^k \in \operatorname{Orb}^\delta(\varphi)$ we have $\operatorname{Tr}^{\boldsymbol{\xi}}(\left\{ x_i \right\}_0^k$, $\varphi) \neq \emptyset$. Then φ is a Bowen homeomorphism.

Lemma 8. Let φ be a Bowen diffeomorphism of a compact Riemannian manifold M. Then φ is Bowen with respect to any Riemannian metric on M.

Lemma 9. Let M be a differentiable manifold of $\dim M \geq 3$. Let $X_i = \{p_i, q_i\}$ ($i = 1, \ldots, k$) be a subset of M consisting of at most two points p_i and q_i with $d(p_i, q_i) < \delta$. Suppose $X_i \cap X_j = \emptyset$ for $i \neq j$. Then there is a diffeomorphism $\gamma: M \longrightarrow M$ such that $d(\gamma(x), x) < \delta$ for $x \in M$ and that $\gamma(p_i) = q_i$ for $i = 1, 2, \ldots, k$.

Lemma 10. Let $\boldsymbol{9}: \mathbb{M} \longrightarrow \mathbb{M}$ be a homeomorphism of a manifold \mathbb{M} with $\dim \mathbb{M} \geq 1$ and suppose $\mathbb{M} - \mathrm{Fix}(\boldsymbol{9})$ is dense in \mathbb{M} . Take and fix a constant $\delta_1 > 0$ and an integer k > 0. Then for any $\left\{x_i\right\} \in \mathrm{Orb}^{\delta_1}(\boldsymbol{9})$ and $\boldsymbol{\xi}_1 > 0$, there is $\left\{x_i'\right\} \in \mathrm{Orb}^{3\delta_1}(\boldsymbol{9})$ such that i) $\mathrm{d}(x_i, x_i') < \boldsymbol{\xi}_1$ for $i = 0, 1, \ldots, k$ and ii) $X_i = \left\{\boldsymbol{9}(x_i'), x_{i+1}'\right\}$ $(i = 0, 1, \ldots, k-1)$ are disjoint.

Proof. We can assume $\mathbf{\mathcal{E}}_1 < \mathbf{\mathcal{S}}_1$. For this $\mathbf{\mathcal{E}}_1$, there is $\mathbf{\mathcal{E}}_1' > 0$ such that $\mathbf{\mathcal{E}}_1 > \mathbf{\mathcal{E}}_1'$ and that $d(x, y) < \mathbf{\mathcal{E}}_1'$ implies $d(\mathbf{\mathcal{G}}(x), \mathbf{\mathcal{G}}(y)) < \mathbf{\mathcal{E}}_1$. First, we can find $x_1' \in \mathbb{M}$ (i = 0,1,..., k) such that $x_1' \neq x_1'$ (i \neq j)

and that $d(x_i, x_i') < \mathcal{E}_1'$ (i = 0,1,..., k). Next, we shall show by induction that X_0, \ldots, X_{k-1} are disjoint by taking x_i' suitably. For that, suppose $X_i = \left\{ \mathcal{G}(x_i'), x_{i+1}' \right\}$ (i = 0,1,..., k-2) are disjoint. We shall show that, by changing x_{k-1}' and x_k' , if necessary, X_i (i = 0,1,..., k-1) are disjoint.

Consider the point $\varphi(x_{k-1}')$ and suppose $\varphi(x_{k-1}') \in \bigcup_{i=0}^{k-2} X_i$. Then there is a unique $i \le k-1$ such that $\varphi(x_{k-1}') = x_i'$, since $x_{k-1}' \ne x_j'$ $(j \le k-2)$ implies $\varphi(x_{k-1}') \ne \varphi(x_j')$. If $i \le k-2$, we can find x_{k-1}'' near x_{k-1}' such that $\varphi(x_{k-1}'') \ne x_i'$. If i = k-1 i.e. $\varphi(x_{k-1}') = x_{k-1}'$, then we can find x_{k-1}'' near x_{k-1}' such that $\varphi(x_{k-1}'') \ne x_{k-1}''$, since $\mathbb{M} - \text{Fix}(\varphi)$ is dense and open in \mathbb{M} . We denote x_{k-1}'' by x_{k-1}' again. Then we can assume that $x_k' \notin \bigcup_{i=0}^{k-2} X_i$, since $\bigcup_{i=0}^{k-2} X_i$ is a finite set.

Thus we have proved that $X_0, X_1, \ldots, X_{k-1}$ are disjoint.

For i < 0 (resp. i > k) we define $x_i' = \varphi^{-1}(x_0')$ (resp. $x_i' = \varphi^{1-k}(x_k')$). Then we see that $\{x_i'\} \in \text{Orb}^3 \delta_1(\varphi)$. For, we have

$$d(\varphi(x_{i}^{!}), x_{i+1}^{!}) \leq d(\varphi(x_{i}^{!}), \varphi(x_{i})) + d(\varphi(x_{i}), x_{i+1}) + d(x_{i+1}, x_{i+1}^{!})$$

$$< \epsilon_{1} + \delta_{1} + \epsilon_{1}^{'} < 3 \delta_{1}$$

for i = 0,1,..., k-1. This completes the proof of Lemma 10.

Lemma 11. Let $\varphi \in H(M)$, where M is a differentiable manifold of dimension ≥ 1 . Assume φ is topologically stable. Then for any integer k > 0, M - Fix(φ^k) is dense in M, where Fix(φ^k) = $\left\{x \in M \middle| \varphi^k(x) = x\right\}$.

Proof. Induction on k. First, we prove the lemma for k = 1.

To prove that $M - Fix(\varphi)$ is dense in M, we assume that there is an open set $U \neq \emptyset$ such that $U \subset Fix(\varphi)$. We can suppose that U is a coordinate neighborhood of a point $x_0 \in U$ with coordinate system

 (x_1,\ldots,x_n) . Take $\xi_1>0$ such that $Q_{\xi_1}\subset U$, where $Q_{\xi_1}=Q_{\xi_1}(x_0)$ means the cubic neighborhood with center x_0 and of breadth $2\xi_1$. Take $\xi>0$ such that $4\xi<\xi_1$. For this $\xi>0$, we can find $\delta>0$ with the property in Definition 1. Now, take a differentiable function α on M such that $\alpha(x)=1$ for $x\in Q_{3\xi}$, $\alpha(x)=0$ for $x\notin Q_{4\xi}$. Define a differentiable vector field Y on M by

$$Y(x) = \begin{cases} \delta_1 \cdot \alpha(x) & (\frac{\delta}{\delta x_1})_x & x \in Q_{\epsilon_1} \\ 0 & x \notin Q_{\epsilon_1} \end{cases}$$

where $\delta_1>0$ is a constant. Let $\left\{ \gamma_t \right\}$ be the one-parameter group of diffeomorphisms γ_t of M generated by Y and put $\gamma=\gamma_1$. It is clear that if $\delta_1<\delta$ is sufficiently small, then we have $d(\gamma(x),x)<\delta$ for $x\in M$. Set $\psi=\gamma\circ\varphi$, then we have $d(\varphi(x),\psi(x))<\delta$ for $x\in M$ and hence there is a continuous map $h:M\longrightarrow M$ such that $h\circ\psi=\varphi\circ h$ and $d(h(x),x)<\xi$ for $x\in M$. Since $\alpha=1$ on $\alpha_{3\xi}$, we see that there is a sufficiently large integer k>0 such that $\psi^k(x_0)=\gamma^k(x_0)\notin \alpha_{3\xi}$ and hence $h(\psi^k(x_0))\notin \alpha_{2\xi}$. On the other hand, since $d(h(x),x)<\xi$ we have $h(x_0)\in \alpha_{\xi}\subset U\subset \operatorname{Fix}(\varphi)$, and so we have $h(\psi^k(x_0))=\varphi^k(h(x_0))=h(x_0)\in \alpha_{\xi}$, which is a contradiction. Thus we have proved the lemma for k=1.

Assume that $k \geq 2$ and that the Lemma is true for any $k' \leq k-1$. Suppose that $M - \operatorname{Fix}(\varphi^k)$ is not dense. Then there will be a non-empty open set $U \subset \operatorname{Fix}(\varphi^k)$. Since $M - \operatorname{Fix}(\varphi^i)$ is dense in M for $i \leq k-1$ there exists $x_0 \in U$ such that $\varphi^i(x_0) \neq x_0$ for any $i \leq k-1$. Hence we can assume that U is a coordinate neighborhood of x_0 with coordinate system (x_1, \ldots, x_n) , $n = \dim M$ and that $\{\varphi^i(U)\}_{i=0}^{k-1}$ is disjoint. Take \mathcal{E}_1 such that $U \supset \mathbb{Q}_{\mathcal{E}_1}(x_0)$, and take $\mathcal{E}_2 \supset \mathcal{E}_3$ with the property in

Definition 1. For this $\delta > 0$ we can find a diffeomorphism $\gamma: \mathbb{M} \to \mathbb{M}$ such that $\gamma(\mathbb{U}) = \mathbb{U}$, $d(\gamma(\mathbb{X}), \mathbb{X}) \leq \delta$ $(\mathbb{X} \in \mathbb{M})$, $\gamma(\mathbb{X}) = \mathbb{X}$ $(\mathbb{X} \notin \mathbb{U})$ and that $\gamma \mid_{\mathbb{Q}_{4} \epsilon}$ is a parallel translation along the \mathbb{X}_{1} -axis as in the proof of the Lemma for k = 1. Define $g \in \mathbb{H}(\mathbb{M})$ by

$$g(x) = \begin{cases} \varphi(x) & x \notin \varphi^{k-1}(U) \\ \gamma \circ \varphi(x) & x \in \varphi^{k-1}(U). \end{cases}$$

Since $U=\varphi^k(U)$, g is in fact a homeomorphism of M and $d(g,\varphi)\leq \delta$ holds. Therefore, there is a continuous map $h:M\longrightarrow M$ such that

$$h \circ g = \phi \circ h$$
 and $d(h(x), x) < \varepsilon$ $(x \in M)$

holds. We see easily that $g^k(x) = \gamma(x)$ for $x \in U$. Hence we can find a sufficiently large integer m > 0 such that $g^{km}(x_0) = \gamma^m(x_0) \notin \mathbb{Q}_{3\xi}$. On the other hand, we get $h \circ g^{km}(x_0) = \varphi^{km}(h(x_0)) = h(x_0) \in \mathbb{Q}_{\xi}$ since $h(x_0) \in U$ and $d(h(x_0), x_0) < \xi$. Hence we have $g^{km}(x_0) \in \mathbb{Q}_{2\xi}$, which is a contradiction. This completes the proof of Lemma 11.

Remark. The author does not know whether the topological stability of $\pmb{\phi}$ implies that of $\pmb{\phi}^k$ for $k\neq 0$.

 \S 2. Topological and stochastic stabilities, and Takens conjecture.

Theorem 1. Let M be a differentiable (metric) manifold of dim $M \geq 3$ and assume that there exists $\mathcal{E}_o > 0$ such that \mathcal{E}_o -neighborhood $U_{\mathcal{E}_o}(x)$ of any point $x \in M$ is relatively compact. Let $\mathcal{P}: M \longrightarrow M$ be a topologically stable homeomorphism of M. Then \mathcal{P} is stochastically stable. In particular, if M is compact or $M = \mathbb{R}^n$ is the euclidean space then the topological stability implies the stochastic stability.

Remark. The author has a proof of Theorem 1 in case $M = S^1$ (the circle). However since the proof is quite different, he will treat it in a future paper.

Proof of Theorem 1. Since φ is topologically stable, for any $\xi>0$ there is $\delta>0$ with the property in Definition 1. We can assume $\delta<\text{Min}(\xi\,,\,\xi_0)$.

First, we shall prove, for any $\left\{x_i\right\} \in \operatorname{Orb}^{\delta/6\pi}(\mathfrak{G})$ and any integer k > 0, that $\operatorname{Tr}^{2\mathcal{E}}(\left\{x_i\right\}_0^k, \mathfrak{G}) \neq \emptyset$. By Lemma 10, ll we can find $\left\{x_i'\right\} \in \operatorname{Orb}^{\delta/2\pi}(\mathfrak{G})$ such that $\operatorname{d}(x_i, x_i') < \delta$ ($i = 0, \ldots, k$) and that the sets $\left\{\mathfrak{G}(x_i'), x_{i+1}'\right\}$ are disjoint for $i = 0, 1, \ldots, k-1$. By Lemma 9, there is a $\mathfrak{J} \in \operatorname{H}(M)$ such that $\operatorname{d}(\mathfrak{J}(x), x) < \delta$ for $x \in M$ and $\mathfrak{J}(\mathfrak{G}(x_i')) = x_{i+1}'$ for $i = 0, 1, \ldots, k-1$. Put $\mathfrak{J} = \mathfrak{J} \circ \mathfrak{G}$, then $\operatorname{d}(\mathfrak{G}(x), \mathfrak{J}(x)) < \delta$. Hence by the property for $\delta > 0$, we can find a continuous map $h : M \longrightarrow M$ such that $h \circ \mathfrak{J} = \mathfrak{G} \circ h$ and $\operatorname{d}(h(x), x) < \mathcal{E}$ for $x \in M$. Put $y = h(x_0')$. Now we have for $i = 0, 1, \ldots, k$,

$$d(\varphi^{i}(y), x_{i}) = d(\varphi^{i}(h(x_{0}')), x_{i}) = d(h(\psi^{i}(x_{0}')), x_{i})$$

 $\leq d(h(x_{i}'), x_{i}') + d(x_{i}', x_{i}) < \xi + \delta < 2\xi$

which shows y $\in \operatorname{Tr}^{2}^{\varepsilon}(\{x_{i}^{!}\}_{0}^{k}, \boldsymbol{\varphi})$. Thus we have proved that $\boldsymbol{\varphi}$ satisfies the condition in Lemma 7, which concludes that $\boldsymbol{\varphi}$ is stochastically stable.

Now we shall recall the notion of extended orbits of a homeomorphism of a compact metric space (cf. [9]).

Let $\mathfrak{g}:\mathbb{M}\longrightarrow\mathbb{M}$ be a homeomorphism of a compact metric space (M, d). The set of all non-empty closed subsets of M will be a compact metric space by the distance function \overline{d} defined by

$$\overline{d}(A, B) = Max \left\{ Max d(A, b), Max d(a, B) \right\}$$

$$b \in B$$

$$a \in A$$

for A, B \in C(M), where d(A, b) = inf d(a, b) (cf. [5]). We denote by a \in A Orb \circ (\circ) the set of all A \in C(M), for which there is $\{x_i\} \in \circ$ Orb \circ (\circ)

such that $A = Cl\{x_i \mid i \in Z\}$, Cl denoting the closure.

Definition 5. We denote by $\mathbf{E}_{\boldsymbol{\varphi}}$ the set of all $\mathbf{A} \in \mathbf{C}(\mathbf{M})$ such that for any $\boldsymbol{\mathcal{E}} > 0$ there is $\mathbf{A}_{\boldsymbol{\mathcal{E}}} \in \widetilde{\mathbf{Orb}}^{\boldsymbol{\mathcal{E}}} (\boldsymbol{\mathcal{G}})$ with $\overline{\mathbf{d}}(\mathbf{A}, \mathbf{A}_{\boldsymbol{\mathcal{E}}}) < \boldsymbol{\mathcal{E}}$. An element \mathbf{A} of $\mathbf{E}_{\boldsymbol{\varphi}}$ is called an <u>extended orbit</u> of $\boldsymbol{\mathcal{G}}$.

On the other hand, we define $O_{\mathbf{g}} = \operatorname{Cl}\left\{O_{\mathbf{g}}(x) \mid x \in M\right\} \subset \operatorname{C}(M)$, where $O_{\mathbf{g}}(x) = \operatorname{Cl}(\operatorname{Orb}_{\mathbf{g}}(x))$ with $\operatorname{Orb}_{\mathbf{g}}(x) = \left\{\varphi^{\mathbf{i}}(x) \mid i \in Z\right\}$. We can easily see that $E_{\mathbf{g}}$ is closed in $\operatorname{C}(M)$ and $O_{\mathbf{g}} \subset E_{\mathbf{g}}$ holds for any $\mathbf{g} \in \operatorname{H}(M)$.

Lemma 12. If $\varphi \in H(M)$ is stochastically stable, then $O_{\varphi} = E_{\varphi}$ holds. Proof omitted.

Now, we shall give an affirmative answer to a conjecture by F. Takens[9].

Theorem 2 (Conjecture of Takens). Let φ be a C^1 -diffeomorphism of a compact connected manifold M with dim M \geq 1. Assume that φ is an AS-diffeomorphism, i.e., φ satisfies the Axiom A and the strong transversality condition. Then $O_{\varphi} = E_{\varphi}$ holds.

Proof. Consider the direct product $\varphi \times \varphi \times \varphi$, a diffeomorphism of $\mathbb{M} \times \mathbb{M} \times \mathbb{M}$ onto itself. Since φ is an AS-diffeomorphism, we see that $\varphi \times \varphi \times \varphi$ is also AS. By a result of Nitecki[6], $\varphi \times \varphi \times \varphi$ is topologically stable. Hence by Theorem 1 $\varphi \times \varphi \times \varphi$ is a Bowen homeomorphism. Now Lemma 6 says that φ is also a Bowen homeomorphism and so by Lemma 12, $\mathbb{G}_{\varphi} = \mathbb{F}_{\varphi}$ holds.

Definition 4. $\varphi \in H(M)$ is called <u>expansive</u>, iff there exists $\varepsilon_o > 0$ (called an expansiveness constant of φ) with the property that for any $x, y \in M$ with $x \neq y$, there is $n \in Z$ such that

$$d(\mathbf{g}^n(x), \mathbf{g}^n(y)) \geq \mathcal{E}_0$$
.

The following Proposition is essentially proved in [2].

Proposition 1. Let M be a metric space such that every bounded set is relatively compact. Let $\varphi: \mathbb{M} \longrightarrow \mathbb{M}$ be a stochastically stable homeomorphism of M. If φ is expansive, then φ is topologically stable.

iggle 3. Stochastic stability of linear and toral automorphisms.

In this section we shall characterize affine transformations of \mathbb{R}^n and toral automorphisms of $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ to be stochastically stable.

Proposition 2. Let $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear automorphism of \mathbb{R}^n . Then φ is stochastically stable if and only if φ is hyperbolic, i.e., if λ is an eigenvalue of φ then $|\lambda| \neq 1$.

Proof. Assume \mathcal{G} is stochastically stable. Consider the complexification $\mathcal{G}^C: \mathbb{C}^n \longrightarrow \mathbb{C}^n$. Identifying \mathbb{C}^n with $\mathbb{R}^n \times \mathbb{R}^n$, we can identify \mathcal{G}^C with $\mathcal{G} \times \mathcal{G}$. By virtue of Lemma 6 and 8, \mathcal{G} is stochastically stable if and only if \mathcal{G}^C is. Since a linear map is uniformly continuous, it follows from Lemma 1 that \mathcal{G}^C is stochastically stable if and only if every factor of the Jordan canonical form of \mathcal{G}^C is stochastically stable.

Now, it suffices to show that if $\psi = \begin{pmatrix} \lambda_1^1 \\ \lambda_2^1 \end{pmatrix}$: $c^n \longrightarrow c^n$ (resp. $\psi_0 = \lambda_1 \cdot 1_{c^n}$) is stochastically stable, then $|\lambda| \neq 1$. Suppose $|\lambda| = 1$. Set $z_j = j \cdot \lambda^j \cdot \delta$ for $j \in \mathbb{Z}$. Since

 $\operatorname{d}(\ \psi_0(\mathbf{z_j}), \ \mathbf{z_{j+1}}) = \left| \ \psi_0(\mathbf{z_j}) - \mathbf{z_{j+1}} \right| = \left| \ \mathbf{j}.\lambda^{j+1}\delta - (\mathbf{j+1})\,\lambda^{j+1}\delta \right| = \delta,$ we have $\left\{ \mathbf{z_j} \right\} \in \operatorname{Orb}^{\delta}(\ \psi_0)$. However, since

 $d(\psi_0^n(\xi), z_n) = |\lambda^n \xi - \lambda^n n \delta| = |\xi - n \delta|,$

there is no ξ such that $d(\psi_0^n(\xi), z_n)$ is bounded for any small $\delta > 0$. In particular, for any $\delta > 0$ we have $\mathrm{Tr}^1(\{z_j\}, \psi_0) = \emptyset$. Hence ψ_0 is not stochastically stable.

Similarly, consider the vector $v_j=(0,\ldots,0,z_j)$ for $j\in\mathbb{Z}$, we see that $\{v_j\}\in \mathrm{Orb}^{\delta}(\psi)$ and that $\mathrm{Tr}^1(\{v_j\},\psi)=\emptyset$, which means ψ is not stochastically stable. Thus we have proved that ψ is hyperbolic.

Conversely, assume that φ is hyperbolic. Then it is well known that there are subspaces E^S and E^u of Rⁿ and constants C>0,0< λ <1 such that

i)
$$R^n = E^s \oplus E^u$$

ii)
$$\varphi(E^{\sigma}) = E^{\sigma}, \quad \sigma = s, u,$$

iii)
$$\| \mathcal{G}^n \mathbf{v} \| \le c \lambda^n \| \mathbf{v} \| \qquad \mathbf{v} \in \mathbf{E}^s$$

 $\| \mathcal{G}^{-n} \mathbf{w} \| \le c \lambda^n \| \mathbf{w} \| \qquad \mathbf{w} \in \mathbf{E}^u$

for $n \geq 0$. Set $\psi = \mathcal{G}|_{E}$ s and $\eta = \mathcal{G}|_{E}$ u, then identifying \mathbb{R}^n with $\mathbb{R}^n \times \mathbb{R}^n$ we can identify \mathcal{G} with $\psi \times \gamma$. By virtue of Lemma 6, it suffices to show that ψ and η are stochastically stable.

First consider $\gamma: E^u \to E^u$ and take $\xi > 0$. Put $\delta = (1 - \lambda) \mathcal{E}/C$ We assert that $\{x_i\} \in \mathrm{Orb}^{\delta}(\gamma)$ implies $\mathrm{Tr}^{\xi}(\{x_i\}, \gamma) \neq \emptyset$. For $k \in \mathbb{Z}$ we set $\alpha_k = x_{k+1} - \gamma(x_k) \in E^u$. Then we have $\|\alpha_k\| \leq \delta$ for $k \in \mathbb{Z}$. By induction we see that for k > 0

$$x_{k} = \gamma^{k}(x_{0}) + \gamma^{k-1}(\alpha_{0}) + \gamma^{k-2}(\alpha_{1}) + \dots + \alpha_{k-1}$$

holds. Put $\xi=\gamma^{-1}$. Then we have $\|\xi^k\| \le c \lambda^k$ for k>0 (cf. iii)). We have also :

$$\begin{aligned} \mathbf{x}_{k} &= \mathbf{\gamma}^{k} (\ \mathbf{x}_{0} + \mathbf{\xi}(\mathbf{x}_{0}') + \mathbf{\xi}^{2}(\mathbf{x}_{1}') + \ldots + \mathbf{\xi}^{k}(\mathbf{x}_{k-1}')) = \mathbf{\gamma}^{k} (\mathbf{x}_{0} + \mathbf{v}_{k}'), \\ \text{where we put } \mathbf{v}_{k} &= \mathbf{\xi}(\mathbf{x}_{0}') + \mathbf{\xi}^{2}(\mathbf{x}_{1}') + \ldots + \mathbf{\xi}^{k}(\mathbf{x}_{k-1}') \quad \text{for } k > 0. \end{aligned}$$

We shall show that $\{v_k\}_{k=1}^\infty$ is a Cauchy sequence. In fact, for any p > k > 0, we have

$$\begin{split} \| \, \mathbf{v}_{\mathbf{p}} - \mathbf{v}_{\mathbf{k}} \| &= \| \, \sum_{\mathbf{i} = \mathbf{k} + \mathbf{1}}^{\mathbf{p}} \, \boldsymbol{\xi}^{\mathbf{i}} (\boldsymbol{\alpha}_{\mathbf{i} - \mathbf{1}}) \, \| \, \leq \, \sum_{\mathbf{i} = \mathbf{k} + \mathbf{1}}^{\mathbf{p}} \| \, \boldsymbol{\varphi}^{-\mathbf{i}} (\boldsymbol{\alpha}_{\mathbf{i} - \mathbf{1}}) \, \| \\ &\leq \, \mathbf{c} \, \, \sum_{\mathbf{i} = \mathbf{k} + \mathbf{1}}^{\mathbf{j}} \, \boldsymbol{\lambda}^{\mathbf{i}} \, \| \boldsymbol{\alpha}_{\mathbf{i} - \mathbf{1}} \| \leq \, \, \mathbf{c} \cdot \boldsymbol{\delta} \cdot \boldsymbol{\lambda}^{\mathbf{k} + \mathbf{1}} / (\mathbf{1} - \boldsymbol{\lambda}) \, \boldsymbol{\rightarrow} \mathbf{0} \, \, (\mathbf{k} \boldsymbol{\rightarrow} \boldsymbol{\omega}). \end{split}$$

Hence there is $\beta \in E^{u}$ such that $\lim_{k \to \infty} v_{k} = \beta$. Put $y = x_{0} + \beta$. Then

we have

and hence we have

$$d(\gamma^{k}(y), x_{k}) = \| \gamma^{k}(y) - x_{k} \| \leq \sum \| \xi^{i-k} \| \delta \leq c \delta / (1 - \lambda) = \epsilon.$$

By Lemma 12, we see that η is stochastically stable. Similarly we conclude that ψ^{-1} is stochastically stable. By Lemma 4, ψ is also stochastically stable. Thus we have proved that ϕ is stochastically stable.

Theorem 3. Let $\mathfrak{P}:\mathbb{R}^n{\longrightarrow}\mathbb{R}^n$ be a linear automorphism. Then the following conditions are equivalent:

- 1) Φ is hyperbolic
- 2) ϕ is expansive
- 3) 9 is structurally stable
- 4) ϕ is stochastically stable
- 5) **9** is topologically stable.

Proof. Equivalence $1)\longleftrightarrow 3$) was proved by Hartman (see Theorem 2.3[7] for details).

- $1) \longleftrightarrow 2)$ is standard.
- 1) \longleftrightarrow 4) is by Proposition 2.
- 5) \rightarrow 4) for $n \ge 2$ is by Theorem 1. For n = 1, $\mathcal{G}: \mathbb{R}^1 \longrightarrow \mathbb{R}^1$ is given by $\mathcal{G}(x) = \lambda \cdot x$ for some $\lambda \ne 0$. If \mathcal{G} is topologically stable, then $\lambda \ne \pm 1$. For if $\lambda = \pm 1$, then $\mathcal{G}^2 = 1_{\mathbb{R}^1}$ and $\operatorname{Fix}(\mathcal{G}^2) = \mathbb{R}^1$, which contradicts Lemma 11. Thus $|\lambda| \ne 1$, which means \mathcal{G} is hyperbolic and so stochastically stable. Finally $(4) \longrightarrow (5)$, since $(4) \longrightarrow (2)$ and so we can apply Theorem 2. This completes the proof of Theorem 3.

Proposition 3. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear automorphism and $\xi \in \mathbb{R}^n$ a fixed vector. Define the affine transformation $\mathfrak{P}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by

$$\varphi(x) = f(x) + \xi$$

for $x \in \mathbb{R}^n$. Then φ is stochastically stable if and only if f is.

Proof. Let
$$\{x_i\} \in Orb^{\delta}(\mathcal{G})$$
. Put
$$x_i' = x_i - (f^{i-1}(\xi) + f^{i-2}(\xi) + \dots + \xi)$$

for $i \in Z$. We see that $\{x_i^i\} \in Orb^{\delta}(f)$. It is easy to verify that $\{x_i^i\} \rightarrow \{x_i^i\}$ is a one-one correspondence between $Orb^{\delta}(f)$ and $Orb^{\delta}(f)$ and that $Tr^{\delta}(\{x_i^i\}, f) = Tr^{\delta}(\{x_i^i\}, f)$ for every $\delta > 0$. Thus f is stochastically stable if and only if f is.

Proposition 4. Let M and \widetilde{M} be metric spaces and $\pi:\widetilde{M} \longrightarrow M$ be a locally isometric covering map of \widetilde{M} onto M. Assume that M is compact and that every \mathcal{E} -neighborhood $U_{\mathcal{E}}(x)$ of $x \in M$ is connected for small $\mathcal{E} > 0$. Let $f \in H(\widetilde{M})$ and $\mathcal{G} \in H(M)$ such that $\pi \circ f = \mathcal{G} \circ \pi$. Then, f is stochastically stable if and only if \mathcal{G} is.

Proof omitted.

Lemma 13. Let f be a linear automorphism and $\mathfrak{F}: \mathbb{T}^n \longrightarrow \mathbb{T}^n$ be a group automorphism of \mathbb{T}^n such that $\pi \circ f = \mathfrak{F} \circ \pi$, where $\pi: \mathbb{R}^n \longrightarrow \mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ is the projection. Then f is expansive if \mathfrak{F} is.

Proof omitted.

Theorem 4. Let $\mathfrak{P}: T^n \longrightarrow T^n$ be a group automorphism of the torus $T^n = R^n / Z^n$. Then the following conditions are equivalent:

- 1) ϕ is an Anosov diffeomorphism,
- 2) φ is expansive,
- 3) ϕ is structurally stable,
- 4) φ is stochastically stable,

- 5) \$\Phi\$ is topologically stable,
- 6) ϕ satisfies Axiom A and the strong transversality condition.

Proof. 1) \rightarrow 5) is proved by Walters [10].

5) \rightarrow 4) is proved by Theorem 1 for case $n \ge 2$. In case n = 1, if $\mathbf{g}: \mathbb{T}^1 \rightarrow \mathbb{T}^1$ is a group automorphism $\mathbf{g}^2 = \mathbf{1}_{\mathbb{T}^1}$ and so \mathbf{g} is not topologically stable by Lemma 11.

To prove 4) \longrightarrow 1), we denote by $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ the linear automorphism covering φ , i.e., $\pi \circ f = \varphi \circ \pi$. Since φ is stochastically stable, f is also so by Proposition 4. Hence by Theorem 3, f is hyperbolic. Then φ is clearly an Anosov diffeomorphism.

- 1) \rightarrow 3) is proved by Anosov [1].
- 3) \longrightarrow 1), since $T_0 \varphi$ (the differential of φ at the neutral element 0 of T^n) is hyperbolic by a result of Franks [3], and hence φ is an Anosov diffeomorphism.
 - 1) \rightarrow 2) is proved also by Anosov [1].
- 2) \longrightarrow 1), since f is expansive by Lemma 13, and hence f is hyperbolic by Theorem 3 and so φ is Anosov.
 - 1) \rightarrow 6) is verified by the very definition and a result of Anosov [1].
 - 6) \longrightarrow 3) is proved by Robbin [8].

This completes the proof of Theorem 4.

 $\xi\mu$. Isometries of compact Riemannian manifolds.

In this section we shall prove that any isometry of a compact connected Riemannian manifold M with dim M \geq 1 is not stochastically stable.

Lemma 14. Let M be a compact connected Riemannian manifold. Suppose $\phi \in H(M) \text{ is an isometry of M. Then, M} \in E_{\phi}.$ Proof omitted.

Theorem 5. Let $\varphi: \mathbb{M} \longrightarrow \mathbb{M}$ be an isometry of a compact connected Riemannian manifold \mathbb{M} with dim $\mathbb{M} \ge 1$. Then φ is not stochastically stable.

Proof. Suppose φ is stochastically stable. Since M is compact, the non-wandering set $\Omega(\varphi)$ of φ is not empty. Take and fix a point $p_0 \in \Omega(\varphi)$. For $\mathcal{E} = \text{diameter}(\mathbb{M})/7$, there exists $\delta > 0$ such that $\{x_i\} \in \text{Orb}^{\delta}(\varphi)$ implies $\text{Tr}^{\mathcal{E}}(\{x_i\}, \varphi) \neq \emptyset$. Put $U = U_{\delta/2}(p_0)$. Then, since $p_0 \in \Omega(\varphi)$, there is an integer k > 0 such that $\varphi^k(U) \cap U \neq \emptyset$. We can assume that $\varphi^i(U) \cap U = \emptyset$ for $i = 1, \ldots, k-1$. Take a point $x_0 \in U$ such that $\varphi^k(x_0) \in U$. Now, set $x_{nk+1} = \varphi^i(x_0)$ for $n \in \mathbb{Z}$ and $0 \le i < k$. We see easily that $\{x_i\}_{i \in \mathbb{Z}} \in \text{Orb}^{\delta}(\varphi)$. Hence we can find a point $y \in \mathbb{M}$ such that $d(\varphi^i(y), x_i) \le \mathcal{E}$ for $i \in \mathbb{Z}$. In particular, we have $d(\varphi^{nk}(y), x_{nk}) \le \mathcal{E}$ and hence $d(\varphi^{nk}(y), x_0) \le \mathcal{E}$ for $n \in \mathbb{Z}$. Put $\psi = \varphi^k$ and $y_n = \psi^n(y)$. We have $y_n \in U_{\mathcal{E}}(x_0)$ for $n \in \mathbb{Z}$.

Now, since ψ is an isometry, we have $M \in E_{\psi}$ by Lemma 14. Since ψ is stochastically stable by Lemma 2, we have $E_{\psi} = 0_{\psi}$ by Lemma 12. Therefore, $M \in 0_{\psi}$ and so there is $z \in M$ such that

 $\overline{d}(O_{\psi}(z), M) \langle \mathcal{E}.$

Since $y \in M$, there is $m \in Z$ such that $y \in U_{\boldsymbol{\xi}}(\boldsymbol{\psi}^m(z))$. Since $\boldsymbol{\psi}$ is an isometry we have $\boldsymbol{\psi}^m(z) \in U_{\boldsymbol{\xi}}(y)$, and hence $\boldsymbol{\psi}^n(\boldsymbol{\psi}^m(z)) \in U_{\boldsymbol{\xi}}(\boldsymbol{\psi}^n(y))$ $\subset U_{2\boldsymbol{\xi}}(x_0)$ and finally we get

 $(4. 2) Orb_{\psi}(z) \subset U_{2\varepsilon}(x_0).$

Now (4.1) and (4.2) imply $M \subset U_{\epsilon}(O_{\psi}(z)) \subset U_{3\epsilon}(x_{0})$ and we have diam(M) $\leq 6\epsilon$, which is a contradiction.

Proposition 5. Let G be a compact connected Lie group. Suppose that there is a group automorphism $\phi: G \longrightarrow G$, which is stochastically stable with respect to some Riemannian metric on G. Then, G is a torus.

Proof. Let A (resp. S) be the maximal abelian (resp. semi-simple) normal subgroup of G, and set $Z = A \cap S$. Then we know (cf. [4]) that $G = A \cdot S$ and Z is a finite group. It is well known that $\mathcal{G}(A) = A$ and $\mathcal{G}(S) = S$. Put $\mathbf{\xi} = \mathbf{G}_A$ and $\mathbf{G}(S) = S$. Since \mathbf{G}

§ 5. Final remarks

Remark 1. The author has examples of diffeomorphisms, which are stochastically stable but not structurally stable.

Remark 2. In case $M = S^1$ (the circle), we can prove that a C^2 -diffeomorphism $\varphi: S^1 \longrightarrow S^1$ is stochastically stable if and only if there exists an integer k > 0 such that φ^k is topologically stable. The author does not know whether we can take k = 1 in the above statement.

Remark 3. The author has a characterization for projective transformations to be stochastically stable.

References

- [1] D.V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Inst. Math. 90 (1967).
- [2] R. Bowen, ω -limit sets for Axiom A diffeomorphisms, J. Diff. Eq. 18 (1975), 333-339.

- [3] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308.
- [4] G. Hochschild, The structure of Lie groups, Holden-Day, 1965.
- [5] C. Kuratowski, Topologie, Vol.II, Warsaw 1961.
- [6] Z. Nitecki, On semi-stability for diffeomorphisms, Inv. Math. 14 (1971), 83-122.
- [7] J. Robbin, Topological conjugacies and structural stability for discrete dynamical systems, Bull. Amer. Math. Soc. 78 (1972), 923-952.
- [8] J. Robbin, A structural stability theorem, Ann. of Math. 94 (1971), 447-493.
- [9] F. Takens, Tolerance stability, Dyn. Sys.-Warwick, Springer Lecture Notes No. 468, 1975.
- [10] P. Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78.