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On a Minimal Flow

By

Ippei ISHII

(Keio University)

1. Preliminaries

Let (Y, pt) or simply Pe be a flow on a compact metric space
Y ; i.e. Py is a homeomorphism for each feal‘number t and
Prss = ProPg for any two real numbers t and s . If ACY and JCR,
we wrire A+J for {p (y) | ted, yeAn }. A subset NCY is said to

be a minimal set if y°R =N for any y ¢N , especially if Y is the

minimal set, then we call (Y, Pt) a minimal flow . -

DEFINITION 1. A subset LCY 1is said to be a local section of

the flow if it satisfies :

Pe »
(1) h: T (-u, ) > T-(-u, u) defined by h(y, t) = p (y) is
a homeomorphism for some u > 0 .

(ii) :+J is open for any open J CR .

Moreover if I is compact, then we call it a global section.

LEMMA 1. (see [1]) Let (Y, pt) be a minimal flow and S = Yo% -

If S#Y , then S is a global section of (Y, Py -
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LEMMA 2. (see [2]) Let (Y, ) be a minimal flow and ¥ be a

P

local section. Then for each y Y there exists a sequence {tj} of
reals such that §

1 < tj+l - tj < 62 for some positive numbers §

and o, (y) €L iff t = t. for some Jj .
t J .
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2. A Flow Associated with a Local Section

Throughout this and the next sections (M, Et) will be a minimal
flow on a compact metric space M and I will be a local section. Let
B be the set of all continuous functions on the real line with the

compact-open topology, and Ne be a flow on B defined by

n (@) (s) = g{t +s) (g&B , t, s€R) .

Now take a point X, M , and let {tj} be the sequénce for X, as
in LEMMA 2 . Then we can construct a uhiformly continuous function f

which satisfies that £(t) > ¢ > 0 for all t and that

Jf(t)dt¥1 (3 =0, 1, +2, ..... )
ti ,
Define a flow on- MXB by ;t(x, g) = (it(x), nt(g)) (x€M, g&B).

Since the orbit closure of £ 1is compact, there is a‘compact minimal set

M of the flow Ty in ‘{;t(xo; £f) | = < t < »} , so (M, ;t) is a
minimal flow. By p we denote the natural projection M > M . It is
easy to see that PoZ, = £top .

Using LEMMA 1, we obtain

LEMMA 3. p_l(Z) is a global section of (M, ct) .

And more careful investigation shows that




LEMMA 4. There exists a minimal flow (M, Qt) with the following
properties

(1) M is a coﬁpact metric‘space,

(ii) There is a homomorphism p : (M, gy) > (M, EL)

(iii) p_l(z) is a global section of (M, zy)

(iv) p_l(ﬁ) is ‘totally discdnnectéd, i.e. dim(p_l(Z)) =0 .

3. Cohomology Theory

Let Y be any topological space and T be a presheaf of R-module
on Y . Theﬂ we denote by ﬁ*(Y) the Alexander cohomoiogy of Y with
the real coefficients and by ﬁ*(Y; ') the Cech cohomology of Y with
coefficients T . .

In the following we shall investigate the first cohomology of
X = M\Z+(0, p) . In this section p 'denotes the restriction of p:M » M

onto X = ﬁ‘\p_l(Z)-(O, y) where (ﬂ, ) 1is that in LEMMA 4 .

St

Let and be presheaves on X defined by Fl(U) = ﬁO(U) and

T )

r,(U) = ﬁo(p—l(U)) respectively, where U 1is an open subset of X .
* *x '

Then p induces a homomorphism p : ry > T, - Since p is a mono-

*
morphism, 0 = Fl > F2 > P3 + 0 V} = Coker(p ) ) 1is an exact sequence.

Hence we have

LEMMA 5. There is an exact sequence

0> 8%x; rp > B 1y > B0 ry s B 1) > Bl Ty > L.

LEMMA 6. HI(X; ry = #9(x) and ¥9(x; T, = B9(%) for any q .

This lemma can be proved by the next lemma (see [3]).



LEMMA 7. Let h : ¥Y' - Y be a closed continuous map between parg.
compaxt Hausdorff spaces. Suppose ﬁq(h—l(y)) =0 for all y Y and
0 <g<n. Let T Dbe the presheaf on Y defined by T(U) = ﬁo(h_l(uy
Then there are isomorphisms ﬁq(Y; Ty = ﬁq(Y') for g < n .

Since p-l(Z) is a deformation retract of X and totally dis-

1

connected, H (ﬁ) is trivial. Therefore, combining LEMMA 5 and 6, we

get

LEMMA 8. There is an exact sequence

10(x; 1) > EOx; 1) > BN(X) > 0

THEOREM 1. ﬁl(x) o~ ﬁo(x; F3)/ﬁO(X; I‘z) .

4, The Case of 3-Manifolds

In this section let M be a differentiable 3-dimensional manifold
and Et be a minimal flow on M generated by a Cl-vector field. Let

L. be a local section homeomorphic to a 2-disk.

NOTATIONS

(a) Let F be a real valued function defined on a subset D of

Then by F we denote a map D -+ M defined by F(x) (x) .

= Ep(x)
(b)

T : L >R defined by T(x) = inf {t > 0 | gt(x)eT}

AgC AT : Ay = {x€aI | T(x) €93z }

Ajcaz : Aj = {x ¢3r | T(x)eAj_l } (3 =1, 2, ..... )
ACT :A={xel | T(x)ecny}

CCz:C={xer | T(x)€dI }

-4 -
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DEFINITION 2. A local section ¢ 1is said to be regular if A

js a finite set and Aj =¢ for j >1.

Using the transversality theorem, we can show the following lemma.

LEMMA 9. There is a regular local section.

In the following we assume that I is a regular local section and
A = {al, s eeens ' aN} . Let %' be a local section such that
r of a

$' % . Then we can choose a neighborhood U with the

k k

following properties :

(1) There are continuous functions : U, >R (3 =1, 2, 3)

%%, J k
] N .
such that ak,j(Uk)(: T (3 =1, 2) , 6k,3(Uk)<: ) and

= 7 .

(2) Uk(\(c'\A) has exactly three connected components Yk, 3 (3
1, 2, 3) such that 8 (v, ) C I, 8 5(yy )AL =¢ and

O, 2(vk,3) C 2.

It can be easily seen that CNA has 2N connected components, by
Cl' C2, ceeee g C2N we denote these components. For 1 < k <N, let
k(3) (3 =1, 2, 3, 4) be integers such that C_,..~AY, 5 # ¢ (3=
‘ k(3J) k,3J
1, 2, 3) and T(ak)e Ck(4) . Now let u = (ul, Ugr eeneey u2N) be
the 2N-vector and define a linear equation ul =0 (A is a 2N x 2N

matrix) by

=0, + u =0 k=1, 2, ...,

Yk (1) T Yk (2) Yk(2) T Yk(3) k(4)

Then we can prove the following theorem..

N) .
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