On a Minimal Flow

Ву

Ippei ISHII
(Keio University)

1. Preliminaries

Let (Y, ρ_t) or simply ρ_t be a flow on a compact metric space Y; i.e. ρ_t is a homeomorphism for each real number t and $\rho_{t+s} = \rho_t \circ \rho_s$ for any two real numbers t and s. If $A \subset Y$ and $J \subset R$, we write $A \cdot J$ for $\{\rho_t(y) \mid t \in J, y \in A\}$. A subset $N \subset Y$ is said to be a minimal set if $\overline{y \cdot R} = N$ for any $y \in N$, especially if Y is the minimal set, then we call (Y, ρ_t) a minimal flow.

DEFINITION 1. A subset $\Sigma \subset Y$ is said to be a <u>local section</u> of the flow ρ_t if it satisfies :

- (i) $h: \overline{\Sigma} \to (-\mu, \mu) \to \overline{\Sigma} * (-\mu, \mu)$ defined by $h(y, t) = \rho_t(y)$ is a homeomorphism for some $\mu > 0$.
- (ii) $\Sigma \cdot J$ is open for any open $J \subset R$. Moreover if Σ is compact, then we call it a global section.

LEMMA 1. (see [1]) Let $(Y,\;\rho_{\mbox{t}})$ be a minimal flow and $S=Y_{\mbox{O}}\cdot Z$. If $\overline{S}\neq Y$, then \overline{S} is a global section of $(Y,\;\rho_{\mbox{t}})$.

LEMMA 2. (see [2]) Let (Y, ρ_t) be a minimal flow and Σ be a local section. Then for each y Y there exists a sequence $\{t_j\}$ of reals such that $\delta_1 < t_{j+1} - t_j < \delta_2$ for some positive numbers δ_1 , δ_2 and $\rho_t(y) \in \Sigma$ iff $t = t_j$ for some j.

2. A Flow Associated with a Local Section

Throughout this and the next sections (M, ξ_t) will be a minimal flow on a compact metric space M and Σ will be a local section. Let B be the set of all continuous functions on the real line with the compact-open topology, and η_t be a flow on B defined by

$$\eta_{t}(g)(s) = g(t + s) \quad (g \in B, t, s \in R)$$
.

Now take a point x_0 M , and let $\{t_j\}$ be the sequence for x_0 as in LEMMA 2 . Then we can construct a uniformly continuous function f which satisfies that $f(t) > \epsilon > 0$ for all t and that

Define a flow on M x B by $\zeta_t(x, g) = (\xi_t(x), \eta_t(g))$ $(x \in M, g \in B)$. Since the orbit closure of f is compact, there is a compact minimal set \tilde{M} of the flow ζ_t in $\overline{\{\zeta_t(x_0, f) \mid -\infty < t < \infty\}}$, so (\tilde{M}, ζ_t) is a minimal flow. By p we denote the natural projection $\tilde{M} \to M$. It is easy to see that $p_0\zeta_t = \xi_t \circ p$.

Using LEMMA 1, we obtain

LEMMA 3. $p^{-1}(\Sigma)$ is a global section of (\widetilde{M}, ζ_t) .

And more careful investigation shows that

LEMMA 4. There exists a minimal flow $(\tilde{M},\ \zeta_{\mbox{t}})$ with the following properties :

- (i) \tilde{M} is a compact metric space,
- (ii) There is a homomorphism $p:(\tilde{M}, \zeta_t) \rightarrow (M, \xi_t)$,
- (iii) $p^{-1}(\Sigma)$ is a global section of (\tilde{M}, ζ_t) ,
- (iv) $p^{-1}(\Sigma)$ is totally disconnected, i.e. $\dim(p^{-1}(\Sigma)) = 0$.

3. Cohomology Theory

Let Y be any topological space and Γ be a presheaf of R-module on Y. Then we denote by $\overline{H}^*(Y)$ the Alexander cohomology of Y with the real coefficients and by $\overset{\star}{H}^*(Y;\;\Gamma)$ the Čech cohomology of Y with coefficients Γ .

In the following we shall investigate the first cohomology of $X=M\setminus\Sigma\cdot(0,\ \mu) \ . \ \ \text{In this section p denotes the restriction of $p:\widetilde{M}\to M$ onto $\widetilde{X}=\widetilde{M}\setminus\overline{p^{-1}(\Sigma)}\cdot(0,\ \mu)$ where $(\widetilde{M},\ \zeta_{t})$ is that in LEMMA 4 .}$

Let Γ_1 and Γ_2 be presheaves on X defined by $\Gamma_1(U) = \overline{H}^0(U)$ and $\Gamma_2(U) = \overline{H}^0(p^{-1}(U))$ respectively, where U is an open subset of X. Then p induces a homomorphism $p^*: \Gamma_1 \to \Gamma_2$. Since p^* is a monomorphism, $0 \to \Gamma_1 \to \Gamma_2 \to \Gamma_3 \to 0$ ($\Gamma_3 = \operatorname{Coker}(p^*)$) is an exact sequence. Hence we have

LEMMA 5. There is an exact sequence

$$0 \to \check{\mathbb{H}}^0(\mathbb{X}; \quad \Gamma_1) \to \check{\mathbb{H}}^0(\mathbb{X}; \quad \Gamma_2) \to \check{\mathbb{H}}^0(\mathbb{X}; \quad \Gamma_3) \to \check{\mathbb{H}}^1(\mathbb{X}; \quad \Gamma_1) \to \check{\mathbb{H}}^1(\mathbb{X}; \quad \Gamma_2) \to \cdots$$

LEMMA 6. $\check{H}^q(X; \Gamma_1) \simeq \bar{H}^q(X)$ and $\check{H}^q(X; \Gamma_2) \simeq \bar{H}^q(\tilde{X})$ for any q.

This lemma can be proved by the next lemma (see [3]).

LEMMA 7. Let $h:Y'\to Y$ be a closed continuous map between paracompaxt Hausdorff spaces. Suppose $\overline{H}^q(h^{-1}(y))=0$ for all y Y and 0< q< n. Let Γ be the presheaf on Y defined by $\Gamma(U)=\overline{H}^0(h^{-1}(U))$. Then there are isomorphisms $\check{H}^q(Y;\Gamma)\simeq \overline{H}^q(Y')$ for q< n.

Since $p^{-1}(\Sigma)$ is a deformation retract of \widetilde{X} and totally disconnected, $\overline{H}^1(\widetilde{X})$ is trivial. Therefore, combining LEMMA 5 and 6, we get

LEMMA 8. There is an exact sequence

$$\check{\mathtt{H}}^{0}(\mathtt{X};\ \mathtt{\Gamma}_{2}) \to \check{\mathtt{H}}^{0}(\mathtt{X};\ \mathtt{\Gamma}_{3}) \to \bar{\mathtt{H}}^{1}(\mathtt{X}) \to 0$$

THEOREM 1. $\overline{H}^{1}(X) \simeq \overset{\star}{H}^{0}(X; \Gamma_{3})/\overset{\star}{H}^{0}(X; \Gamma_{2})$.

4. The Case of 3-Manifolds

In this section let M be a differentiable 3-dimensional manifold and ξ_{t} be a minimal flow on M generated by a C^1 -vector field. Let Σ be a local section homeomorphic to a 2-disk.

NOTATIONS

- (a) Let F be a real valued function defined on a subset D of Then by F we denote a map D \rightarrow M defined by F(x) = $\xi_{F(x)}$ (x).
 - (b) $T: \overline{\Sigma} \to R \text{ defined by } T(x) = \inf \{t > 0 \mid \xi_t(x) \in \overline{\Sigma} \}$ $A_0 \subset \partial \Sigma : A_0 = \{x \in \partial \Sigma \mid \hat{T}(x) \in \partial \Sigma \}$ $A_j \subset \partial \Sigma : A_j = \{x \in \partial \Sigma \mid \hat{T}(x) \in A_{j-1} \} \quad (j = 1, 2,)$ $A \subset \Sigma : A = \{x \in \Sigma \mid \hat{T}(x) \in A_0 \}$ $C \subset \Sigma : C = \{x \in \Sigma \mid \hat{T}(x) \in \partial \Sigma \}$

DEFINITION 2. A local section Σ is said to be <u>regular</u> if A is a finite set and $A_j = \varphi$ for $j \ge 1$.

Using the transversality theorem, we can show the following lemma.

LEMMA 9. There is a regular local section.

In the following we assume that Σ is a regular local section and $A=\{a_1,\ a_2,\ \ldots,\ a_N\}$. Let Σ' be a local section such that Σ' $\overline{\Sigma}$. Then we can choose a neighborhood U_k Σ of a_k with the following properties:

- (1) There are continuous functions $\sigma_{k,j}:U_k\to R$ (j = 1, 2, 3) such that $\hat{\sigma}_{k,j}(U_k)\subset \Sigma'$ (j = 1, 2) , $\hat{\sigma}_{k,3}(U_k)\subset \Sigma$ and $\hat{\sigma}_{k,j}(a_k)=\hat{T}^j(a_k)$ (j = 1, 2, 3) .
- (2) $U_k \cap (C \setminus A)$ has exactly three connected components $\gamma_{k,j}$ (j = 1, 2, 3) such that $\hat{\sigma}_{k,2}(\gamma_{k,1}) \subset \Sigma$, $\hat{\sigma}_{k,2}(\gamma_{k,2}) \cap \overline{\Sigma} = \phi$ and $\hat{\sigma}_{k,2}(\gamma_{k,3}) \subset \partial \Sigma$.

It can be easily seen that $C \setminus A$ has 2N connected components, by C_1, C_2, \ldots, C_{2N} we denote these components. For $1 \le k \le N$, let k(j) (j=1, 2, 3, 4) be integers such that $C_{k(j)} \cap \gamma_{k,j} \ne \emptyset$ (j=1, 2, 3) and $\hat{T}(a_k) \in \overline{C_{k(4)}}$. Now let $u=(u_1, u_2, \ldots, u_{2N})$ be the 2N-vector and define a linear equation $u\Lambda = 0$ $(\Lambda$ is a $2N \times 2N$ matrix) by

$$u_{k(1)} - u_{k(2)} = 0$$
, $u_{k(2)} - u_{k(3)} + u_{k(4)} = 0$ (k = 1, 2, ..., N).

Then we can prove the following theorem.

THEOREM 2. If $\dim(\ker \Lambda) = m$, then $\bar{H}^1(X) \simeq R^{m}$

REFERENCES

- [1] W.H.Gottchalk and G.A.Hedlund, "Topological Dynamics," A.M.S. Colloquim Publications, 1955.
- [2] V.V.Nemytskii and V.V.Stepanov, "Qualitative Theory of Differential Equations," Princeton, 1960.
- [3] E.H.Spanier, " Algebraic Topology, " McGraw-Hill, 1966.