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On geometric reductions of homology 3—sphefes of genus two
By Mitsuyuki Ochiai
1. Introduction. Our main concern is the study of homélogy Séépheres
obtained by Heegaard splittings of genus two. It is showed that Heegaa-
rd splittings of genus two are closely related to symmetri;'planer gra-
phs with four vertices (see Lemma 4). Such planer graphs are said to
be Whitehead graphs (or simply W-graphs) for the splittings; Futhermore
we can establish procedures of simplifying homology 3-spheres with
Heegaard splittings of genus two such that a W-graph of iﬁ is type(2) or
type(3) and that é presentation of thé fundamental group assqciated with

a W-graph of it is II.-reducible (see Theorem 1 and Theorem 2).

1
All spaces and mapé considered here are polyhedral. s" is a n-sphere
and D" is a n-disk. Let M C W be manifolds; the interior and boundary of
M are denotéd int(M), 9aM, respectively; M is properly embedded if M N W
= mW~; N(M,W) is a rééular neighborhood of M in W.
The autﬁor acknowledges his gratitude to Professor Homma. for conver-
sations.
2. Whitehead graphs of 3-manifolds of genus two.

Let Gi(i=1,2,3) be one of the following planer graphs with the malti-

ple degree a, a', b, b', c, d of edges;
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Figure 1.

The graph G, (i=1,2,3) is said to be symmetric if a = a' and b = b'.
1°W25
splitting of genus two for the manifold M. Such the manifold M - is

Let M be a closed orientable 3-manifold and (W h) a Heegaard
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said %o be-a 3—manifold of genus two. Then there is a (matching) homeo—
morphlsm h: 3W —_ awl of boundaries of solid tori Wl, W of genus two
and the manifold M is the 1dent1f1cat10n space Wl g-wz by the homeomorph-
ism h. A solid torus of genué two is the result of attaching two disjoint
" ]-handles" D2 x [-1,1] to a 3-ball B3 by sewing the parts D2 x {*1} to
2 x 2 disjoint 2—disks‘on 3B3 in such a way that the result is aniérienta—
ble 3-manifold with boundary. In particular, the two properl} embedded 2-
disks D? x {0} in the solid torus are said to be a meridian disk pair for
it, and the boundaries of them are a meridian pair. |

Let {Dil’DiZ} be a meridian disk pair qf wi (i=1,2). Then we have;

Lemma 1. The manifold M = W1 g W2 is determined up to homeomorphism
by the collection of circles v and v, on awl such that vy h(aDzk)(k-
1,2).

Proof. By the definition, W, - {N(DZI’WZ) U N(DZZ’WQ)}viS a subset
of W, such that the closure of it is a 3-ball and so the manifold M is
uniquely determined up by the collection.

Now we describe the construction of the Whitehead graph G(h) corres-
1, 2, h). We cut awl along the circles

+1  _+1

11, 3012. As a result, we obtain a 2-Sphere 82 with four holes; X1 > X2 s
-1 -1

Xl s X2 . Under this operation, the circles vy and v, are cut up (wve may

ponding to the Heegaard splitting (W

assume that v ﬂ (aDli U anlz) # ¢ for k=1,2. If otherwise, the splitting
(W1 25 h) is equivalent to the Heegaard splitting of genus two for (S x S )
# M or S3 x M' where M' is a 3-manifold of genus one and # is a connected
sum (see Waldhausen [3]).), and they turn into a collection of segments
joining (in some order or another) the holes in the sphere 82. Let us su-
ppose that these holes, XII, le, Xil, Xgl are the vertices, and the segme-
nts of the circles the edges, of a graph. So we obtain a W-graph G(h) real-

ized on the sphere Sz. Similarly we can obtain a W—graph‘G(h_l),which is
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called the conjugate W-graph of the graph G(h). Note that W-graphs
are not simple, that is, multi-graphs, and are associated with the me-
ridian disk pairs {Dll’Dlz}’b{DZI’DZZ}' Then we have;

Lemma 2. Llet G(h) be an arbitrary W-graph of a Heegaard splitting
(wl,wz; h). Then two cases happen; (1). If G(h) is disconnected, then
the Heegaard splitting is splitted into the connected sum of Heegaard
splittings of genus one. (2). If G(h) is connected, then it is isomor-
2°
Proof. Let'{Dil,Diz} be a meridian disk pair of Wi (i=1,2). At

phic to one of the three symmetric graphs Gl’ G G3 above defined.

first, we cancel trivial loop-edges of G(h). Let E® be a trivial loop-

edge, that is, E° bounds a 2-disk in the :2-sphere Sz with four holes XI}
X;l, Xil, X;l such that the interior of the disk does not contain any

other edges. Then E® is cancelled by an isotopy in 9W. and so we may

1

assume that G(h) is a graph without any trivial lobp—edges. Hence two
.cases happen; Case(1). G(h) is a planer graph with four vertices and

disconnected; Then there is a properly embedded 2-disk D2 in W1 such

that BD2 n~(anllu anlz) = ¢, 302 NG(h) = ¢ and aDZ is not homotopic to

zero in awl. Suppose that 3D2 separate awl

otherwise, the circles h(aDZI), h(aDzz) are contained in a toxus S1 x S

into two components (if
1

with one hole, which is contained in 3W,, and they are mutually parallel

1’
in awl but it is impossible.) Then by BDZ N G(h) = ¢, aD2 bounds a 2-
disk in Wz and ‘'so the splitting (wl,wz; h) is splitted into a connected

sum of Heegaérd splittings of genus one. Case(2). G(h) is a connected

planer graph with four vertices; The solid torus W. is obtained by sew-

1

1

ing X;l (i=1,2) to X; (i=1,2) and so this operation induces the symme-

try of the graph G(h). Hence G(h) is isomorphic to one of the three

graphs Gl’ G,, G, with symmetry. The proof is complete.

2> 73

Hereafter all W-graphs considered in this paper are comnected, if
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otherwise specified, and a W-graph is said to be type(i) if it is iso-
morphic to the graph G (i=1,2,3). Futhermore we define the complexlty
c{G(h)} of a W-graph G(h) to be the total sum of degree of all edges in
G(h), that is, C{G(h)} = 2a + 2b + ¢ + d. Then we have;

Lemma 3. Let G(h) be anvarbitrary W-grabh of a Heegaard splitting
(wl,wz; h) of genus fwo.and-G(hfl) the conjugate W-graph of G(h). Then
cl6(h)} = C{6t™H}. |

Proof. The proof is directly from the definit;on of G(h_l}.

3.  Presentations for H M) éssociated with W-graphs.

Let M be a 3—man1fold of genus two with a Heegaard spllttlng
(Wl,WZ, h) and {D, 1,D } a meridian disk pair of W and G(h) a W-graph
‘associated w1th {D'l’
(i=1,2; j=1,2). By Lemma 1, the fundamental group H M) is determined

D.,}. Futhermore let v, h(aD } and Ws =h" (anzj}

by (oriented) circles Vis V, OF w Wos Choose a base p01nt z € oW {or QWé)
for Hl(wl) (or HI(WZ)) and HI(M)‘ Futhermore choose the canonical gene-

rators A, B associated with {D Di2} for the free group H (w ) (or B, C

11’
associated with'{DZI, 22} for the free group HI(WZ))’ that is, A (or B)
is a homotopy.class in Hl(wl):represenged by an (oriented) circle which
transverseiy intersects . Dll(dr DIZ) at only one point and is disjoint
from D21(0r Dll)’ and C (or D) is a homotopy class in Hlth) represented

by an (oriented) circle which transversely intersects D21 (or D22) at

only one point and is disjoint‘from D22(or DZI)' Then we have;

vé(A,B) = 1}

1}

Lemma 4. I, (M) = {A, B; v; (A,B)

it
n

{C, D; w(C,D) = wj(C,D)
where vi(A,B) and w;(C,D) (i=1,2;j=1,2) are determined by circles vi and
wi reepectively when orientations of circles Vss wj are fixed and orien-
ted arcs, which join the base point z to the point in the circle v, or

wj, are sellected.
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Note that the oriented arcs, which induce vi(A,B) or Vé(A,B)(or,
wi(C,D) or wé(C,D)), can be sellected in such a way that they are dis-

joint from D, .U Dlz(or D

11 21
cterized by a double sequence of (A, sk) or (B, ek) (or, (C, ek) or

U * ] 3 _
Dzz) and so vi(A,B)(or wj(C,D)) is chara

. . . U
(D, ek)) such that €y is the intersection number between vy and D11 D12

(ot wj and D fJ DZZ) and the sequence preserves the order induced from

2
the orientation of vy (or wj) given in-Lemma 4.

Let {a, 85 v](x,8) = vi(e,B) = 1}, {&, B; v}(&,B) = vj(&,B) = 1}
be two presentations for Hl(M) associated'withv{Dil,Diz} (i=1,2)'given
by Lemma 4. Then they are said to be simple equivalent if o« =& = A

and B =B=B,ora=a8=Cand B8 =p8=D.

The presentation'{a, B; vi(a,B) = vé(u,ﬂ) = 1} is @I -reducible iff

1
there is a presentation'{a, 8; Vl(a,B) = vz(a,B) = 1}, which is simple
equivalent to it, such that in the class of words Vl(a,B), ?Z(a,s) the
one is contained in the other as a subword.

Let P(a,B) be a coefficient matrix of two linear equations ?l(u,s),
Vz(a,B) which are obtéined from the abelianizations of vi(a,B), vé(u,B).
Then we have;

‘Lemma 5. The manifold M is a homology 3-sphere iff the determinant
of the 2 x 2 matrix P(a,B) is %1.

Proof. Let HI(M) be the first homology group of M. Then we have
that HI(M) = {a,B; ﬁl(a,s) =~§2(a,8) = 0} and so the lemma is valid.
4. Geometrically reducible.

Let G(h) be a W-graph associated with a meridian disk pair {Dil’D' }

12
of a Heegaard splitting (wl,wz; h). Then the W-graph G(h) is geomtrically
reducible iff there is a W-graph G‘(ﬂ) of the splitting such that C{G'(E)}

< C{G(h)} and h is either of h or h—l. Then we have;

Lemma 6. Let G(h) be a W-graph of a Heegaard splitting (W Wz; h).

1,



1f the W-graph G(h) is type(3), then it is geometrically reducible.

Proof. Let G(h) be a W-graph of type(3) associated with a meri-

dian disk pair {Dil,Diz}'and 52 the 2-sphere with four holes X+1, X;l,
x;l, X;l and we may assume that X;l 5 X;l are obtained from cutting
awl along the circle anli (i=1,2). Then there is a properly embedded

~ 2-disk D., in W. such that D.. is disjoint from D, U D, and all of

13 1 13 11
+1  +1 -1 -1 . +1 41 -1 -1
edges (Xl ’Xl ), (Xl ,Xl ), that is lpops, (X1 ,Xz ), (X1 ,X2 ) (see

13 is not homologous to zero in BWI and trans-

versely intersects each of edges (xil,xil) at only one point. Thus

Figure 1(c)) and that 3D

there is a W-graph G'(h)lassociated with a meridian disk pair {012’913}
such that 2a + ¢ + d = C{G' (h)} < C{G(h)} = 2a + 2b + ¢ + d (see Figure
1(¢)). The proof is complete.

Futhermore we have;

Proposition 1. If the W-graph G(h) is type(2), then it is geome-

31

trically reducible or there is a W-graph G'(h) of type(l) with C{G'(h)}

= C{G(h)}, presupposed that the splitting gives a homology 3-sphere.
Proof. Similarly in Lemma 5, there is a properly embedded 2-disk

. . . .. U
D13 1n_W1 such that D13 is disjoint from D1 D12 and all of edges

1
+1 +1 -1 -1 .
(Xl ,X2 ), (X1 ,X2 ) (see Figure 1(b)) and that 3D13

to zero in ewl and transversely_intersects'each of edges (le,xglj,
1,X;1), (X;l,xél) (note that these edges consist ‘two kinds of edges)

is not homologous

(X,
at only one pdint. We may assume that b £ a by the. symmetry of G(h) .
Then two cases.happen; Case(l) b < a. In this case, there is a W-graph
G' (h) associated with {011’013} such that C{G'(h)}(= a + b + 2b + c + d)
< C{G(h)}(= 22+ 2b + ¢ + d). Hence the W-graph G(h) is geometrically

reducible. Case(2) a = b. Let G(h(aDzi)) be a subgraph of G(h) induced
from h(2D,.) (i=1,2). Then C{G(W)} = tfc(h(an?_l))} + CG(h(>D,,))} and

let C{G(h(aDzi))} = 2ai+ 2bi+ ¢t di (i=1,2) such that a = a,+ a,, b =

-6 -
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by* by, € =cy+c,, d=d+d,. Suppose that C{G(h(aDZI))} = C{G(h(aozz))}_

Here if a; = bl’ then it follows that a, = b, and each of circles h(3D

2 2 217>

h@ D22) transversely intersects 3D at even points. But it is impossible

11

by Lemma 5. Thus f{ye may assume that by ?'éi“

D13} such that C{G'(h)}(= 4a + c + q)

Similarly in Case(l), there
is a W-graph G'(h) associated withA{Dll,
= C{G(h)}(= 4a + ¢ + d).and that C{G'(h(aDZIJ)}(= a,+ blf 2b1+ c,* dl) <

. - < p r —
C{G(h(aDZI))}(— 2a;+ 2b )+ ¢ + d)) = C{G(h(anzz))} < C{G'(h(BDzz))}(— a, +

b2+ 2b.+ c,* dz). Let the W-graph G'(h) be type(l) and then the lemma is

2
valid. We may assume that G'(h) is not type(l). To apply the above argu-
ment to the graph G'(h), a W-graph G"(h) associated with a meridian disk

pair in W, is obtained such that C{G"(h)} = C{G'(h)}, C{G"(h( D, M} <

1
C{G'(h(abzl))} and C{G'(h(anzzl)} < C{G"(h(aDzz))}. Let the W-graph G"(h)
be type(1l) and if otherwise, the argument goes on and after finite steps
a W-graph G(h) of type(l) with C{G(h)} = C{G(h)} is obtained because of
C{G(h)} being finite. The proof is complete.

Let M be a 3-manifold of genus two and G any W-graph. Then we have;

Theorem 1. The manifold M has a W-graph G' of type(l) such that

c{c'} 2 c{G}, if it is a homology 3-sphere.

Proof. It follows directly from Lemma 2, Lemma 6, and Proposition 1.
5. Homology 3-spheres to be H1~reducib1e.

Let {A, B; vi(A,B) = vé(A,B) = 1} be an arbitrary presentation for
Hl(M) associated with a meridian disk pair'{Dil,Diz}(i=1,2)(or a W-graph
G(h)) given by Lemma 4. Then we have;

Theorem 2. If the manifold M is a homology 3-sphere and the prese-

ntation {A, B; vi(A,B) = vé(A,B) = 1} is II,-reducible, then the W-graph

1
G(h) is geometrically reducible.
Proof. The ‘case that G(h) .is type(3) is -trividal by Lemma 6. It .is

not known whether the.change of W-graphs from type(2) to type(l) .in.
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Proposition 1 preserves the I, -reducibility or not, and so the case

1
that G(h) is type(2) has to be proved but the proof is similar with

the one in the case that G(h) is type(l). Hence we may assume that
G(h) is type(1) and C{G(h)} = 2a + 2b + ¢ + d (see Figure 1(a)).
Then by Lemma 5, which of ¢ or d is non-zero and so Suppose that ¢ # 0

and 0 <b = a by the symmetry of G(h). Let 82 be the 2-sphere with

! x;} xi} x;% obtained from cutting : W 3D

1 11’ 12

and W, is.obtained from sewing le to Xgl by a homeomorphism di (i=1,2)

four holes X along 3D

of disks. Let {A, B; vi(A,B) = V%(A,B) =1} be a Hl~reducib1e and so
suppose that, in the class of words yi(A,B), vé(A,B), the one is con-
tained in the other as a subword. We may assume that vi(A,B) is con-
tained in vé(A,B). By trivial observations from Lemma 4, the words

vi(A,B), vé(A,B) are induced from edge sequences in 82 and let them

be {24}, {Eé}, respectively. Then it follows from the last assumption

"

- ! . ' _ _ -
that I, = ;1,...€ Iy 5 Iy (v = C{G(h(BDZI))} 1, and the symbol =

means that Zi G'{Za}_is parallel to 2; €'{Xé}, that is; there are m nodes

xIl,..., x;l in BXII, m nodes xil,.;., x;l
+1 +1

X ceey X
1+m+c’ > “n+m+c

,in.axil'(m: a+b+c), n nodes

cees X
’ * “n+m+c

NS B
lemic in 3X2 (n= a+b+d,

in ax;, n nodes x

¢ ; a pisitive integer such that C{G(h(aDzz))} <c), and then I; is pa-
’

’ v, . . _ ..e(1,1) e(i,2) _
rallel to Ei iff followings hold ; (1) Xi = (xa(i,l) a(i,Z)) and Zi =
e(i,1) e(i,2),  e(i,j e(1,3) . 1 -1 +1 -1

(XB(l,l)’xﬁgl,z))(xa(i,_]g’ XBEi,j) H U axl u 3X2 U 3X2 )

2) (c - a(i,lj)(c - B(i,1)) > 0 and (c - o(i,2))(c - B(i,2)) > 0.). Let

nodes in SXI

{(Xi’zi)}z=1 be a double sequence of parallel edges and futhermore [Xi,E;]

the collection of edges such that it contains Xi’ E; and all edges which

(i, e(i,2) 4%
a(i,1)+k’>"a(i,2)+k’ k=0

(ci= la(i,l) - B(i,l)l + 1). Then two cases happen; Case(1l). c, = = C

] 1
are parallel to I, between Z, and I.. Let [Xi,zi] be {(x

1 Y
C s and 0. v €(i,2) e(i,2) . €(i,2)
and for all i (i=0,.., y-1) nodes xa(1,2)""’ xa(i,2)+6( xB(i,Z))
. . . e(i+1,1) e(i+1,1) . _e{i+1,1);
are identified with nodes xa(i+1,l)""’ xa(i+1,1)+6(_ xB(i+1,l)) by

-8 -
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the homeomorxphism d or d_1 respectively. Case(2). The case that Case(1)

does not hold.

€(i,1) _e(i,2)
ali,1)+1°%a(i,2)+1 )

€ {Zé}. Then there is a properly embedded 2-disk D,z in W, such that

it is disjoi U UDp, U i ;
it is disjoint from D21 D22 and D21 022 023 separates Wz into two

components and C{G(h(aDZS))} = C{G(hG)Dzz))} - C{G(h(BDZI))}; Suppose

Case(1). In this case, for all i (i=1,..,v)} (x

€(1,1) £(1,1) R . +1 -1 +1 -1
that edges xa(l,l)’ Xg(1,1) 2Te contained 1n.3X1 or'axlv or 3X2 or 3 X2
. +1 . . . . e(1,1) e(1,1) .
and so 1n.3X1 . Then there is a arc q which joins xa(l,l) to XB(lil) in
+1 2
i is disjoint’ U u. U
1nt(N(aX1 »$7)) and is disjoint from BDl1 ) D12 h(8D21) h(SDzz). Let
Slsbe a circle in BWI obtained from the connected sum of circles h(3Q21),
h(3322)~a19ng the arc q. Since the closure of Wz— N(DZI’WZ) 9 N(Dzz,wz)
is a 3-cell, the circle h™'(s') bounds a 2-disk D” in W,.  Thus let D,

be the 2-disk Dz. Hence there is a W-graph.G'(h) associated with a me-

ridian 'disk pair {D D,;} such that C{G'(h)} < C{G(h)}, and so

11’D12’D21’
the lemma is valid.

- e(k,2) ‘e(k,2)
Case(2). For some k (k=1,..,v), nodes xa(k,Z)""’ xa(k,2)+ck

identified with the collection of edges which is obtained from removing

nodes xe(k+1,1) xe(k+1,1)
a(k+l,1)+1°°°°? a(k+1,1)+(ck-1)

sts of all nodes in 3X which contains x

are

from the collection which consi-

e(k+1,1) +1 -1 ,+1 -1

a(ke1,1) X5 XX %X

The case happens only if followings hold; (1): e(k,1)x €(k,2) > 0 and
e(k+1,1)x e(k+1,2) > 0. and e(k,1)x e(k+1,1) < O (note that b = a).

Let's prove the last statement. The case except the one which the
e(k,1) xe(k,Z) e(k+1,1) xe(k+1,2)
a(k,1)’"a(k,2) a(k+1,1)’"a(k+1,2)

trivi : e(k,1) _e(k+1,1) +
trivial. And so let them be parallel and let Xa(k,1)° xa(k+1,1) € axl
e(k,2) e(k+1,2) -1

€ ‘ . : ..
and Xa(k,Z)’ o(k+1,2) ax1 . But this case is also trivial from the

) is
1

edge (x ) is parallel to the edge (x

observation through Figure 2. Hence the condition (1) holds and then
it follows from the one that b + d <aor b + ¢ < a. Then there is a

W-graph G'(h) with C{G'(h)} < C{G(h)} (see the proof of the Case(l) in
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Proposition 1). The proof of the lemma is complete.

Corollary 1. If the manifold M has a group presentation {A ,B;
A,p-Bq =1, AS-Bt =1, p,q,S,t:non-zero integers} associated with a W-
graph and Hl(M) is trivial, then it is a 3-sphere.

Proof. By Lemma 5, the determinant of the matrix P(A,B) is ¥ 1.

We may assume that 0 <p <s and 0 <q < t. Thus we can apply Theorem
2 to the case, and so the lemma is valid.

Note that Corollary 1 is also true in the case when the presenta=’ .
tion in Corollary 1 is {A,B; Ap-Bq-As-Bt =1, v'(A,B) = 1, p,q,s,t:non-
zero integers, v'(A;B):an arbitrary relation}(see [1]).

Finally we propose a conjecture associated with Poincare conjecture.
Let M be a 3-manifold of genus two, G an arbitrary W—gréph of it, G the
conjugafe of G. Then we set;

anjecture(A): If HI(M) is trivial, then an arbitrary presentation
of Hl(M) associated with G is Hl—reducible or the one associated with
G has a reduced part(such as: A-A-l, and see [2])(see Algorithm(A) in [2]).

Let G1 be the symmetric planer graph in Figure 1(a) with parameters
a, b, ¢, d respect of edges. Then we can construct homology 3-spheres
through the graph G1 by the converse operation of Lemma 2 using Lemma 5.
The construction, if each of the parameters vary, cover all homology 3-
spheres by Theorem 1 and practically give the method to make up homotopy
3-spheres by Eomputer and was carried out on Facom 230-45s over the graph
G1 with limited a, b, ¢, d. The result of the trial computation are con-
vincing evidence for the truth of Conjecture(A).
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