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Two-point boundary-value problems

with a discontinuous semilinear term

Masahisa TABATA

Department of Mathematics, Kyoto University

1. Introduction

In this paper we consider the equation

Po/dx? + gv) = 0 on I=(0,%)
(1.1)
dv/dz(0) = dv/dz(iy) = 0,

where g is a function with & discontinuity point of the first kind. Our
purpose is to present all the solutions of (1.1) under some appropriate
conditions on g and v. At the same time we show that the cardinality of the
set of all the solutions is &0 (countably infinite).

The equation (1.1) appears in the following situation. Consider the

degenerate parabolic system of u(x,t) and v(x,t),

p

du/dt = flu,v) in Ix (0, +»)
/ot = azv/axz + glu,v) in Ix (0, +=)
(1.2)
w/x(0, t) = av/ax(io, t) =0 >0
L initial conditions.

In a biological point of view, it may be considered that u (resp. v)
represents the density of a plant (resp. a herbiore) for example. Consider
steady-state solutions of (1.2).. Then the first equation of (1.2)
reduces an algebraic equation; Henée, u can be expressed as a multi-valued
funetion of v. If we fix vy and assign each of two different parts of the
multi-valued function on each side of Vg, U becomes a function of v with

discontinuity at v,. Substituting the function u of v into the second
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equation of (1.2) and rewriting the composed function with the same symbol g,
we obtain the equation (1.1). The existence of such a steady-state solution
is recognized by some numerical experiments. ( See Mimura [1]. = Mimura
also proved that stable steady-state solutions of (1.2) have a unique Vi

determined by f and g under an appropriate assumption.)

2. Presentation of results
The semilinear term g we deal with in this paper is restricted to the one
‘satisfying the following condition.
Condition 1.
(1) g is a function defined on (vl , vé) with a discontinuity point of the

first kind v, and satisfies

o < g(ve=0) <0 < gv0) < +,
(ii) g<0 in (vl ,v*), >0 in (v ’V2)’ and g is Lipschitz continuous in
(vl » Vg —0] and [v,+0, ve). (i.e., & is Lipschitz continuous in [vl+ €,
vy] for any e>‘0, where g=g(v) for ve (Vl » Vy) and =g(vye-0) at’ V=V,
Similarly [vg+O, v2) is considered.)
(iii) g is monotone decreasing in (vl » Vy) and (v ,v2).
We rewrite (1.1) by the weak form:
Find v e HY(I) such that
(2.1) _ 1
( dv/de , do/dx ) = ( g(v) , ¢ ) for all ¢eH (I),
where ( , ) is the inner product in L2(I). Our aim is to find all the solutions
of (2.1) satisfying

(2.2) v, <vlx) <o (0zx<8,).

2

Remark 1. (2.2) makes sense since vsHl(

I) implies v e C(I) by Sobolev's

lemma. Furthermore, for the solution v of (2.1), we have veCl(I), since

2
(

Condition 1 gives g(v) e L°(I) which yields veHz(I).

Theorem 1. In the case g(v,) #0, all the solutions of (2.1) and (2.2)

-2 -
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are v:;., 1=1,2 and n2n,, where v:’l(x) are functions defined in the subsequent

section (see (3.9)) and n, is a positive integer depending on g and L0

0

In the case g(v,) =0, v, 18 added to the solutions.
Remark 2. 1If g(vl"'o,) =g(v2—0) =0, and if g is Lipschitz continuous in

- 0], then n.=1 for any &.> 0.

[v1+ 0, Vg 0] and [ve+0,v o

2 0

Remark 2 as well as Theorem 1 is proved at the next section.

3. Proof of Theorem 1.

Let v(x ; ¢) be a solution of the initial value problem:

Po/da® = - 5(v) (z>0)
(3.1) dv/dx(0) = 0 |
v(0) = e,
where ¢ > vl and
. gv) (v,<v<v,)
g(v) =
g(v-0) (vez v ).

Such v(xj;c) exists uniquely since g is Lipschitz continuous in [c-¢ , +» )
for some € > 0 where any solution of (3.1) lies since g < O.

Lemma 1. Let v(x;e) be as above. Then, we have

(3.2) v(x;eg) <vixz;ey) (x>0 )
for vy <eg<ey.
Proof. Let X, >0 be the first intersecting point of v(x;cl) and v(x;cg).

Obviously it holds that
dv/dac(xo;cl) > dv/d'x:(a:o;cz).
On the other hand, by (iii) of Condition 1, we have
Po/de (wie,) = -Go(zse))) < -Gv(wse,)) = dv/d’(z0y) ( 0<z<z,).
Integrating both sides from O to XO’ we have
dv/dx(xo;cl) < dv/dx(:r:o;cz).

Hence we obtain
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(@fd) o(zpiep) = (@/dm)olmpe,)  (i=0,1).
By the uniqueness of the initial value problem, we have
v(x;cl) = v(x;cg) (z>0).
This is a contradiction. Hence we obtain (3.2). Q.E.D.

Define a mapping ¢ from (vl » Vg) into (0, +=) by

vigle)se) = vy
" Since d2v/dx2(x;c) > -g(e) > 0, ¢(c) is well-defined. By Lemma 1, ¢(c) is
monotone decreasing. Set

% = lim ¢(e).
civ

1

Lemma 2. ¢ Zg homeomorphic from (UZ . Uy) onto (0,1%) and strictly
- decreasing.

Proof. ¢ is strictly decreasing and therefore injective by Lemma 1. We
show ¢ is continuous. Let {cj} be any sequence in (Vl ;. Vy) converging to
c e (vl,v*), It is sufficient for us to show that there exiSté a subsequence
{cjk} such that ¢(cjk) éonverges to ¢(c). Let c (resp. ¢ ) be the supremum
(resp. infimum ) of {cj}. Since ¢(cj) e[¢(c) , ¢(c)], there exists a subsequence
{cj } which converges to some de [¢(c) , ¢(c)]. Then it holds that

k
lv(dse) - vy

< |v(d;e) - v(¢(cjk);e),| + |v(¢(cjk);c) —v(¢(cjk);cjk)|
< |vtd;e) -v(d(c. );e)| + max vlxze) -vlzse, )|
= Ik 0<x<dlc) Ik
> 0 as jk > 4o

since v(xjc) is continuous and g is Lipschitz continuous in [c , v,-0].

We show ¢ is surjective. It is sufficient for us to show that

¢(c) » 0 as ¢ > V.
Suppose that 1lim ¢(c) = d >0. Fix Xy € (0,d). Then it holds that
ctvy :
v(xo;c) > v(aco;v*) > Uy, as ¢ > U, ,
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since v(x;c) converges to v(x;v,) uniformly in [0, d]. On the other hand, by

V(XOSC) < v(dse) < vy , we have

1lim sup v(x
ctvy,

0;0) < vy .

This is a contradiction. Hence, 4 = O.
That ¢_l is continuous is easily proved. Q.E.D.

For any %¢e (0, 2), v(x;¢_1(£)) is a unique solution of

do/d” = gtv) (0<z<t )
(3.3) dv/dx(0) = 0

V(L) = v,
satisfying
(3.4) v, <v(x) <vy (0<z<t).

Uniqueness is proved easily by making use of Lemma 1. Define a mapping a from
(0, %) into (0, +») by
a(t) = dv/dx(2;671(2)).
Lemma 3. o is strictly increasing and homeomorphic from (0, %) onto
(0, o) and satisfies
(3.5) 0 < alt) < -g(v,-0)8 (0<2<%.),
where o = lim sup a(%).
242
Proof. We first show that o is strictly increasing. Fix ki, i=1,2, such
that
0<21<22<2 and 22<221.
Set for s e[0 ,22]
-1 -1
wl(s)t-v(zl—s,¢ (21)) and wg(s)f-v(l2—s,¢ (22)),
where V(x;¢_l(ll)) is assumed to be extended in x <0 to the even function.
Then LA i=1,2, satisfies
2 2 _
d wi/d; = -g(wi(s)) (0<s<1,)

(3.6) w,(0) = v,
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| dw/dsc0) = ~arzy) .
For the purpose of an indirect proof, assume that a(zl) > a(ze). If
a(21)==a(22), (3.6) implies that Wl(s) = WQ(S) (Oés;éﬂe), which contradicts
that
w0 > 6~ Len) > o7 a,) =w (2,)
; 1'72 1 2 2'var
Assume u(%l) >q(£2). Let Sq be the first intersecting point of LA and w,.
. Obviously it holds that
dwl/ds(sg) > dwz/ds(so) .

On the other hand, we have

),

A

8

Py/ds’ (a) = -glug(s)) 2 -glv,(3)) = d%w,/ds®(s) (0 28 58,

since w.>w, on [0 ,SO] and g is monotone decreasing. Hence we obtain

2="1
S0 2 2
duwy/ds(ey) = _u(gg) + fo d*w,/ds" ds

%0 2 2

> —a(t,) + [ ° d%w,/ds® ds

= 2 0 1

> dwz/ds(so) R

which is a contradiction. Therefore we get a(Ql) < a(lz), which also shows

is injective.

(3.5) is proved easily by making use of

2
afr) = [ dPv/de (071 (0)) du
0

L -1
-[ glvlxs¢" () de .
0

We next show that o is continuous. We have

-—1 n;l
|dv/de (%5677 (87)) = dv/dx (8459 (zl))l

A

la(a,) - alty)]
-1 -1
+|dv/di(8,y307" (2,)) - do/dx(Lg567" (2,))]
.—1 0—1 \ B
|dv/dm(8,5077(8,)) - dv/de (%450 (2,))]

A

¢ omax  |dv/dutasel(0)) - do/dmiaseT (050)]
Ozxh e ‘

for 0<2,1<2,2<2,1+e<2, .
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. . . -1 -1
Letting %, » %, we obtain u(le) > a(kl) since ¢ (£2) ) (Zl).

That o is surjective and that u—l is continuous are easily proved.

Q.E.D.

Define s. = a . Then, s

1 is homeomorphic from (0, a) onto (0, %) and

1

strictly increasing and satisfies

~a/g(v4-0) 2 s,(a) (0<a<al.
v(x;¢;l(sl(a))) is a unique solution of
[ dPv/da® = -g(v) (0<z<s(a))
dv/dx(0) = 0

(3.7) 4 v(s (o)) = v,

dv/dx(sl(u)) = a

v, <vlx) < v, : | (0

A

X

A

1 sz(a) ).

S

Similarly we can define s, such that s, is homeomorphic from (0, a) onto

(0 ,i) and strictly increasing and satisfies

a/g(v+0) < s4(a) (0<ac<a).
For any o € (0, ) there exists a unique solution of
[ Pojan? = -g(v) (0<z<sy(a))
dv/dx(0) = 0

(3.8) < wisy(a)) = v,
dv/dx(sZ(a)) = -0

Ve <vlx) <w

i 9 (0zxz sz(a) )-.
Set & = min(a,a) and 2 = 1lim (sl+52)(a). For o € (0, 0a) we denote the unique
: ata .
solution of (3.7) (resp. (3.8)) by v(x;a,1) (resp. v(x;a,2)). Then, s +s. is

1 2

homeomorphic from (0, a) onto (0, 2) and strictly increasing and satisfies
1-1/g(vy-0) + 1/g(v,#0)}a < (sl+32)(a).

Lét no be the smallest positive integer greater than lo/ﬁ. Define an and v;,

i=l,2‘and n > LA by



(s,484) (0 ) = 2/

and
v(xs ocn,i) (0 2z < si(cxn))
4.9) vi(x) _ v((sz+32) (an)-x; un,i+1) (Si(an) <z ;_(sz+32) (an))
" v (2(s +8,) (o) - ) ((s,#8,) (0 ) <& 22(s #s,)(a )
\periodic with period 2(sl+32) (ozn) (2(31+32) (un) <z < 90),

where v(x; oLn,3) is equal to v(x; un,l). It is easy to observe that v;, i=1,2

and n>n,, satisfy (2.1) and (2.2). To complete the proof of Theorem 1 we must

0
show that there exist no other solutions of (2.1) and (2.2). Let v#vy, be a

solution of (2.1) and (2.2). By Remark 1 and (2.1), we have
. 2
(3100 wecllo,2,]  ana [ % gz de = 0.
0

We first show that there exists X, € (0,%,) such that
(3.11) v(z,)) =v, and dv/dx(x)) #0 .

Take z. such that v(zo) # Vy. Let x. be the nearest point to z, satisfying

0 0 0

v(xo) = Vg. Such x, is well-defined since {xj;xe (0,20), v(x) =v,} is not

empty by (3.10). Without loss of generality, we may assume that

x, < 2, and v(zO) < v(xo) (= v,)

).

From (2.1), we observe v satisfies the first equation of (1.1) in (xo s 2

Integrating the equation from x. to y., where y.e(x.,z.) is a point satisfying
: 0 0 0’70

0
dv/dx(yo) < 0, we have

Y
dv/dm(zy) = do/dulyy) + [ ° glv(e)) ds
X
< do/ds(y ) 0 \
< 0.

- Hence x, satisfies (3.11). Set a= —dv/d_x(xo) > 0. While v is lying in

(vl » Vg), vV satisfies the first equation of (1.1). Therefore, v can be

extended until v reaches vy or x = JLO. In the former case there exists
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X, =X, QSl(a) eI and satisfies
v(:cl) = v, and dv/dx(xl) =a .

Since ViZCl(I) and a >0, v(x) transverses v = vy. While v is lying in

(vg ’V2)’ v satisfies the first equation of (1.1). Hence v can be extended

until v reaches v, or x = % In the former case there exists x.=x +2s2(a) eI

0° 2 1
and satisfies
v(mg) = v, and dv/dx(mz) = -a .
Repeating this process on both sides of Xg» and noting the boundary condition,
we_observe that o must be equal to some a and that v==vi or vﬁ. This
completes the proof of Theorem 1.
Proof of Remark é. Under the conditions of Remark 2, the equation (3.1)

with ¢ = v, and g(Vj) =0 has a unique solution v=v Since & is Lipschitz

1 1°
continuous in [vl »Vygl, We have L = +o. Similarly T = +o is obtained.
Therefore, we get n0 = 1. Q.E.D.
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