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Local models of degenerate varieties

M.-N. Ishida and T. Oda
(Mathematical Institute Tohoku University)

Introduction

In connection with the compactification problem of moduli spaces,
we encounter many examples of "degenerate varieties". For instance,
(i) stable curves of Deligne-Mumford [DM], (ii) degenerate Jacobian
varieties of Oda-Seshadri [0S] or, more generally degenerate abelian
varieties of Namikawa and Nakamura [N1] [N3], (iii) degenerate hyper-
elliptic surfaces of Tsuchihashi [T1] and (iv) degenerate forms of

Hopf surfaces and other surfaces of class VII for instance, by

0’
Kodaira [K1], Miyake-Oda [MO] and Nakamura [N5].

These degenerate varieties are reduced and connected. But in
general they are reducible and their irreducible components need not
cross normally. The singularities are formally isomorphic to those
of affine varieties defined by ideals generated by monomitals, which,
however, are usually too many in number to give rise to (local) com-
plete intersections.

Thus it is rather hard to deal with them‘through their defining
equations. Fortunately, however, we have a way of dealing system-
atically with monomials by means of the theory of torus embeddings
by Demazure [D1], Mumford et al. [TE] and Miyake-Oda [MO], which we
briefly recall in §2.

As the first reasonable local models of degenerate varieties,
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wWe thus study in 8§83 closed invariant reduced subschemes of smooth
{or more generally normal) torus embeddings. Basing ourselves on
our results for local models, we attempt to formulate in §6 a glob-
al theory of degenerate varieties, which, in a sense, is a gener-
alization of the theory of toroidal embeddings by Mumford et al.
[TE].

We are able to get the following:
(1) (Ishida) The description in §3 of the dualizing complex
K%(Q) of a closed invariant reduced subscheme Y of a normal
torus embedding Z and the criterion for Y . to be Cohen-Macaulay
or Gorenstein. The results include, as special cases, those of
Hochster [H1], Mumford et al. [TE], Reisner [R1l] and Goto-Watanabe
[gw].
(2) The part of the "tangent complex" necessary for the formal
deformation theory, i.e. Exti(L¥, Q ) for i=0,1 (the case

i = 2 being yet to be computed), where Y 1is a Gorenstein closed
invariant reduced subscheme of a smooth torus embedding 7 , Ezﬁ?
are the local hyperextension groups and L¥ is the cotangent
complex studied by Lichtenbaum-Schlessinger, Grothendieck, Rim
and Illusie. (§k4, §5)
(3) The Picard group of a global degenerate variety X when it
has some good properties. (§6)

Our results grew out of our effort to understand and gener-
alize those of Nakamura [N3], who obtained (1) and (2) in the

case of degenerate abelian varieties.
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All the varieties we consider here are either reduced algebraic

varieties over the field T of complex numbers or reduced complex

analytic spaces. They may be reducible.

§1 Singularities of degenerate varieties

We give here some examples of singularities of degenerate
varieties.

1. The case of curves. Deligne and Mumford introduced the
notion of stable curves in order to compactify the moduli space of
smooth curves. Stable curves have at worst ordinary double
points. Note that an ordinary double point is the singularity
formally isomorphic to that of the curve Y = {xy = 0} & m2 =7
at the origin.

2. If there are disjoint and isomorphic non-singular curves
c. , C on a non-singular surface S , we get a new surface &'

1 2

. . ~/
by glueing C and C2 through an isomorphism C, —> C

1 1 2

S'

This surface S' has singularities formally isomorphic to Y =
{xy = 0}& m3 =7 . This type of surface actually appears as a

degenerate abelian surface and a degenerate Hopf surface.
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3. Let Y be the union of n planes in tt =z (n > 3)

with coordinates (xl, x2), (x2, x3), ey (Xn—l’ xn) and (xn,

xl). Y is called the elliptic polygonal n-cone in Mumford [M1],

and is semi~-stable for n < 6 in his sense. Y 1is defined by

equations as follows

3
= = = <
n 3, Y {xlX2x3 0} T
_ ~ _ _ L
n=L4, Y= {xlx3 = x,x) = olc ¢
n>5 Y=(xx,=0 4i=1, ..., n < "
1J

jJ#i-1,1i, i+1 (mod n)

These singularities for n = L ~and 6 actually appear in degenerate
abelian surfaces.

Note that the first and the second examples and the third
example for n = 3 and L4 are complete intersections, but the
third example for n > 5 1is not. However all these examples
have non-singular normalizations. The following example is a
little bit more complicated.

4. Define an involution 1 on T Dby 1(xl, Xps X33 Xh) =

(- X5 = X5 = Xgs - Xh)’ and let Y be the quotient of {
X X) = o< Eh by . Y is a 2-dimensional subvariety of 2

X1X3

"

Eu/1 , and is the union of L copies of the irreducible variety
{uv - w2 =0}c< ¢3 . To describe Y , we need 8 variables

and 4 equations of the type (monomial) = (monomial) as well as 16
equations of the type {monomial) = 0. Thus it is far from being

a complete intersection. This singularity actually appears in

degenerate hyperelliptic surfaces.
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§2 A brief review of torus embeddings

Let T = C¥XT*¥X ... XT*¥ be an algebraic torus of dimension
r
r.
Definition 2.1. A normal variety Z of dimension r is a

T-embedding if (1) Z contains T as a Zariski open subset, and
(2) the action of T on itself by multiplication can be extended
to an algebraic action of T on Z .

regular
TRZ —> 7

J\ multi. J\

TXT —> T
By the results of [TE], to every T-embedding Z is associated
a rational partial polyhedral decomposition A (= a collection of
cones in the real vector space IRr together with the lattice ZF).
Many geometric properties (completeness, projectivity, non-singu-
larity etc.) are described easily in terms of A . The most im-

portant for us is the following one-to-one correspondence.

T-invariant reduced

1 :1
closed irreducible > A
subvarieties of 7
\
V(o) € } O

Furthermore, dimV{c) +dim o = r for every o & A and V(t) is
contained in V(o) if and only if o is a face of T . Each

. . o
V(o) has a unique open T-orbit V (o) .

Definition 2.2. For a subset I of A , we say

-5 -
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star closed if I3 0 , 4371 and t% 0 imply L3t

locally star closed if Z3p, 0 , A9 1 and p » 1T %0

imply 3 1
For a locally closed subset ® of A , we set (Di = {0 & ¢ ;
dim ¢ = i} and Ci(<I>, Z) = Map(@i, Z). We define a coboundary map
i+l(

§ Ci(Q,Z) —>C o, %) by (&f)(t) =Z: [0, tif(c) for every

c& o,
i
£ €c'(o,%) and every 1 écbi ,» where [o,t] (=0, 41 or -1) is
the incidence defined by fixing an orientation for each cone in A .
Thus we get the complex C (¢, Z) of Z-modules. We denote by

Hl(CD, Z) 1its i-th cohomology group.

§3 Local models of degenerate varieties

We take a T-embedding Z as an ambient space, and take possibly
reducible T-invariant reduced closed subvarieties Y of 7 as local

models of degenerate varieties. Let A Dbe the polyhedral decom-

position associated to Z . Then to such Y <€ Z , is associated

a subset ¥ of A by =3, ={cen: Vi) ¥} .

Y
Clearly L 1is a star closed subset of A , i.e. o in A
belongs to I 1if a face of o is in I . Let h Dbe the codimen-

sionof Y in 7. Then for each integer 1 with h <h+i <r

= dim Z , we set Y= \_/ V(o) , the union of (r -h-1i)-dimensional
. &l

h+i
T-invariant closed subvarieties contained in Y , where I =
J
{c €% ; dimo = j} . If Y is equidimensional, these varieties
. . . 0 1 n .
induce a filtration Y >Y¥ 2...2Y (n=r-h=dimY¥Y) on Y.

Clearly, the normalization Yl of Yl is the disJjoint union
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L v(o) Consi
-.L._ . nsider the usual sheaves Z.., T ., T¥ , O and
cer:r . W W W> =W
h+i
Q*W on a variety W . Let F represent any one of the symbols
i .
* * = A A i
Z, T, T*%¥, O and O* . We set KY(_F_') i*Evai where A, is the
composite map ¥r —>Y" &Y . Since F,= (&) E—v(o) , We
Y Gezh+i

can define the coboundary map 6 : K;(E) —-)K;ﬂ'(ﬁ) by

8((£) )= (ZZ [0, 1la(£,)) e :

c'o€&l .. .
h+i & Zh+i h+i+l
T . . s
where Qc : EV(O) ———>§h(1) is the restriction map for o<1 and
0 otherwise and [0, 1] is the incidence. Thus we have a sequence
K (F) = (...=0 = Ko(F) —»Kj(F) —>K>(F) —>...) , which cen

easily be shown to be a complex of sheaves on Y .
Theorem 3.1. K&(Q) is the dualizing complex of Y .
Since we always have Ep(K%(E)) # 0 , we have the following
corollary.
Corollary 3.2. The following are equivalent.

.

(1) The cohomology sheaf ﬂi(KY(Q_)) vanishes for every i > 0 .
(2) The cohomology sheaf ﬁ_i(Ké(Cﬂ)) vanishes for évery i>0
(3) Hi(Z(p), ) =0 for every i >h -and every p in I ,
where z(p) = {0 &% ; o< p} .

(4) Y is Cohen-Macaulay.

Furthermore, Y is Gorenstein if and only 1f these conditions are
satisfied and EO(KQ(Q)) is an invertible O -module.

(3) is a combinatorial property of the abstract complex I = EY .

and is a generalization of the result of Reisner [Rl] for Y em-
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bedded in the affine space C° with the natural (T*)"-action.
Hochster [H1] showed every torus embedding is Cohen-Macaulay, and
Mumford et al. [TE] gave an explicit description of its dualizing
sheaf. These results also follow from our theorem.

For amap o : £, ={0c€ 3% ;dimo =h} —>{-1, 1} , we

h
define a morphism & : F, —> KO(E) =@ F by a(f) =
Y Y V(o)
: c€x
h
alo)f| .

Defintion 3.h4. We say Y 1is F-spherical if there exists «a
such that & : Ey -——>K8(E) induces an exact sequence
0 —F, —>KNE) — Ky (F) — ...
The o above depends on the orientation of cones ¢ in Zh
By changing the orientation of ¢ if necessary, however, we may
assume of(c) = 1 for every o
Since F can be any one of the five variants, we get five dif-
frent versions of sphericity.
Theorem 3.5. The following implications hold.
= O¥*-spherical
Z-spherical =» C-spherical @ O-spherical
§ T¥*-spherical
We can interpret [O-sphericity (= O-sphericity) by a combina-
torial condition as follows.
Proposition 3.6. The following conditions on Y are equi-

valent.

(i) Y 4is OT-spherical.
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(ii} Y 1is Cohen-Macaulay, Hh(Z(p), T) ~T for every p & I
and Hh(E, T) ~T

(iii) Y is Cohen-Macaulay, Hh(Z(p), L) ~T for every o é'zh+l

and Hh(Z, T) #0 .

If Y is O-spherical, then EO(K'(O)) ~ 0,

v\Q v - Thus we have;

Corollary 3.7. Y is Gorenstein if Y 1is O-spherical.

EFach 7 in Examples 1 through 4 in §1 has the natural structure
of a torus embedding and Y 1is a closed subvariety invariant under
the action of the torus. We see easily that Y in Examples 1, 3
and 4 are Z-spherical. Y in Example 2 is also Z-spherical if
we replace Z = E3 by Z = EEX T* . Hence every Y in 81 are
Gorenstein.

Example 3.8. When Z = ¢° with the natural (C*) -action,
to Y Z is associated a simplicial complex (see Reisner [R1l]
or Hochster [H2]). Hochster showed Y 1is Gorenstein if the
simplicial complex is a triangulation of a sphere. We can show
such a Y 1is Z-spherical.

Example 3.9. For an arbitrary T-embedding Z , ¥ = Z\T
is Z-spherical. Since a local ring R 1is Gorenstein if and only

if its completion R is, it follows that the boundary of any

toroidal embedding is Gorenstein.

of local models

According to Rim[R2] and Illusie [I3], the global hyperex-

...9..



- 80

tension groups Exté (L%

=X
portant roles for the deformation theory of the variety X ,

, QX) for i =0,1 and 2 play im-
where L% is the cotangent complex introduced and studied
by Lichtenbaum-Schlessinger [LS] and Illusie [I3] . In order to

compute these groups, we want to know the sheaves Ext% (L¥ , 0.)

for i=0,1 and 2, In this section we define a complex Ki(e)

for a T-invariant Y contained in a non-singular torus embedding

. 0 1 . .
7 , and relate it to EXt;Y(QY , QY) ,» which is equal to
0 Y
Ext_Y(L. , Q_Y)

Let Y be a T-invariant closed subvariety of a non-singular
T-embedding Z . Then for ¢ in the associated I , V(o) 1is
non-singular and D(o) = V(o)\\Vo(o) is a divisor with normal cross-
ing on V(o) , where VO(O) is the open T-orbit in V(o) . Let

f of f 0 -
@V(O)(log D(c)) be the subsheaf of the tangent shea V(o) con

sisting of sections which send the ideal of D(¢) into itself.

Let V(t) %be an irreducible component of D(s) . Then for an
open subset U of V(o) , and for a section s of @V(O)(log D(o))
on U , the derivation s : QU ——ﬁ>gk] induces a derivation
s : 0 . By the fact that D = v(t'
S % nv(n) T2 Qnv(n) y the fact that D(r) (T'\e/z (@'n N
h+i+1
' F o1

V(t) (h+i=dim o), it is easy to see that s is a section of
OV(T)(log D(t)) on UANV(t) . Hence the restriction map Q;

N ined. iy
OV(O)(log D(o)) OV(T)(log D(t)) can be defined Set KY(O)

A 10 (log D) where D' = |l p(o) 1is the divisor with normal
i 0€2h+i

- 10 -
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crossing on i 5%55 V(o) . Using the above restriction map,
h+i . .
+
we can define the coboundary map & : Ku(0) —>K. l(@) and we

Y Y

get a complex Ké(@) similary as in §3.

Theorem 4.1. If Y 4is Cohen-Macaulay, then E}(Ké(@)) =0
for every i > 0 and HO(K'(O)) = Exto (Ql HO(K'(O)))
-y Oy Oy > = Y=
Since EP(KQ(Q)) is the dualizing sheaf by Theorem 3.1, we

have the following corollary.

Corollary 4.2. If Y is Gorenstein, then Bxt” (Ql , 0.) =
- Oy Y
Q@H K (0)) <. om particular, if Y is T-spherical,

then there exists an exact sequence

o——>Ext (l —>KY ——>K§(o)—>.

L2957k > Zy
=Y OY

This is a generalization of the exact sequence obtained by

Nakamura [N3] in the case of stable quasi-abelian varieties.

1
By o Zy

Let Y DbDe a C-spherical T-invariant closed subvariety of an

affine non-singular T-embedding Z . Then we can calculate the
extension grou Extl (Ql 0.,) which is equal to Extl (LY 0., )
g P QY v 2y a QY - o Yy
since Y is reduced.
Let u be a cone in Zh+2 (h = codimZY). Then the T-spheric-
ity implies that each 1t 1in Zh+l has exactly two faces in Zh 5

and for each face o< ypy in Zh there are exactly two cones t1' ,

"

" with o<t'<py and o<t"<yu . We denote by q(u) the

- 11 -



where o'

and ao"

i z
number of faces in W+l of

For t©t in I

ht1 we define

an invertible sheaf -I-'"r on the
codimension one subvariety V(T)

of Y by

Z U))®NV ' )/V ®N o) /V )

q(u) > 5

T U& L

h+2

are the faces of 1 in I and N

h V(o)/v(T)

is the normal bundle of V(1) in V(o), hence is an invertible

QV (v )—module .

in Zh+2

! (resp.

with u»t'»>0' (resp.

with uprt

Let

U be a cone

, and let

™) be a cone in

U)T"

o' T o

Zh+l

>0o"). Then the restriction of L. to the open T-orbit Vo(u)

of V(u)C v(t)

{NV(T JV (u
")/V(u) ®N

{N

flow we set

A

and

w
[}

{{U’ T‘: T"}

{{u, t}:

is

@N

')/V(u)®NV(r")/v(u)}ivo(u) if q(uw) =3

")/V(u)}‘Vo(u)
{Nv( v 0O (e v (0O ey v ol

u é-Zh+

T

29q(U)=39U>‘TéZ

if q(p) = L4 and

it qw) 25 .

. = "
tu€L L, alp) =4 , u»t', 1 &Zhﬂ }

and 1" have no common face in Zh

h+l}

- 12 -
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For a = {u, ', ™} in A, we set Mot ={NV(T')/V(U)®

=8

Vo(u) where t' and T

N = : -
V(T")/V(UmVo(u) , and for B8 {u, T} in B, we set N

"

{01 v @ ie vy (emy v )

are the other cones in Zh+l with wuxt', " . We define a

homomorphism

b D L —>(Du)e Oy

-1 ;
T&Zhﬂ_ a&A R&B

of quasi-coherent sheaves on Y as follows: For 1 & Zh+l

and o = {u, T]'_, Tl} & A (resp. B = {u, Tl} € B) the map _L_T—%Mu

. . - Tt "
(resp. _L_T——>l\l_6) is the zero map if u%T or = 1 oor T

(resp. if U*T or T = Tl) and [1, pw]-times the restriction

map if u¥»T and T # Ti, TE (resp. if uy71 and T # Tl)

Theorem 5.1. Exté ( = Ker ¢

§6  Global degenerate varieties

Let Z Dbe a torus embedding and let Y Dbe an equidimensional

closed subvariety of Z which is invariant under the torus action.
) ) 0,1 no, . ..

Thus we have the filtration Y =Y 2Y >...2>Y (n"= dim Y).

Definition 6.1. An abstract degenerate variety is a connected
analytic space X with a filtration X = XOD Xl >...9%" (n = dim X)
by closed subvarieties such that for every point x € X , there
exist an open neighborhood Ux of x , a torus embedding ZX N

an equidimensional closed subvariety YX of ZX invariant under

the torus action and an open immersion cbx: UX ﬁYX with

- 13 -
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7 ¢;1(Yi) = w;l(xi) for every 120 , where ¥ : U —>X is the
inclusion map. In the category of algebraic spaces, the notion of
an abstract degenerate variety can be defined in a similar manner
with ¢_ and y_ taken to be étale morphisms.

We occasionally impose some of the following additional con-
ditions.
1) X 1is Cohen-Macaulay or, equivalently, we can take YX Cohen-
Macaulay for every point x €X .
2) X is Gorenstein or, equivalently, we can take YX Gorenstein
for every point x &€X .
3) X 1is locally Z-spherical, i.e. we can take Z-spherical YX
for every point x of X .
L) The normalization of X 1is non-singular or, equivalently, we
can take YX embedded in a non-singular torus embedding Zx for
every x &€X .
5) X is globallyoriented, i.e. there exists a complex K.}'(( Z)

of sheaves on X such that the restriction K)'{( Z)‘ is equal

U
X

U

to the restriction KY (=)
x x

6) X is Z-spherical, i.e. X 1is globally oriented and there is
a morphism from the constant sheaf ZX to K}C;( %) which induces
an exact sequence 0 —> ZX ——>K}'(( ) .
We obviously have the implications 6)=» 3)= 2)=» 1) .
Degenerate abelian varieties (= SQAV) of Namikawa and Naka-
mura are Z-spherical and their normalizations are non-singular

at least when dimension <L .

- 14 -
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If an abstract degenerate variety X 1is globally oriented,
we can also consider the complexes of sheaves Kk(m), Ki(m*),
K%(Q) and Kk(g?) as in the case of local models. Furthermore
if X 1is Z-spherical, they give rise to the resolutions of
k T

sheaves U 0 and Q?X, respectively. Using the reso-

). & *X’ X
lution 0 —> 0%, ——?K?((_Q*) QK;(Q*) —> ... , we obtained the
foliowing theorem on the Picard group of X .

Theorem 6.2. If X 1is a compact Z-spherical abstract
degenerate variety, then Pico(X) is written as an extension

0 ——}Hl(zg{(m*)) —3Pic®(X) —> Ker[Pic®%0 —> Pic%F] —>0 ,
where Picoio'——>PicOil is the map induced by the coboundary
map KS((Q*) *-—?K}l((g*) .

Note that Ker[PicoiO ——ﬁ?Picoié] is an abelian variety and
Hl(Ki(m*)) "is an algebraic torus. This is a generalization of
the description by Oda and Seshadri of the generalized Jacobian
varieties for curves with at worst ordinary double points. This

theorem is the first step to the generalization of the theory of

Oda and Seshadri [0S] and Tshida [I2].
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