On the First Cohomology Group of a Minimal Set

by

Ippei ISHII
( Keio Univ. )

#### Notations and Definitions

Let  $(Y, \rho_{+})$  be a flow on a compact metric space Y .

- (i) The flow  $(Y, \rho_{\mathsf{t}})$  is said to be a <u>minimal flow</u> on Y , if every orbit is dense in Y .
- (ii) A subset  $\Sigma$  of Y is said to be a <u>local section</u> if it satisfies: (a)  $h:\overline{\Sigma}\times (-\mu,\mu)\to \{\rho_{\bf t}(y)\mid y\in\overline{\Sigma}\,,\, -\mu<{\bf t}<\mu\}$  defined by  $h(y,t)=\rho_{\bf t}(y)$  for some  $\mu>0$  (such is called a <u>collar-size</u> for  $\Sigma$ ), and (b) $\{\rho_{\bf t}(y)\mid y\in\Sigma,\, t\in J\}$  is open for any open J R. Moreover if  $\Sigma$  is compact, then we call it a <u>global section</u>.
- (iii)  $\overline{H}^*(Y)$  denotes the Alexander cohomology of Y with the real coefficients. For a presheaf  $\Gamma$  of modules on Y ,  $\overline{H}^*(Y; \Gamma)$  denotes the Čech cohomology with the coefficient  $\Gamma$  .

### 1. Preliminaries

At the meeting last year, I have reported the following results. (For the precise proof, see [1].)

<u>PROPOSITION 1</u>. For a minimal flow  $(M,\xi_t)$  and a local section  $\Sigma$ , we can construct a minimal flow  $(\tilde{M},\zeta_t)$  with the following properties: (a)  $\tilde{M}$  is a compact metric space, (b) there is a continuous map  $p:\tilde{M}\to M$  such that  $p_{\circ}\zeta_t=\xi_{t}\circ p$ , (c)  $p^{-1}(\Sigma)$  is a global section of  $(\tilde{M},\zeta_t)$ , and (d)  $p^{-1}(\Sigma)$  is totally disconnected; i.e.,  $\dim(p^{-1}(\Sigma))=0$ .

Let  $(M,\xi_t)$  be a minimal flow and  $\Sigma$  be a local section with a collar-size  $\mu$ . And let  $(\tilde{M},\zeta_t)$  be a minmal flow which is constructed in the previous proposition. Define X to be  $X = M \quad \{\xi_t(X) \mid x \in \Sigma, -\mu < t < 0\}$ , and  $\tilde{X}$  to be  $\tilde{X} = \{\zeta_t(\tilde{x}) \mid \tilde{x} \in p^{-1}(\Sigma), -\mu < t < 0\}$ . Let  $\Gamma_j$  (j=1,2,3) be presheaves defined by  $\Gamma_1(U) = \overline{H}^0(U)$ ,  $\Gamma_2(U) = \overline{H}^0(p^{-1}(U))$  and  $\Gamma_3(U) = \operatorname{Coker}(P^*)$  where  $p^*$  is the homomorphism  $\overline{H}^0(U) \to \overline{H}^0(p^{-1}(U))$  induced by  $p:p^{-1}(U) \to U$ . Then we have

<u>PROPOSITION 2</u>. There is an exact sequence  $\overset{\checkmark}{H}{}^0(x;\Gamma_2) \to \overset{\checkmark}{H}{}^0(x;\Gamma_3) \to \overline{H}{}^1(x) \to 0 .$ 

### 2. Results

Using the exact sequence in Proposition 2, we can give a method for calculating the first cohomology of a 3-dimensional minimal set.

In what follows,  $(M, \xi_t)$  will be a minimal flow on a 3-dimensional comapact manifold which is generated by a  $C^1$ -vector field.

# **Notations**

- (a) For a real valued function F defined on a subset D of M ,  $\hat{F}$  denotes a map  $\hat{F}:D\to M$  defined by  $\hat{F}(x)=\xi_{F(x)}(x)$  .
- (b) Let  $\Sigma$  be a local section, then we use the following notations.

$$T_{\Sigma} : M \to R \text{ defined by } T_{\Sigma}(x) = \inf \{t > 0 \mid \xi_{t}(x) \in \overline{\Sigma} \},$$

$$B_{\Sigma}^{1} \subset \partial \Sigma : B_{\Sigma}^{1} = \{x \in \partial \Sigma \mid \hat{T}_{\Sigma}(x) \in \partial \Sigma\},$$

$$B_{\Sigma}^{j} \subset \partial \Sigma : B_{\Sigma}^{j} = \{x \in \partial \Sigma \mid \hat{T}_{\Sigma}(x) \in B_{\Sigma}^{j-1}\} \quad (j = 2, 3, ...)$$

$$A_{\Sigma}^{j} \subset \Sigma : A_{\Sigma}^{j} = \{x \in \Sigma \mid \hat{T}_{\Sigma}(x) \in B_{\Sigma}^{j}\} \quad (j = 1, 2, 3, ...)$$

$$C_{\Sigma} \subset \Sigma : C_{\Sigma} = \{x \in \Sigma \mid \hat{T}_{\Sigma}(x) \in \partial \Sigma\}.$$

Let  $\Sigma$  be a local section of  $(\mathtt{M},\xi_{\mathtt{t}})$  which is homeomorphic to a 2-disk. Here we make an assumption.

<u>Assumption I</u>.  $A_{\Sigma}^{\dot{j}} = \phi$  for  $j \ge 2$ , and  $A_{\Sigma}^{\dot{1}}$  is a finite set.

Let  $A_{\Sigma}^1=\{a_1,\,a_2,\,\ldots,\,a_N\}$  consist of N-points. We denote by  $C_1,\,C_2,\,\ldots,\,C_{2N}$  the components of  $C_{\Sigma}\setminus A_{\Sigma}^1$ . (It is easy to see that if  $A_{\Sigma}^1$  consists of N-points, then  $C_{\Sigma}\setminus A_{\Sigma}^1$  has 2N connected components.) Then, for each point  $a_k$  of  $A_{\Sigma}^1$ , we can take a neighborhood  $S_k\subset \Sigma$  of  $a_k$  with the properties: (a) there are continuous functions  $\sigma_{k,j}$  ( $j=1,\,2,\,3$ ) such that  $\delta_{k,j}(S_k)\subset \Sigma'$  ( $j=1,\,2$ ),  $\delta_{k,3}(S_k)\subset \Sigma$ , and  $\delta_{k,j}(a_k)=\hat{T}_{\Sigma}^j(a_k)$  ( $j=1,\,2,\,3$ ), where  $\Sigma'$  is a local section which includes the closure of  $\Sigma$ . We make another assumption on  $\Sigma$ .

 $\begin{array}{lll} & \underline{\text{Assumption II}}. & S_k \cap (C_{\Sigma} \setminus A_{\Sigma}^1) & \text{has exactly three components} \\ & \gamma_{k,j} & \text{($j=1,\ 2,\ 3$)} & \text{such that} & \beta_{k,2}(\gamma_{k,1}) \subset \Sigma &, & \beta_{k,2}(\gamma_{k,2}) \cap \overline{\Sigma} = \emptyset \\ & \text{and} & \delta_{k,2}(\gamma_{k,3}) \subset \partial \Sigma \end{array},$ 

<u>REMARK</u>. We can show that there is a local section which satisfies the Assumptions I and II.

Fixing a numbering of the components of  $A^1_\Sigma$  and  $C_\Sigma \setminus A^1_\Sigma$ , for each k ( $1 \le k \le N$ ), we define integers k(j) (j = 1, 2, 3, 4 and  $1 \le k(j) \le 2N$ ) so that  $C_{k(j)} \cap \gamma_{k,j} \ne \emptyset$  (j = 1, 2, 3) and  $\widehat{T}_\Sigma(a_k) \in \overline{C}_{k(j)}$ . And a  $2N \times 2N$  matrix  $\Lambda_\Sigma = [\lambda_1, \lambda_2, \ldots, \lambda_{2N}]$  ( $\lambda_j$  is a 2N-vector) is defined by

$$(u_1, u_2, \dots, u_{2N})_{\lambda_{2k-1}} = u_{k(1)} - u_{k(2)}$$
 $(u_1, u_2, \dots, u_{2N})_{\lambda_{2k}} = u_{k(2)} - u_{k(3)} + u_{k(4)}$ 
 $(k = 1, \dots, 2N).$ 

Our result is the following

THEOREM.  $\vec{H}^1\left(M\right)$  is isomorphic to the solution space of the equation  $u\Lambda_{\Sigma}$  = 0 .

For the proof, see [1].

# 3. An Example

We consider a flow on the 3-torus  $T^3=R^3/Z^3$  which is generated by a vector field  $-(\partial/\partial x)-\sqrt{2}(\partial/\partial y)-\sqrt{3}(\partial/\partial z)$ . As a local section we take  $\Sigma=\{(x,y,z)\mid x=0\ ,\ 0< y,\ z<1/2\}$ . Then  $C_\Sigma$  appears as the following figure.



$$\begin{array}{l} c_{1\,(1)} = c_{1} \ , \quad c_{1\,(2)} = c_{2} \ , \quad c_{1\,(3)} = c_{4} \ , \quad c_{1\,(4)} = c_{10} \ , \\ c_{2\,(1)} = c_{3} \ , \quad c_{2\,(2)} = c_{2} \ , \quad c_{2\,(3)} = c_{5} \ , \quad c_{2\,(4)} = c_{11} \ , \\ c_{3\,(1)} = c_{7} \ , \quad c_{3\,(2)} = c_{4} \ , \quad c_{3\,(3)} = c_{6} \ , \quad c_{3\,(4)} = c_{12} \ , \\ c_{4\,(1)} = c_{8} \ , \quad c_{4\,(2)} = c_{5} \ , \quad c_{4\,(3)} = c_{6} \ , \quad c_{4\,(4)} = c_{9} \ , \\ c_{5\,(1)} = c_{9} \ , \quad c_{5\,(2)} = c_{10} \ , \quad c_{5\,(3)} = c_{7} \ , \quad c_{5\,(4)} = c_{3} \ , \\ c_{6\,(1)} = c_{12} \ , \quad c_{6\,(2)} = c_{11} \ , \quad c_{6\,(3)} = c_{8} \ , \quad c_{6\,(4)} = c_{1} \ . \end{array}$$

Hence the equation  $u\Lambda_{\Sigma} = 0$  becomes as follows:

$$u_1 - u_2 = 0$$
 ,  $u_2 - u_4 + u_{10} = 0$  ,  $u_3 - u_2 = 0$  ,  $u_2 - u_5 + u_{11} = 0$  ,  $u_7 - u_4 = 0$  ,  $u_4 - u_6 + u_{12} = 0$  ,  $u_8 - u_5 = 0$  ,  $u_5 - u_6 + u_9 = 0$  ,  $u_9 - u_{10} = 0$  ,  $u_{10} - u_7 + u_3 = 0$  ,  $u_{12} - u_{11} = 0$  ,  $u_{11} - u_8 + u_1 = 0$  .

One can easily see that this equation has three independent solutions. Therefore, using the Theorem, we get  $\bar{H}^1(T^3) \simeq R^3$ .

# REFERENCE

[1] Ishii, I., On the first cohomology group of a minimal set, to appear in Tokyo Journal of Mathmatics Vol.1 No.1.