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On the First Cohomology Group of

a Minimal Set
by

Ippei ISHII

( Keio Univ. )

Notations and Definitions

Let (Y,pt) be a flow on a compact metric space Y .

(i) The flow (Y,pt) is said to be a minimal flow on Y , if

every orbit is dense in Y .

(ii) A subset ¥ of Y 1is said to be a local section if it

satisfies: (a) h: % x(-u,u) - {pt(y) |y €T, -u <t < v} defined
by hi(y,t) = pt(y) for some u > 0 (such is called a collar-size
for I ), and (b){pt(y) | ye€z, t¢J} 1is open for any open J R .

Moreover if I is compact, then we call it a global section.

-k
(iii) H (Y) denotes the Alexander cohomology of Y with the
*
real coefficients. For a presheaf T of modules on Y , ﬁ (Y; 1)

denotes the ééch cohomology with the coefficient T .

1. Preliminaries

At the meeting last year, I have reported the following

results. ( For the precise proof, see [1].)

PROPOSITION 1. For a minimal flow (M,gt) and a local section

£ , we can construct a minimal flow (ﬁ,gt) with the following

properties: (a) M is a compact metric space, (b) there is a conti-

nuous map p : M > M such that Poly = E.oP ¢ () p—l(Z) is a

global section of (M,gt) , and (4) p’l(Z) is totally disconnected;

i.e., dimpp t()) =o .
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Let (M,gt) be a minimal flow and ¥ be a local section
with a collar-size u . And let (ﬂ,ct) be a minmal flow which
is constructed in the previous proposition. Define. X to be

X=M {g.(X) | x€z, -u <t <0}, and X tobe X={z (%) |

]

>~<€-p_l(z) , -0 <t <0}. Let T. (3 =1, 2, 3) be presheaves
- - - *
defined by 1, () = %) , () = 8% () and I, (V) = coker(p')

* - - -
where p is the homomorphism HO(U) > Ho(p l(U)) induced by

P :p_l(U) - U . Then we have

PROPOSITION 2. There is an exact sequence

v -
Ho(x;l“z) > ﬁo(x;r3) > atx) -0 .

2. Results

Using the exact sequence in Proposition 2, we can give a
method for calculating the first cohomology of a 3-dimensional
minimal set.
In what follows, (M,gt) will be a minimal flow on a 3-dimensional

comapact manifold which is generated by a Cl-vector field.

Notations
(a) For a real valued function F defined on a subset D of

M, F denotes amap F:D > M defined by F(x) = ¢ (x) .

F(x)
(b) Let ¥ be a local section, then we use the following
notations.

T. : M > R defined by Ty (x) = inf {t > 0 | gt(x)eT },

£

B; C 3z : Bé = {x &% | f'z(x)e oL},

3 A A j-1 s
B;C,E)Z.BZ-{XG:SZ |Tz(x)€:BZ } (3 =2, 3, ...)
A%CZ : Ag = {x&35 | TZ(X)QB%} (3=1,2, 3, ...)
Cy (I :Cyp={xer | To(x) a1} .
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Let I be a local section of (M,Et) which is homeomorphic

to a 2-disk. Here we make an assumption.

Assumption T. Ag = ¢ for j > 2 , and A% is a finite set.

Let A% = {al, a2, e eny aN} consist of N-points. We denote

1 .
by Cl' C2, ey C2N the components of CZ\ AZ . {( It is easy to
see that if A% consists of N-points, then CZ\\A% has 2N

connected components.) Then, for each point ay, of A% , we can
take a neighborhood Sk Cr of akv with the properties: (a) there
are continuous functions Ty 5 (j =1, 2, 3) such that
’ -
' s = — AJ
6k,j(sk) Cz: (j =1, 2) , 6k,3(sk) Cr , and Gk,j(ak) Tz(ak)
(3 =1, 2, 3), where I' 1is a local section which includes the

closure of I . We make another assumption on I .

Assumption II. Sk(\(CZ\\Aé) has exactly three components
Yk,j (j =1, 2, 3) such that Gk,z(yk,l) Cz: , 6k,2(Yk'2)f\Z =9¢ ,

and 8k,2(Yk,3) C 3z .

REMARK. We can show that there is a local section which

satisfies the Assumptions I and II.

Fixing a numbering of the components of A% and CZ\‘Aé , for
each k (1 < k < N), we define integers k(j) (j =1, 2, 3, 4 and

1 < k(J) < 2N) so that Ck(j) K\Yk,j #¢ (3 =1, 2, 3) and

Tz(ak)e-ck(j) . And a 2N x 2N matrix AZ = [Al, AZ’ ooy XZN] ( Xj
is a 2N~vector) is defined by
@y, uyr eeeyr Uy Aog 1 T U (1) T Bk (2)
= - (k =1, ..., 2N).
Wy, Uy eeer Uy dhop = Uy gy T U3y Yy
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Our result is the following

THEOREM. ﬁl(M) is isomorphic to the solution space of the

equation uAZ =0 .

For the proof, see [1].

3. An Example

We consider a flow on the 3-torus T3 = R3/Z3 which is
generated by a vector field =-(3/93x) - vV2(3/3y) -V3(d/3z) . As a

local section we take I ={(x,y,2) | x=0, 0<vy, z<1/2}

Then C, appears as the following figure.
a U
| I
‘ C |
: G/
o O : j % T Tz(ak)
) c4 ’ C"I """“"‘;a *
*Ue '
Gl lc, ‘
QL-'—" CS \\
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fo
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C’il L C“ n ’a/
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Numbering the components

figure, we

1)
2(1)
3(1)
4(1)
5(1)

QO 0O 0 0N

6(1)

Hence the

Y12 ~

One can easily see that this equation has three independent

solutions.
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