Supplement to free L-spaces

Ehime Univ., Faculty Sci. K. Nagami

When I introduced the notion of free L-spaces in [2] the concept of canonical neighborhoods were used in the definition. However if canonical neighborhoods are weakened to semi-canonical neighborhoods, yet the theory developed in [2] seems to be almost effective for the weakened case. To note this fact will be convenient for the reader of [2].

Let X be a space, F a closed set of X, and \mathcal{U}_F an anti-cover of F. An open neighborhood U of F is said to be <u>semi-canonical</u> with respect to \mathcal{U}_F if Cl $\mathcal{U}_F(X-U) \cap F = \emptyset$. Let \mathcal{F} be a closed cover of X. Then $\{\mathcal{F}, \mathcal{U}_F(F \in \mathcal{F})\}$ is said to be a <u>weak L-structure</u> of X if

- a) J is o-discrete,
- b) for each $x \in X$ and each open neighborhood U of x there exist finite elements F_1, \ldots, F_n of $\mathcal F$ and their corresponding semi-canonical neighborhoods U_1, \ldots, U_n with respect to $\mathcal U_{F_1}, \ldots, \mathcal U_{F_n}$ respectively, such that

$$x \in \bigcap_{i=1}^{n} \mathbb{F}_{i} \subset \bigcap_{i=1}^{n} \mathbb{U}_{i} \subset \mathbb{U}.$$

Let (WL) denote the class of paracompact Hausdorff spaces with weak L-structures. Then (WL) is hereditary and countably productive.

THEOREM. If $X \in (WL)$, then the following conditions are equivalent.

- i) dim X ≤ n.
- ii) X is the image of a free L-space Z with dim Z \leq 0 under a perfect map f with order f \leq n + 1.
 - iii) Ind X ≤ n.
- iv) X is the sum of subsets X_1, \dots, X_{n+1} with dim $X_1 \le 0$ for i=1,...,n+1.
- v) X has a σ -closure-preserving base $\mathcal U$ such that dim ∂ U \leq n-1 for each U $\in \mathcal U$.
- vi) X has a stratification { U_i } such that dim $J_i \leq n-1$ for each open set U and each i.

The implication iii) \rightarrow v) is verified by a similar way as in [2, Theorem 2.7]. The implication v) \rightarrow iii) needs the following which is just a trivial modification of [1, Lemma 15.5].

LEMMA. Let X be a normal semi-stratifiable space and $\{F_{\alpha}: \alpha \in A\}$ an order-closure-preserving closed cover of X. Then Ind X = sup Ind F_{α} .

Proof. Assume that dim $F_{\alpha} \leq n$ for each $\alpha \in A$. Set

$$\mathcal{L}_{i} = \left\{ H_{di} = F_{d} \cap (X - G_{d} F_{\beta})_{i} : d \in A \right\}, i \in N,$$

$$H_{i} = \mathcal{L}_{i}^{\#}.$$

Then \checkmark \bigstar_i covers X. To see that \bigstar_i is discrete let x be an arbitrary point of X and \checkmark the minimal with $x \in F_{\checkmark}$. Set

$$V = (X - (X - \beta \leq \alpha F_{\beta})_{i}) - \beta \leq \alpha F_{\beta}.$$

Then V is an open neighborhood of x with V \cap H $_{\beta i}$ = \emptyset for any $\beta \neq \alpha$. Thus Ind H $_i \leq$ n which implies dim X \leq n by the sum theorem.

T. Mizokami wrote to me that the equivalence of iii) and v) holds for some kind of spaces which seem to be free L-spaces. As is expected from the condition ii) we can prove that each member of (WL) is the perfect image of a free L-space. If each perfect image of a free L-space has to be a free L-space, we can conclude that (WL) coincides with the class of free L-spaces. I don't know whether this is the case or not. I don't know whether the theorem is valid for M₁ or M₃ spaces.

References

- [1] K. Nagami, Dimension theory, 1970, Academic Press, New York.
- [2] ----, Dimension of free L-spaces, forthcoming in Fund. Math..