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Perturbation Analyses for the Postbuckling and Imperfection

Sensitivity of Circular Cylindrical Shells under Torsion

N. Yamaki and S. Kodama

Institute of High Speed Mechanics, Tohoku University

1. Introduction

It is of great technical importance to clarify the whole aspect of the
stability of circular cylindrical shells under torsion. To explore the
problem systematically, the authors first treated the buckling problem and
accurate solutions for the critical load and the wave number are obtained
for a wide range of the shell geometry 4 , under eight different boundary
condition [1, 2]. Next, to clarify the postbuckling behavior, precise ex-
perimental studies were carried out, using polyester test cylinders with

% ranging from 20 to 1000 [3]. Then, the corresponding theoretical
studies were performed, under the completely clamped boundary conditions[4].
It is found that both the results are in reasonable agreement. Later, the
theoretical studies were extend to include the effect of imperfections,
assuming the imperfections in the shape of the buckling mode [5].

In the foregoing postbuckling analyses, the Donnell equations were used
and the problem was solved by directly applysing the Galerkin method. An-
other method of solution is to use the perturbation analyses based on the

initial postbuckling theory of Koiter and Budiansky [6]. With this method,



a number of imperfection sensitivity problems have been solved for various
shell structures [6]. In particular, present problem has been solved by
Budiansky [7], under three different boundary conditions. The senior
author also treated the initial postbuckling problem of clamped cylindrical
shells under compression [8]. 1In these studies, however, only the terms up
to the second order expansion were used and the range of validity of the
solution has not been examined. The main object of this study is to per-
form the perturbation analyses up to the sixth order and to clarify the

- range of applicability by comparing with the previous results obtained by

direct nonlinear analyses.

2. Postbuckling Problem for Imperfect Cylindrical Shell

Assume that a circular cylindrical shell with
h

mean radius K , length L , thickness h is sub- ©

ject to a torque T . (Fig.1l). Denoting by W: and X
ok--%
W  the initial and additional deflections, respec- t\_

y

R——

tively, and by F the stress function, the basic \_/

equations ‘are given by Donnellas follows: 2R.

%« 5=/ | 2 .
v /:"" Eh [/Q Wzt Wxx W/—”—W:xy | Fig. 1.

+ W W,

’77—2 u{’7W/-”]+uZ77HZx1)=0 (/)'

DYT =R Fre= Fou (FHW), ) + 2 E, (W),

_575 (u? ‘*‘W),)cx =0 (2)
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In the foregoing,l) is the flexural rigidity, E and % are Young's modu-
lus and Poisson's ratio, respectively, while subscripts following a comma

stand for differentiation. Stress resultants are expressed by [ as

/\/JC = ]’:77 ’ /Vj = ]/:xx J A/IJ = - 1}—2‘7 (4‘)
while in-plane displacements J and T are related to ﬁ? . W and f: as
Eﬁ(@*%m;*ﬁ,zmx): E;y“)’Erz ) 1
£/I (V/—ﬁ_RA/W‘{_?{W/‘j ""W/y W/—7>= sz-—'}/ Eyg ’ J(A’)

E/’)(U/-J"'V/-,(_‘FW;)( W:7+ i:xmﬁ+ ﬁ;y ij) = '3{/+V) le;

Assuming that both edges are rigidly clamped to stiff end plates, the
boundary conditions are

X=tL/2s © W=Wx=20 (ba)

277R

7R
Uy =Ty = Wdy= Ry dg~ T =0

ar

T, 2 FK

27K
Fax =7 by = Laut (240) By = LEydy0 = RLEx 27=o+ [=0 (8b)

The axial shortening 3 and the angle of twist Y are given by

L2 -/ L/
S= = [U]x%‘/./z ’ v=rF [ 7_71=_/_/2 (7)

Here, we introduce the following notations for convenience:
S=mx/L, p=mYy/l, L=aR/N, =\ S120¥),
(w,0) = (L/Th)(TT), (&, w)=(T, W)/h, F=F/h’ & 3
o =LA, B=(L/rR)N T = TL/ 2R,

5 =RS/h, F=R¥/Lh, Z=V/FoLrh k= T/ )
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In the foregoing, AN is the circumferential wave number, & , / and 7 are
non—-dimensional factors relating to the shell geometry, wave number and
applied torque, respectively. With these notations, the preceding equaions

are rewritten as follows:

=k | : 2 , .
V't Ay + LMy~ Mgy Wy Wy

-2 ZTI;” “/:;7 + '“7/9'7 “f;{ 1=0 B a1y

. (‘ﬁ“wt ~ f’ff — /32[ 7(/-;‘[ (ra—f +l{f),7,,) —2 75[7 (Z(?-(-h]‘),rz?
t L (W +w)yy 1=0 2)’
7 = Y/a;’+ B3 s/ ' c3)

u/;lew?; + U, Wy "ﬁsz")ﬁ‘g; .

BV ~ KT+ (o bby + Wy Wiy ) = Ty v 7y ®)

: {361/74‘71/}» +/}[&J/‘;qj)7+£:f‘:} f‘j:z“‘ﬁ;? a!;z)=~2(/+)’)ﬂ7§;7

S=x 72 ¢ &d‘=w§ =0 (6a)
'ﬁse;- Vp 7677 = f;jg“— (2+V)/3 753’)7 = Z7/L? ]7=—7r

= (B/2m)(£; 1.+ T =0 by

- 72 — : /2 ’

b = - ?rlo? MJ;;WZ R [V Js iy 7

These are the governing equations for the postbuckling of clamped imperfect

cylindrical shells under torsion.



3. Initial Postbuckling Problem for Perfect Cylindrical Shells
Putting W =0 in the preceding equations, the relevant basic equa-

tions become

Tt oy e L ) -0 0"

L(w)= cﬁyufﬂocﬁ§§~ﬁ2(’f;w)=0 | 2y

$=xTly ¢ Mi(Wf)=0, (=1I~8), MW, §)=7 8"
where

(F50) =iy, =2ty iy + Ay iy ‘4

M, (W, f) = w, Ma (W) 3C)=‘J/\§, M3/W)'f)=7fjj"2/ﬂ2f77,.

a
7

Me (1) = ﬁfﬁ+(g+v}/3’—,€}77 , Me(wf) = [£y]

ar

Mot )=~ (plan) £33, (/0)

JT

Letting Ld; and f} the solutions for the prebuckling axisymmetric state,

we easily find that

W, =0, F=-(T/p)2Yy /)
Denoting by h& and fi the small incremental deformation during buckling,

the governing equations become
LG5, 4)= 7' + &y =0,
Ly, 4)= c VW ~aFyp -2 (£ 540) =0, v2)
=Ty i My (W, T)=0, (t=/nd)

With these equations, the critical load 'Z; contained in the expression

jic:= - (7:/45) % 7 can be determined as the lowest eigen-value for each
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prescribed wave number ﬂ . The corresponding eigen-functions %/, and 36

can be definitely determined with the condition ( 7\')7 )mn'x = 1.

Now we assume the solution in the buckled state can be expressed as

¢fl‘=nZ=/ s"z«r,,, , F= 75/7)+'02=/En~/n, ‘Z/ZC=/+% é,nb,,

(m=1,2,3---) ' (/3)
where
AT = £+ (0-T) £ = £+ T4°3 Ebn }
. n=t (/¢)
%5 = (PhT ) g = = (1A

and where & ( > 0) is a small parameter. Substituting these expressions
into Eqs.(1)" and (2)" and equating to zero the terms with S,n, we obtain
the following set of the linear boundary value problems for &/ and 75,,L

(’ﬂ%= 2, 3, 4, ++*):
L, £)=4(89),  Latwi, $,)=%02.7) }
/€)

%:i‘rr/z s My (wn, F)=0, (id=/v8)

where

n-/

B (7)) =~ 4 p° 2 (W55 W4 ),

‘ } (/8)
n- .
2 ¢
) =P E [T (£5650) + (fus Wra) ]
Here, we note that Egs.(l2) are equivalent to the variational relation

F; j: [L (w;, £ )8F - L, /ﬂﬁ,ﬁ)gvjdgdZ =0,

2

from which we obtain
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am
[ f_w[[’/m'ﬁ)ﬁ—iz/ﬂfn,ﬁ}hﬁ]d‘{d?:Q'

MY M)y

(n=2,34 ---) /7)

These are solvability conditions for Zf);, and 7% . From Eqs.(16) and (17),

we have

n-1 ‘C ) \_' » R -
Z [7 b (155 w50, )42 (15 W W)+ (5 W0, 40) ] =0

(n=23,4---) ; - (15)

where

1

(fg;aﬁm,m%/_;/_:/fg;z«fm)w;dgdz /9

Equations (18) serve to determine 1),,_/ (7 2 2) in terms of Wm; 7£m
and zm with m £ 1~/ .

In addition, it is to be noted that the homogeneous problems corre-
sponding to Egs.(l5) are identical with Eqs.(12) which have nontrivial
solutions Zd; and ;6 . Hence, the general solution of Egs.(15) will be

expressed as

A A .
Wy =Wy + Cr i,  Fo="y+ Cnt (20)
A PN
where 2, and 751 are a pair of particular solutions while (5 is an arbi-

trary constant. To determine 5% , the following three kinds of conditions
are considered:

Condition (a) requires the integral of (’ZL’\” }? to be minimum. That is

T 7
2 \2' )

Lo [ () agan = min. 2a)
2

Condition (b) requires the residues ¢h+/ and gan to be orthogonal to

c ¢
7% and %, ( =0). That is
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-
=z T o
Jo [ttt 424y =0 (2/4)
z
Condition (c) is an application of the Galerkin method. That is, first
assume W as

2 n, N .
W= +EWy+---+& (Wy+ Cp ))

h+2
to the order £

and determine f with Eqs.(1)" and (6)". Then, considering the terms up
, apply the Galerkin condition to Eq.(2)".

J

That is

Y y N

ar

[ L(w)wyagdy =0 (2/c)

-7 ,

With Eqs.(15), (18) together with (20), we can determine Z/ . Zd; s 7§ .
192 s LJ} ’ 7% s [;3 *+ successively. In each case, it is found that

62&'--/~= Gi =0, (z=/23:)

(22)
Once’ %), , fh and b/z are found, the connections of 7% and J§ with 7

can be determined, considering Eqs.(7)' and (5)'.

‘4, Effect of Imperfections in the Shape of the Buckling Mode

In this case, the initial deflection will be expressed as W = /U. wy

(/u 2 0), where IU- is the imperfection amplitude. Hence, the governing
equations become as

[y (156)= TF + aisp+ 3 B2 (wsw)+ pp?(wy; i) =0,
‘ ' ¢ /23)
Lytwyf) = C#ﬂf—0(755;{'/32/7‘314?)*/%2/7%4/}) =0,

S= T/ T MWL F)=0, (i=/v8), Ms (W )= T

”

/4)

To obtain approximate solutions utilizing the preceding asymptotic solu~
" tions, we assume % and :F as



W= 2 Yk, f=f+ /T_Z)f;cﬂ% 7, (m=l23) ()

and apply the Galerkin condition for the determination of 7’ , which leads

to
o
2

7,/ [Lﬂw%}f g/mf) jd;d7— (25)

T2
Considering h& . f; and ﬁn up to ¥ = 6 and performing the integration,

we finally obtain

(1- )7 (460 + ar’)+ by (G 0™ G ")
bt &) by [ (1 H Y )

+ L LY 1,2 ] =0 | (26)

vhere
A= (555w, 05), G = (/R[5 5) w2 (F5 0, u3) ]
Go= (/) [(£55 5, 3 )+ 2 (455 w5, w3 ) + 2 (45 u,
=Z3/A) (£S5 00, 03),  Ho={(S/8) (15 4, w;),
I, =< (3/7,8) (6, B)+ (454, )],
I, = (/2. A) [, )t (5w, a5)+ (155 W, W) (15 15, &) )],
T, = (7/7A) [0 i)+ (f5 0, W)+ (55l k) + (B 5y, 405

+ (s w, wh)+ (5 4 W) ] (27)

Equation (26) gives the relation between the load 7 and deformation ¥’
for each prescrobed value of the imperfection amplitude /L . When bz is

negative, the cylinder will become imperfection sensitive and the snap-
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through critical load 7; is given by the peak point along 7 - p’ rela-
tion. It is found that with the increase in fc , the peak point finally
disappears and degenerates into the inflection point. Hence, the critical
load 7} for these values of fb is defined by the load corresponding to
the inflection point along the T - 7° relation.

In case when the perturbation terms up to the fourth order are consid-

ered, Eq.(26) becomes

(/=)0 (1+G¥") + b, P i+ 6rt) v by

~p [ (T YL -0 (23)
(A

while considering only the second order terms as usual, we have

T 3
(1= )P+ b7 ~p (- + 1,77 ) =0 (29)
for which the condition for 7, becomes
’2”,5/2—-c = /=3p I,Y + 38, »* (30-Y)
Neglecting I‘Ezin Eq.(29), we have
. (T,é 3//2 3 e TA
—_— = — . 30'l<
(- 2" 2 Ea e L (30-K)

while with further assumption that f&’ (77”E1)2¥/L ,» we have

Z_j s o8) W (30-H)

Equations (30-K) and (30-H) correspond to the well-known expressions ob-

tained by Koiter [6] and Hutchinson [9], respectively.

10
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5. Method of Solution
In the previous paper [4], the posfbuckl:‘mg of clamped perfect cylin-
drical shells under torsion has bbeeAn solved by directly applying the |
’Galerkin method to. the nonlinear basic equations (1)" and (2)". That is,

the solution ¢ 1is first assumed as

W= m=/ n=o6 d,,m ZJ:,,,, - n%/ %o a"’” (%m‘/m'f' gmﬂ,n )z
(m=r,2,3--, Nn=0,72--) | (3/)

where

Zyy = cos(ps+g7) + 0 eos (p=77) (32)
and where d?rm are unknown parameters. Substituting the foregoing expres-
sion into Eq.(1)" and integrating, we obtain the stress function gc
satisfying the boundary conditions (6)" exactly. With these expressions
for % and f , we apply the Galerkin method to Eq.(2)", which leads to

the conditions
zZ n : :
fanL/W) Wppd§dy =0, (7= 2,3, A=0,02--) (93)
~L /- ‘ -

When the values for Poisson's ratio % , shell geometry ¢ (or Z ),
wave number /}’ (or M ) and applied load 7 (or A’A ) are given, Egs.(33)
give a set of cubic equations in amn , which can be solved for ﬂ,,,,,with
the Newton-Raphson method. Once d’m n are determined, %' and f , conse-
quently g and 27; , can be determined and the problem will be solved.

In the foregoing, detailed expressions are omitted to save the spacé.
With the use of these expr“essions, solutions for the present perturbation
analyses can be obtained without difficulty, since the governing equations

for the perturbation terms correspond to the special cases for the original

11
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basic equations (1)" and (2)".
Solutions for the prebuckling state, 7(}; and Je , have been given

by Egs.(11). To obtain the solutions for Wy and 757 , we first assume

20‘,, ~as follows:

w @) 2)
7‘0:% aml k’(r:a/, hg:%(ﬂmo A/I:w-{- A2 M;’”)/
(3 3) '
%/dfﬂi Mm/‘}' dm.? W””’)/

S

L) W (%)
M;‘ % (Ao Wopo t Ay Wips t Ame Mm{i),
NS, R
We = %[drru L"I/\ﬂ/“‘dma Wi )',
4) (6) /)

(m=1 2,3 ---) (34)
Applying the similar procedure as stated in the foregoing to the relevant
basic equations, we will obtain the expression for the corresponding stress
function f” and then equations for the determination of the parameter d”:j).
When 4= 71 =1, the latter equgtions represent a set of homogeneous
linear equations and the condition for the existance of non~trivial solu~
tions gives the critical load 7, as well as the eigen-functions ZJ; and
f/ . For the other cases, we will have simultaneous linear equations for
e

e .
fﬂ' (m Z 2). Then, applying one of the- conditions (a), (b) and (c)

A
, from which we can obtain a pair of particular solutions %/, and

stated in Eqs.(21), we will find the corresponding constant C, » which
gives the required- solutions for 74}?” and fn . Once 211;7 and fn (nz 1)
are determined, we can find the load coefficients 1?” (M 2 1) with suc~

cessive applications of the solvability condition (18). 1In this way, we can

12
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determine W, , 76 . b, W, , 7§ » b, +++ , stepwisely. Thus, recall-

ing that 3 (4 =1,2, 3 -*) =0, we will obtain the sixth order

20—/

solution as

4 P
w=2 £y, f=7§f+ (T-7) 1+ 2 & T
| (36)
/7, = [+ &b, + £be + 2%,

The second. and the fourth order solutions will be given by retaining 7 up
to 2 and 4, respectively. Once % , j; and Zn are found, we can
easily determine S and ’ﬂ: as well as the values of the coefficients

appearing in the asymptotic expressions for the imperfection sensitivity,

i.e., Egs.(27).

6. Numerical Results and Discussions
6-1. Postbuckling Behavior of Perfect Cylindrical Shells

To compare with the previous results [4], calculations are carried out
for the cases when 27 are 20, 50, 100, 200, 500 and 1000, by taking % =0.3
and R /h = 405. The wave numbers A in each case are also taken to be
the same as the those previously treated. For each case,vperturbation terms
up to the sixth order are determined with the three conditions (a), (b) and
(¢) for (, . Practically accurate solutions were obtained by retaining the
coefficient ﬂ;:; ( 1 = 1~+6) with m ranging from 1 to 20.

Compafison of the present and previous solutions for the typical post-
buckling behaviors are shown in Figs.2 to 4, for the cases when 7 are 20,
100 and 500, respectively. In the figures, thick solid line cortresponds to
the previous solution, while the curves labeled with 2, 4b, for instance,

designate the present solutions of the second order as well as those of the

13
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-1.0 W(O‘m—o.s 0 v 05 1.0 1.5 2.0 W(0.0) 25

Fig.2. Comparison of the typical postbuckling behaviors for the
clamped cylindrical shell with Z =20, R/h =405, N =23,
(a) Relation between the torque /<,° and the angle of twist zF .
(b) Relation between the torque kA and the axial shortening § .
(c) Relation between the torque K, and the maximum inward and

"outward deflections, 10}'(0, 0) and W (0, 7¢).

14
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(a) . (b)

A L 20 i " ] . i n 1 N ] | n
W(0,m) Y v 2 4 wo.00 §

Fig.3. Comparison of the typical postbuckling behaviors for the
clamped cylindrical shell with Z= 100, R/ h =405, N=19.
(a) Relation between the torque /(A and the angle of twist ’z:l: .
(b) Relation between the torque kA and the axial shortening 5‘— .
(c) Relation between the torque k 4 and the maximum inward and

outward deflections, « (0, 0) and W (0, 7T ).

15
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(b}

120 120
(a)
k’ Z2:500 ks
100+ N=15
6¢
80+ ﬁu
6b
60}
4c
40+ 44 ‘\\
4b \\2
\
20
(o] L L I} L
o) ! 2 T 3 X
» v -0 0.5
120
ks

-4 wio.m

clamped cylindrical shell with

(a) Relation between the
(b) Relation between the
(c) Relation between the

outward deflections,

torque kk
torque k,
torque kA

w (0, 0)

16

Fig.4. Comparison of the typical postbuckling behaviors for the
Z = 500,

R1Ih

= 405,

and the angle of twist d: .

and the axial shortening

)

and the maximum inward and

and

w (0, 7T).

N = 15,
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fourth order associated with the condition (b), respectively. From these
results, the following conclusions may be obtained:

(1) The second order solution is valid only in the immediate vicinity of
the critical state. It will lead to a serious error for short shells as it
predicts monotonous decreases of the load after buckling.

(2) The effect of the minimum postbuckling load is duly considered in the
higher order solutioms.

(3) The range of validity of the sixth order solution is somewhat greater
than that of the fourth order solution but the impro§ement is not so good
to compensate the increased effort in the analyses. Hence, it seems that
the present perturbation analyses cannot be used as substitute for the di-
rect nonlinear analyses.

(4) Yo significant differences are seen among the three conditions con-
cerning the convergency of the resulting solutions, although conditions (a),
(b), (c) seem to lead to the most favourable results for the cases when Z
are 100, 20 and 500, respectively. Hence, the condition (a) should be
recommended from its clear physical meaning as well as the ease in the
application.

6-2. Imperfection Sensitivity

In the previous paper [5], the effect of imperfections in the shape of
the buckling mode is treated with the direct nonlinear analyses, for the
cylinders with the same values of 2 as treated in [4]. For example, some
of the results obtained for Z = 100 are reproduced in Figs.5a and 5b,
where /L is the imperfection amplitude defined previously. Further, small
circles denote the snap-though critical load k}A corresponding to the peak
point while those with vertical and lateral bars designate the critical load

corresponding to the inflection point along the k}F-¢'and kA-ﬂf(0, 0)

17
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curves, respectively.

30+
ke
|
25+
20}
1 Z=100,N=19
T Kgc =30.29
} s | 1
% _
V=R*¥/Lh

Fig.5a. Previous results for the

effect of imperfections on the

relation between Ab and P

ks

25

20

Z=100,N=19

° 12 3 woo ®

Fig.5b. Previous results for the
effect of imperfections on the

relation between A)‘and w (0,0):

Z =100, N =19, Z =100, N=19.
(a) (=0 (b)
30 30 0025 30
ks ks Ks
25 25 25
i 02
20 20 20
03
Z=100,N=19 Z=100, N=19
Z=100,N=19 Eq.(28) Eq.(26)
Egs. (29),{30-Y) Cond.(a) Cond.(Q)
15 - L — i5 L — 15 - o
0 I
o} I y @ y 2 0 I y 2

Fig.6. Effect of the imperfection amplitude fL on the relation between

k& and 7T :

Z =100, N-=

19.

(a) Second order expression, (30-Y),

(b) Fourth order expression, (28), Condition (a),

(c¢) Sixth order expression, (26), Condition (a).

18
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To compare with the foregoing results, effects of /A, on the relation
between kA and 73' are determined with the present asymptotic analyses
based on the second, fourth and sixth order expressions, which are shown in
Figs.6(a) to 6(c), respectively. In the figures, the criticéi load defined
by the infleqtion point is marked with small circles Qith a oblique bar.

It is to be noted that no inflection point appears in the second order
expression, in‘COntrast td the higher order expressions.

- Similar calculations are carried out for the remaining cases with 2?
different from 100. From these, the effect of /L on the critical load
ratio I(AA / kgc, is determined for each case; with the results as shown
in Figs.7(a) through 7(f). In these figures, the symbols O , ® and &
denote the previous results obtaingd by the direct nonlinear analyses [5],
while curves labeled with (Y), (K) and (H) stand for the present results
based on the second order expressions, (30-Y), (30-K) and (30-H), respec-
tively. From these results, the foilowing_conélusions may be obtained:

(1) For sufficiently small values of fb , the asymptotic estimates for
the critical load coincide with the accurate ones, as fhey should.

(2) Denoting b? /Lc‘the upper bound of /L for which the shell buckles
with snap-through phenomena,'it was found in the previous paper [5] that

}lc = 0.007, 0.05, 0.15, 0.35, 1.1 and 2.0 for the cases when 7 are 20,
50, 100, 200, 500 and 1000, respectively. In general, the asymptotic pre-
dictions for the critical load are valid so far as ft is less than Ff .

(3) Among the second order estimates, the Koiter's expressioﬁ always
gives the highest value for the critical load, which may iead to some over-
estimation for long shells with 4 greater than 200. On the contrary, the
Hutchinson's expression always underestimates the critical load while the

predictions based on the authors' expression, (30-Y), almost coincide with

19
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those of the higher order expressions for long shells with Z greater

than 200.

In any case, the second order expression may lead to a serious

error since we cannot estimate /15 , that is, the proper range of validity

for /L .

(4) There are no significant differences among the predictions based on

the fourth and sixth roder expressions as well as those associatedwith the

conditions (a), (b) and (c).

(5) The fourth order expression associated with the condition (a) will be

of "great technical importance since we can estimate the range of applica-

bility through approximate determination of FC .

Finally, values of the coefficients appearing in Eq.(28), associated

with the condition (a), are given in Table 1 for completeness.

Values of the coefficients appearing in Eq.(28)
-2
R/h = 405, v = 0.3, Condition (a). ( E-2 =10 )

Table 1.

Z 20 50 100 200 560 1000

N 23 21 19 17 15 13

kse 12.51 19.53 30.29 49.22 96.07 162.0

Te 1.146 1.789 2.774 4.507 8.798 14.83
b, -7.132E-2 | -7.987E-2 | -6.181E-2 | ~4.039E~2 | -1.974E-2 | -1.128E-2
b, 1.117E-1 3.262E-2 7.694E-3 1.313E-3 9.535E-5 1.974E-5
G, -1.241E-1 | -1.257E-1 | -8.248E-2 | -4.467E-2 | -1.606E-2 | -7.731E-3
i, -1.080E-1 | -9.90Q0E-2 | -6.481E-2 | -3.538E-2 | -1.269E-2 | -6.207E-3
I, 1.094E-1 1.588E-1 1.293E-1 8.629E-2 4,294E-2 2.460E-2
I, -5.095E-1 | -1.713E-1 | -4.918E-2 | -1.136E-2 | -1.525E-3 | -3.888E-4
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