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ELASTIC-PLASTIC VIBRATION OF A ROD

TETSUHIKO MIYOSHI

INTRODUCTION. The following equation is a mathematical model

to represent the elastic-plastic vibration of a straight uniform

rod submitted to longitudinal impact.

(.=

; kﬁx in the elastic region

(1—§)kﬁx in the plastic region,

;where } ,k are positive constants and 0<J$<1 [2].

In this paper we prove that there is a unique weak solution
to the initial-boundary value problem of this equation and it is
obtained as a limit of the finite element solutions.

We derive a ﬁeak form of this problem and get the solution
by a discretization technique.

We thus start from the vibration of a single masspoint system,
then proceed’to a multiple masspoint system and to the continuous
case.

1. ELASTIC-PLASTIC VIBRATION OF A SINGLE MASSPOINT SYSTEM.

1.1 Equation of motion. Let us tonsider the vibration of a
single masspoint system described by thevfollowing initial wvalue
problem.
(1.1) Pu+ =0 in T,
where f:positive constant, T=(0,T), u(0)=0, ﬂ(O):given and the
yield displacement E(O)(>O) is given.
The function & 1is a continuous function and satisfies:

. .

(1.1) & = ku if the system is elastic,
a



87

(1.1)b o = (1—})kﬁ if the system is plastic.

" " "

We define the states " elastic and plastic as follows.

First, put6/= ku. Assume that the solution of the equation

(1.1) satisfies [u(t)(= G(O) at t=t, for the first time. Then

we define that the system is elastic for the time interval [O,to).

"

( Note that the definition of " elastic is not independent of

the solution of the intial value problem. These are determined
at the same time.) If ﬁ(to)‘i O0,then the system is defined to

be plastic for t 2 t If ﬁ(to) = 0, the state for t2>t_, is

0° 0

determined by the following check. (ABC)-check

(A) If u converges to 0 from above:
(1) if U(to) >0 then plastic for t > t
(2) if ﬁ(to) <0 then elastic for t > t. (case(A)),
(B) If u converges to O from below:

(1) if u(ty) >0 then elastic for t 3 t; (case(B)),

0°
(C) If u converges to 0 vibrating. Plastic for t > tO.
()

(2) if ﬁ(to)é;o then plastic for‘t z t

(REMARK: If u(t)=u(t)=0 at t=t, then all

independently of the state for t 2 to,so that u=u(t0),6;0 is the

(k>3) vanish at t=t0+0

only possible solution for t 2 to. Observe that this is a

formal classification for logical consistency.)

Subsequent states of the system is determined recursively as
follows.
(I) The case when the present state is plastic. Assume that the
present state began at t=tm,and the solution of the equation (1.1)
satisfies u(t)=0 at t=tm+l('7tm) for the first time. Then we

).

define the system is plastic for the time interval [tm,tm+1

The state for t 2zt is determined by the (ABC)-check.

m+1

(II) The case when the present state is elastic. Assume that



88

the present state began at t=tm after the ABC-check.

(1) case(A). Assume that the solution u satisfies
u(e) £ uce ) - 2509,
or
u(t) = u(tm)
at t=tm+l(:>tm) for the first time. - Then we define the system
is elastic for the time interval [tm, tm+l)'
(2) Case(B). Assume that the solution u satisfies
u(t)>/u(tm) +,26(0),

or u(t) = u(tm)

at t=tm+l( 7tm) for the first time. Then we define the system

).

is elastic for the time interval [t ,t
m’ m+l

The state for t;;tm_'_1 is determined as

(II)a if u # 0, the system is plastic for t2t 410

(II)b if u = 0, the state for t 2t is determined by

m+1
the (ABC)-check.

Our initial value problem is well defined by the above
procedure and has a unique Cz—class solution. The hardening

in the above rule corresponds to the kinematic hardening.

1.2 Energy of the single masspoint system. Let u(J)(j=O,1,
2,...) be the displacement at which the (j+1)-th change of the
state occurs. We say that the system is at stage(m) if the change

(m)

of the state occured m+l times in the past,so that u is the
displacement at which the (m+l1l)-th change occured.
The key to derive an energy equality for the present problem

and also to develope our theory in this paper is the following
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theorem which represents the initial value problem by a single
equation.

THEOREM 1.1. The equation (1.1) is represented as follows,if

the system is at stage(m).
m

(1.2) /°'ti+ku—§'k Z(—l)j(u-—u(j)) = 0.
0

PROOF Use induction on mn.

From this equation we can easily derive a simple energy

equality which represents the non-conservation of energy.

THEOREM 1.2. Let Em be defined by
m
(1.4) E (t) = 6{&)2 + Euz _AZE :Z:(—l)J(u u(J))Z.
m 2 2 2 0

Then the following equality holds at stage(m).

Em(t) = EO,
where EO is the initial energy.
(REMARK: This theorem implies that the elastic-plastic vibration
converges to an elastic vibration as t—- w . This is the case also
for the multiple masspoint system considered later. Seel4].)
1.3 A weak form of the equation of motion. The initial value

problem formulated above can be represented simply as follows.

THEOREM 1.3 The initial value problem of the single masspoint

system is equivalent to the following problem: Define

-(0
K=Ko(= {’C € C(T); [‘c—o(fs(o for any tt‘Tj-; o’0=ku( ).

Seek v,d, « which are differentiable and satisfy,for all t €T,
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(- kv, C-4)20  for all T¢ K
(1.5) L= (1 - }%5(&— kv)
v +d= 0,

and S¢ K, 6(0)=0, X(0)=0, v(0)=u(0)

REMARK: (x,y)=xy in this case. This is for the generalization

of our method to more complicated problems.

PROOF OF THE THEOREM. It is easy to see that K is the

parameter representing the movement of the center of the yield
surface. We thus prove the uniqueness of the solution for
(r.5. Substitute the second equation into the first inequality.

We then have
(x>»1-96) 0  for any 7¢ K

Let ¢ be an arbitrary continuous function satisfying [9/41.

Then the function of the form

T =d+ 6,8
is included in K. . Therefore we have
(1.6) _ (o s A+ y8 -€)< 0 for any such &,
Assume that there is another solution (V*’di’di)‘ obviously
(1.7) . (K Xy 56&* 6,40 for any such @& .

Put 9=(6; - d*)/ég in (1.6) and 9=(5;$)/66 in (1.7),and add the

both inequalities. Then we have
&= S yok- k= [6- 6, 1) £ 0.

By using two equations of (1.5),we have
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o= hyr6= 6,0 = A= DLIS- 0%+ Biv - vl 1.

Hence we have

-1

!

which implies K=o , &= 5; and v=v,. This completes the proof.

u¢-§U2~ (1 Hndlfwz-*k“v -Vﬂzjé'm

2. ELASTIC-PLASTIC VIBRATION OF A MULTIPLE MASSPOINT SYSTEM

2.1 Equation of motion. A1l results obtained in the
preceding sections are extended formally to the multiple system.
Let ui(i=0,l,...,N) be the displacement of the i-th masspoint
(we assume u0=0). Let/“i,k:.L and‘fi be the mass,stiffness and
plasticity factor of the i-th masspoint. We introduce the

quantity Ui = u,- u,

i i-1 which corresponds to the strain at i-th

point. Then the equation of motion of this system is written as

(2.1) Pyt 61(Ui) -6,,.(u

i+1 ) =0 i=1,2,...,N,

i+l

where 6}(Ui)(i=1,2,...,N+l) is a continuous function of t such

that
(2.1) I, (U,) = k,U, if the i-th point is elastic,
a it i i“i
(2.1)b 6’i(Ui) = (1 _}:)kiUi if the i-th point is plastic,
and & = 0. Definition of "elastic" and "plastic" is exactly

N+1

the same as in the single system,except the case when both Ui and

Ui vanish at t=t, and we can not determine the state for t2t

0 0°

In the single system,we do not have to bother about such problem

since if it should happen, u(t)=u(t0),6;0 is the only possible
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solution for t }to.

The situation is,however,almost the same in the multiple system

too. In fact,we have the following theorem.

THEOREM 2.1. Let Ui,dg be the solution of the intial value

problem for (2.1).‘ Assume that at t=t0 the points (Ui(t),61(t))
(i=il,...,ir) reach to one of the lines

| _ 4 T
(2.2) SL(U) = kU - 5.k (U, +00)

in the~(Ui,6;(Ui)) plane respectively,where.ﬁio)(>0) denotes the

yield‘strain of the i-th masspoint, and moreover that

)
Ui(t0+0) =0 (1eLtk) (k 2 2)

(k+1)

for 1=1l,...,1r. Then Ui (to+0) for such i is determined

independently of the form of 3;(i=il,...,ir) for tZ'tO,provided
that the other'd;’s are already decided for ta.to.
PROOF Use induction on k, considering the facts that
(k-1) (k-1)

63 (t0+0)= constant . Uj (t0+0)=0 if j is included in (11,...,1r)

and for all i

(k+1) 1 (k;}) (k-1) 1 (k-1) (k-1)
Ui = 7&; ( i+1 - {i ) - /oi_l( (i - (i—l )s
(k)

and that the sign of the non-vanishing lowest Ui(t0+0) can
determine the state of the i-th point for t> t,.,since the point
v - 2 0

(Ui(t),ég(t) ) in the (Ui,6;(Ui)) plane moves at t=t, to a definite

0

direction determined by this sign.

Applying this theorem repeatedly,we can determine the state

(k)

of each point_fot t Jt,,exept very special cases. If Ui should

0

vanish for any k at t=t0+0,how should we determine the subsequent
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state? In this case we can define free for t ;to (we thus define
that the point is plastic).
The reason is this: The solution ZU,?is analytic until some point
j (#1i) changes its state. Thereforefgi(t0+0)=0 (for any k21)
implies that Ui=constant until that time, which implies the solution
does not depend on if we define the i-th point to be plastic or
elastic.
Our problem is hence well posed and has a unique Cz—classv

solution for any t > 0.
2.2 Energy of the multiple masspoint system. To derive
an energy form for the multiple system,we define that the i-th
masspoint is at stage(mi) as the same way in the single system,
replacing u and by Ui and 6;(Ui)(REMARK: There is a formal
possibility that there exist infinitely many changes of the state -
in finite time interval. In this case the points (Uijj,di(Uij)))
(j=1,2,... ) have an accumulation point on the line defined (2.2)
swithout making any hysteresis loop. For the followings,
however, we can assume without loss of generélity that the number
of the state change is finite in finite time interval,since,if
such accumulation should happen, we can skip all stages near the
accumulation point in numbering the stage. Note that these
stages give no influence on both the equation and the energy form
for t 2 to.

We say that the sysyem is at stage(m) (m=(ml,...,mN)),if the

i-th masspoint is at stage(mi). Corresponding to Theorem 1.1 and

Theorem 1.2, we have the following two theorems.
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THEOREM 2.2 At stage(m) the equation of motion of the multiple

masspoint system is represented as follows.

m.\,‘ . .
Loy + Uy = 3k, )—% -1, - Uj(.J))]
M?.ﬂ . ’-
- - _13y3 _ n(3) -
(2.3) (ks 410541 }i+lki+1% D7, - 0371 =0,
(i=1,...,N)
(3)

where Ui denotes the displacement of the i-th point when it
enters in stage(mi).

THEOREM 2.3 Let Em(t) be defined by

4 : 2 < - -
E () = %Z/_ [ﬁi(ui)z + kiui - 3k Z (_1)3(Ui - Uij))zl-‘

¢=°

Then the following equality holds at stage(m).

where E0 is the initial energy.
2.3 A weak form of the equation of motion. Hereafter we

—(o,

assume that k., ji and'Ui/are constants and denote them by k, ¢
and ﬁhéespectively. As in the single system,the present problem
can be represented by a weak form including an inequality.

Let v, gand A be N-dimensional vector functions which are
differentiable in t;(L Let K be a set of N-dimensional vector
functions which are continuous and within §_ -neighborhood of X,

0
that is,

K = §K= {1 éC(T)N; Maxrfzt -, for any t¢ Tj : Gb = kﬁ¥02

17 %l
1

THEOREM 2.4 The initial value problem of the multiple masspoint

system is equivalent to the following problem:

Seek v,&, Lwhich are differentiable and satisfy
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(éf— kﬁ,‘t—d/)EN z 0 for any 7 ¢ K,
(2.4) « = (1-—;-)(6/—,1{13)
fgvi + 6; - 6£+1 =0 i=1,...,N,

and 6'FK,6?0)=0,6&+1=0,N(0)=0,v(0)=ﬁ(0),v0=b,where 6i=vi—vi_l.
2.4 Energy inequality (1). To prove the existence of a
solution for the continuous problem,Duvaut-Lions [ / ] uses a
penalization technique,introducing aﬁ elasto-visco-plastic problem.
In our problem,however,we can directiy.&ef the required estimates
from this‘discrete problem. First,a basic estimaté is obtained
as follows. Put 7= o/ in the inequality of (2.4). Substituting

the equation for « ,we get

f
0o & 7(5- kﬁ,/[a’/- kUldt) - (5,6 + k (U,8).
4

(2=1- %)

since  (U,€) = X (v, o] - 6,q) = ~2f(vyvy) =-1/23 £ (v )2,

we have,

1 2 1 2 k < 2
(- 72")nd~u gl + 52./°i(vi)
k 2
e 72 vy
2.5 Energy inequality (2). We shall estimate some
"derivatives". We can derive first the following estimate.

2.6) T iAAGprrka -petiee 2 £16.3 + 5210

Once this estimate is obtained, other derivatives are easily
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estimated. The result is as follows. Let EO be the quantity
of the right side of (2.6). Then
— . 2
Z_ O/i & ZkEOs
— 2, =
(2.7) ZL(51+1 —_6&) £ 2Max(}E0,

i ;1 0
3. ELASTIC~PLASTIC VIBRATION OF A ROD
3.1 A weak form of the equation of motion. We introduce

a weak form of the original problem and show that this form is a
natural extension of the equation of motion of the multiple
masspoint system considered in the previous sections, Let

. =(0,1) and define
. ,
K = Ky = {1eL(T;L2(a)); a.e. T,[Z-J\ll_-,o/o a.e.S'L?]
ford.eLN(T;Lz(&)). Then our problem is:
Find (v,6, dd) such that
] 1 Y . . (]
v, & LT(T;W, (D), Vy&,dh ok £ L (T5L, (SD)

and a.e. T,

(5 - kvx,’c-o/)L ) 2 0 for anyT7 &K,
: N 10,
(3.1) A= (1 - ;)( 3 ka)
v - g =0,
X

where 66K, v(0,x)=a(x):given, v(t,0)=0, 6?0,x)=0, 6Tt,1)=0/=<(Q'1)=°

It is evident that if the original problem has a classical
solution,then v=u and & satisfy this equation, ol being the

parameter representing the center of the yield surface .
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3.2 Finite element approximations. We use the finite element
solutions and take limit to get the solution for (3.1).

We first devide the interval (. into N elements of equal
length h. Let . be the point with coordinate i*h(i=0,1,..,N)
and e, the element [(i-1)*h,i*h]. We use three basis functions:

N
,(x): piecewise linear basis,
i

h

?&(x): characteristic function of [i*h- %,i*h+ E]’

Pi(x): characteristic function of element e,.

Then one of the simplest finite element approximation to the

original problem is

L = < A0 _ .
(u ’Fi) + %(({(u), ﬁ,x)e =0 i=l,..,N
(3.2) .
A ) kﬁg in the elastic region
& (u) = ;
(l—;)kﬁ% in the plastic region.
where
— /M -
u = g;ui(t) ‘(’i(x)
N _ X N
U= Zoug () Py,
=/ .
and ui(0)=0,ﬁi(0)=a(ih). (a(x) is assumed to be smooth and
a(0)=0).

Since & is constant on each element,we put

s, =&

e s
i
to get

- ~ A
%: (‘(“--)’)"i,x)e = 6] - 641 (oﬁ_l = 0).

Then the finite element equation (3.2) is written as

fiui + 61 - 6;;1 = 0 i=1,..,N
(3.3) . k (ﬁ. - u, ) for the elastic element
& = h i i-1

k, o . .
(1 °§ )i (u; - uy ;) for the plastic element,
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where f& = h for i%N and = h/2 for i=N,u,.=0,which is just the

0

same equation considered in the previous sections.

3.3 Convergence of the finite element solutions.
Define
i N
S 25;01 i’ * éi i+1 Y&'

According to Theorem 2.4,we can rewrite the system (3.3) as

= N = = = =
(- kv_, T -&) z 0 for any T ¢ K,
X L2
(3.4) . N
= _ l__ —,'_ A
L = (1 f)( ¢ - kv)
- =, D .
(v, fi) + (s, ri,x) =0 A i=1,..,N
where
% ={f : Max(i-;j’édB for any t GT—}_

<L
‘Thus we can take limit by the usual procedure and finally have

THEOREM 3.1 There exists a unique solution (v,6,d) for (3.1),

which is the limit of the finite element solutions and, at the
same ~time,regarded as the limit of the solutions for the multiple

masspoint systems.
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