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The Godbillon-Vey class of codimension one foliations
without holbnomy
By Shigéyuki MORITA*) and Takashi TSUBOI
In this note we prove the following result.
THEOREM. Let F be a codimension one C2—foliation on a

compact smooth manifold M and assume that F 1s without
holonomy, namely the holonomy group of each leaf is trivial.
Then the Godbillon-Vey characteristic class of F defined in

#3(M; R) ([3]) vanishes.

For the proof of the above result, the argument of Herman
used in (4] to prove the triviality of the Godbillon-Vey invariant

of foliationS'by planes of 3

and also the work of Novikov [7]
and Imanishi [5] on codimension one foliations without holonomy

play very important roles.

1. Codimension one foliations without holonomy.

Let M be a compact connected smooth manifold and let F
be a codimension one C2—foliation without holonomy on M. We fix
a base point Xg, @ flow 3§ : M><R —» M whose orblts are trans-
verse to leaves of F and we denote ¢(t) for §(xo, t)

(t € R). Following Novikov [7] (also see Imanishi [5]), we define

a homomorphism
. ppl
X 7t1(M, xo) —_— D1ff+OR)

as follows, where Difff(ﬁ) is the group of orientation preserv-

ing diffeomorphisms of class 02 of R. Let w be an element

&

of ﬁﬂ(M,’xO) represented by a closed curve p : (I, I) —» (M, XO)

#) Supported in part by the Sakkokai Foundation.
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and let t be a point of R. Then (w)(t) is defined to be
a point %, of R such fhat there is a leaf curve (£ :
(1, 0,1) — (L, q(tl), ¢(t)) (L 1is the leaf passing through
?(t)) satisfying the condition: two curves p, and g _ are
homotopic, where p, 1is the prodﬁct of two curves p and
¢([0, £3) (1f t 2 0) or o([t, 0]) (if t<0), while ¢_ 1is
the product of two curves ([0, tl]) (or ?([tl,AO]))’ and 4.
X is a well defined homomorphism (we define the produét
of two elements f and g of Diffi(ﬁ) to be fog) and it is
known that Image (y) 1is abelian (see [5] [7j). Now using the
homomorphism X » Wwe can construct é locally trivial foliated
R-bundle (or the suspenéion foliation) E over M. as follows.
Let M be the universal covering space of M. Then Wi(M, xo)
acts on Mx R by the deck transformation on the first factor and
through the homomorphism )X on the second. This action is free
and preserves the trivial foliation on ﬁ3<ﬂ defined by

{t = constant}. Therefore the quotient manifold E = M><ﬁ/ﬂi(M, )

0
has the structure of a locally trivial foliated R-bundle over M.

Now our first important step 1s the following.

PRCPOSITION 1. Let E Dbe the locally trivial foliated
R-bundle over M defined by the homomorphism 7} . Then there
is a cross-section ¢ : M — E such that Image(s) 1is transverse
t0 the codimension one foliation on E and the induced foliation

on M 1s the same as the original one F.

Proof. We define a mapping Y': M — R as follows. Let
q be a point of i represented by a path q : (I, 0) —> (M, xO).
Then Y(a) is defined to be a point of R such that there is
a leaf curve Af : (I, 0,1) ~é»(M, ?o‘y(a3, q(1)), so that two

curves ¢ and [_ are homotopic where _2_ is the product
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of two curves ([0, y(&)]) (or y([?iaﬁ,'O])) and 4 . lNow
' §(3) = (@, W@.

Then it can be checked that & is equivariant with respect to

we define an imbedding o : M — MxIR 'dy

the 7c1(M, xo)—actions. ‘Moreover & is transverse to the
triviallfoliation on ﬁxiR defined by {t = constant} “and the
induced codimension one foliation on M coincideg with the 1ift
to M of the original foliation F. Therefore the induced
mapping o : M —>E satisfies the required conditions.

g.e.d.

RENMARK 2. In the construction above,‘suppose that the
orbit Image(?) is periodic, namely for some kv.the equality
?(t-+k) = ?(t) holds for every t € BR. Then for any element w
of ‘nl(M, xo), X (w) 1is a periodic diffeomorphism of R; -
K(w)(t+k) = X(w)(t). Thus X induces a homomorphism X'
ﬂi(M, xo) —> Diff+(Sl) where we identify R mod kZ with Sl.
Imanishi [5] has proved, among other things, that Image(y')

is topologically conjugate to rotations. Now the same proof as

that of Proposition 1 gives the following.

PROPOSITION 1'. Let E' be the foliated ST-bundle over
M defined by the homomorphism x}. Then there is a cross-
section &' : M — E' such that 1Image (¢') is transverse to

the codimension one foliation on E' and the induced foliation

on M 1s the same as the original one F.

2. The Godbillon—Vey class of foliated Sl and R-bundles.

Let E be a foliated Sl-bundle of class 02 over a smcoth
manifold M defined by a homomorphism ’mi(M) —> Difff(Sl). For

‘such object, the Godbillon-Vey class (integrated over the fibres)
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is defined as an element of H2(Diff (37); R) .(the 2-dimensional

2 93
+ .
cohonmology group with trivial coefficients R of Diffi(sl)
considered as an abstract group). According to Thurston (cf.
£1] [4]), this element is represented by the following cocycle
« € C2(Difff(81); R).
DEFINITION 3. Let u, v be elements of Difff(sl).

Then

& (u, v) = jl log Dv(t) D logD(u)(v(t))dt. .
ST ’

Now let E Dbe a locally trivial foliated R-bundle over
a smooth manifold M defined by a homomorphism '7?1(M) —> Diffi(ﬁ).
Then similarly as above, the Godbillon-Vey class for such objects
is defined as an element of H3(Difff(ﬁ); R) as follows.

Let f, g, h Dbe elements of Diffi(ﬁ) and we set

log Df“l(t)

A =
B = log Dgul(f;l(t))
C = log Dh‘l(g'lf‘l(t)>.

. 3 2 3.
Let A = {(xl, x2,x3) € IR7; Xy5 x2,4x3 2 0, xl-+x2-+x3 < l}
be the 3-simplex and let s : A3 —> R be a function defined by
XX X

2t%3 3 |
(Xl+x2+x3)f(xl+x2+x3Eg(x2+x3h(09> X2 # 0

s(xl,x2,x3) =
le(o) R x2+x3 = 0.

o .
s 1is C® on the interior of 533, z&3, and continuous on A3.

Let S : 43 —> A?x R be defined by S(xy, x2,X3) =
(xl, x2,x3, s(xl,x2,x3)). Now we define a,cocha;n '(3§

c3(pirr2(R); R) by the formula
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DEFINITION 4.

ﬂ(f,s,h>

+

* . . ( ‘ = o] 1
= Jg3 S {Adxl+(A+B)dx2+(A+B+C)dx3}{wdpdxl+(A’+B')dtdx2+(A'+§'+v ydtdx .

2s 9s - 23s 03
axl 79X, ax3 are bounded over A~,

Since the derivatives
the integral exists. We can show

PROPOSITION 5. The cochain 5 is a cocycle.

Thus 'ﬁ defines an element [5] € H3(Diffi(ﬁ); R).

A proof of Proposition 5 together with related topics will
be given in [6]. This is because, for a proof of our THEOREM,
the form of the cocycle P is not essential. Wé need only the
fact that the Godbillon-Vey class of a locally trivial foliated
R-bundle can be calculated by group cohomology argument. More

precisely, let f : 7tl(T3) = Z3 — Diffi(ﬁ) be a homomorphism
defined by three mutually commuting diffeomorphisms f, g, h of
R and let E Dbe the locally trivial foliated‘ﬁ—bundle over T3
defined by f. Then the Godbillon-Vey class of this foliation
on E 1s an element of H3(E; R) 2’H3(T3; R) @ R. Let us denote

GV(f, g, h) for the corresponding real number. Under these

situation, we have

PROPOSITION 6. Let f, g, h be mutually commuting elements
of DiffZ(R). Then =z = (f,g,h)-(f,h,g)+* (g, b, 1) - (g, T,n)
+(h, f,g)~-(h,g, ) 1is a cycle (of the group Diffi(ﬂ)) and
the equality
GV(f, g, h) = ﬁ(z)

holds.

A proof of this Proposition will also be given in [6].
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3. Foliated S:L and R-bundles over tori.

In [4], Herman has proved the following

THEOREM 7. Let E be a foliated S’ -bundle of class 07
over T2. Then the Godbillon-Vey invarilant of the codiménsion

cne foliation on E 1is zero.
In this section, we prove the following results which can be

considered as generalizations of Theorem 7.

THEOREM 8. Let E be a foliated Si-bundle of class C°
over a torus Tk (k 2 2). Then the Godbillon-Vey class of the

codimension one foliation on E wvanishes.

THEOREM 9. Let E ©be a locally trivial foliated R-bundle
over a torus Tk (k 2 3). Then the Godbillon-Vey c;ass.of the

codimension one follation on E vanishes.

Before proving the above Theorems, let us recall the argumenﬁ
of Herman [4] briefly. Let E Dbe a foliated Sl—bundle over T2
defined by commuting diffeomorphisms u, v & Difff(sl), Then
¢ = (u, v) =(v, u) is a cycle of the group Diffi(Sl) and by
Thurston (ef. [1] [4]), the Godbillon-Vey invariant of E,

denoted by Gv(u, v), is given by
Gv(u, v) = (c).

Herman has proved d(c) = 0 by an elegant argument using
known properties of elements of Diffi(sl). Now we prove Theorems

8 and 9.

Proof of Theprem 9. Since the cohomology group H3(Tk; R)
(k 2 3) 1is generated by 3-dimensional cohomologies of various
3-dimensional subtori of ‘Tk, we have iny to pfove the case
k = 3. Thus let f, g, h & Diffi(ﬂ) be mutually commuting

diffeomorphisms and let E Dbe the locally trivial foliated

-6 -
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-
md

R-bundle over 1 defined by them. Ve have to prove GV(f, g, h)

= 0. We consider two cases.

Case 1. All of £, g, h have fixed points.

Fal

In this case it can be proved that f, g, h have a common
fixed point. 1In fact this follows from the following general

statement.

PROPOSITION 10. Let fl’ “”fr be mutually commuting

homeomorphisms of R and assume that all of fi have fixed

points. 'Then there is a common fixed point of ¢ R A

1’ - r

Proof. If f 1s. an orientation reversing homeomorphism of
R, then f has a unique fixed pocint p and for 'any homeomorphism
g of 8 such that fog = gof, clearly g(p) = p holds. There-

fcre if at least one of f "fr reverses the orientation,

15 --

thén the assertion is clear. Hence we assume that all of fl""’

fr preserve the orientation. Now first assume that at least one

of ., T say fi’ has a maximum (or minimum) fixed point

1) .. r’

p. Then since any fj (J = 1, ..., r) leaves the fixed point set

of fi’ F(fi)’ invariant, we have fj(p) =p. So p 1is a

common fixed point. Next assume the cohtrary and let (a, b)

be a maximal open interval contained in B-—F(fl), thus a, b e

F(fl). Let (al, bl) bé the maximal open interval containing

(a, b) such that (al, bl) is contained in B-—F(fi)' for some

i. We claim that aq and bl are common fixed points of fl’
., £ . For from the definition, either (al, bl) C;R-—F(fj)

r

or fj has a fixed point on (al, b But in either case we

1).
should have fj(al) = a; and fj(bl) = Dby ;his completes the

proof of Proposition 10.

REMARK 11, 1In Proposition 10, if we assume that fl’ ..., T

re ofientation preserving diffeomorphisms of class C2, then

r

-7 -
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we can obtain a stronger statement that if (a, b) - is a maximal
open interval contalned in m-F(fl), then a and b are

common fixed points of fl, ""fr © (ef. [4] Lemma 1).

Now we go back to the proof of Theorem 9, Case 1.

We have just proved that f, g, h have a common
fixed point p. Then - this fixed point defines a cross-section
o T3-—+ E such that Image(s) is a compact leaf of the
foliation on E. Since the restriction of the Gddbillon—Vey
class to dny leaf is trivial and since Image(s) generates the
3-dimensional homology group of E, we conclude thaﬁ GV(f, g, h)

= 0.

Case 2. At least one of f, g, h has no fixed point.

First we claim that

GV(f, g, h) = GV(g, h, £) = GV(h, £, g).

This féllows from the definition of GV. It also follows
from Proposiﬁion 6. Therefore to prove our assertion GV(f, g, h)
= 0, we may assume ﬁhat h has no fixed points. Now let us
define a Z—aclﬁion on R by n(t) = n"(¢) (nez, teR). Then

since. h  has no fixed points, this action 1s free and the quotient

1

manifold éan;be identified with S by an orientation preserving

diffeomorphism k : R/{hn} >s!. Let ¥:R — R be the 1ift

of k such that RK(0) = 0. It is a diffeomorphism of class C°
Now'we‘set f. = i-lfﬁ' = %1% n. = ?&lhﬁl Then £
1= > By gK, 1 . 1> 871>

hl are mutually commuting diffeomorphisms of class C2 of IR.

Let -3/= (f’ g,h)—(f, h’g)"i' (g, h, f)“‘(g; f:h)+(h: f; g)"‘(h: g, f)
+(hq, fl,gl)-(hl,gl, fl). Then thg'cycle % 1s conjugate to

~

3% = %'l?k. Since inner automorphisms of a group induce the

-8 -
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identity on the homology groups ([2]), we have

ﬁ(gl) = ﬁ(g).
Therefore from Proposition 6, we obtain

GV(f, g, n) = GV(f ).

l’ gl,hl
Now from the construction, h, is the translation of R
by 1 (denoted by T) or by =~1 according as h(0) > 0 or

n(0) < 0 respectively. By the definition of GV, clearly we

have
GV(f, 8y, Dy) = = GV(F£y, g, hil).
Therefore we may assume that hl = T, Since fl..and g4 commute
with hl = T, fl and g, are lifts of some diffeomorphisms
fi and gi of Sl. Now we claim

PROPOSITION 12. Let wu, v Dbe mutually commuting elements
of Diffi(sl) and let U, ¥V be their arbitrary lifts to R.

Then we have

GV(Q, ¥V, T) = Gv(u, v) .

Proof. We consider lR2xIR = {(xl, xg,t); X te(R},

i?
R‘ xR = {(X X X t) 5 X t e IR} and let
‘ ]} 2, 3, > i)

k(xl,x2,t) = (xl+l,x2,u(t)), Al(xl,x2,x3,t) = (xl+1,x2,x3,u(t))
—-— ( g — , N 4

/L(xl,x2,t) = (xl,x2+l,v(t)),' fﬁ‘xl’x2’x3’t) = (xl,x2+l,x3,v(u))

V(XI’XZ’t) = (xl,x2,t+1), ' Vl(xl,xe,x3,t) = (xl,xg,x3+l,t+l).

Then A, MoV and Al’ Moo Y4 generate free Z3—actions on
E2xﬂ? and R3x'R respectively. Thesé actions preserve the
trivial foliations defined by {t = constant}. The quotient
manifolds E and El carry the structures of foliated Sl—bundle

over T2 Vdefined by u and v and 1ocaliy trivial foliated

- 9 -
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R-bundle over T3 defined by 3,'7, T respectively. Now

define a mapping 7r: Esx R -7!R2x R Dby 7t(x1, Xy Xg t)

(xl, x2,t).‘ ThenA 7t is equivariant with respect to the
ZB—actions. Therefore it induces a mepping 7' : E1 — E. .
Moreover it is easy to see that the pull back of the foliation

on E Dby the submersion 7¢! coincides with the given foliationJ

—

on E Therefore from the naturality of the Godbillon-Vey class,

1

we obtain
(T )*(gv(E)) = gv(E|),

where gv(E) {(resp. gv(El)) is the Godbillon-Vey class of the

foliation on E (resp. El). Now since (T')* gives an isomor-

phism H3(E; R) g’HB(E‘; R) » R, we obtain

av(d, ¥V, T,) = Gv(u, v) .

This completes the proof of Proposition 11.

Now by the above Proposition and the argument before it, we

have

GV(f, g, h) = Gv(fi, gi) .

But Herman's result (Theorem 7) implies
 Gv(f‘, gi) = 0.

Hence GV(f, g,h) = 0. This completes the proof of Case 2 and

hence Theorem 9. | ' q.e.d.

Next we prove Theorem 8.

Proof of Theorem 8. Since the case k = 2 1is just Theorem

7, we assume that k £ 3 and let E be a foliated s*-bundle of

class C2 over Tk defined by mutually commuting diffeomorphisms

oy € pirr2(s'). Since E is a trivial bundle as a dif-

ferentiable Sl—bundle, there is a cross-section & : Tk-—+ E.

Uy .

- 10 -
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g défines an isomorphism E g—Tk X Sl. Now the Godbillon-Vey

¢lass of the foliation on E, gv(E), 1lies in H3(E; R) T~

H3(Tk; R)_@ HQ(Tk; R) ® Hl(Sl; R). However Herman's result
(Theorem 7) implies that the second component df gv(E) 1is zero.
Now let E = Tkle be the covering space of E = Tkx Sl corre-
sponding to the subgroup 7ri(Tk) C_Kl(E). Then the prbjection

P

7T : E —>E induces a codimension one foliation on ¥. In fact

B

has the structure of locally trivial follated R-bundle over

¥ defingd'by mutually C6mmuting diffeomorphisms 31, ...,3& €
Diff5(R), where U, 1s a suitable 1ift of u, to R defined
by the cross-section ¢ . bHence gv(g) = 0 Dby -Theorem 9.
Therefore we obtain T*(gv(E)) = gv(E) = 0. DNow since gv(E)
lies in H3(Tk; R) C_H3(E; R) ‘as remarked before, we conclude

gv(E) = 0. ‘ qg.e.d.

5. Proof of THEOREM.

- Let M be a compact smooth manifold, F a codimension one
foliation of class C2 over M -and assume that F 1is without
holonomy. Then by Proposition 1, there is a locally trivial
foliated R-bundle E ovef M defined by a homomorphism
X ¢ 1!1(M) —> Diffi(ﬁ) and an imbedding of M in E transverse
to the codimenslion one folilation on E such that the induced
foliation on M coincides with the original one F. Moreover
Image(¥ ) is abelian. Therefore by Theorem 9, we conclude that
gv(E) = 0. Then by the naturality of the Godbillon-Vey class,
we obtain gv(F) = 0. This completes the proof of THEOREM. We
could also use Proposition 1' and Theorem 8 instead of Proposition

1 and Theorem 9. : : - q.e.d.

- 11 -
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