The Godbillon-Vey class of codimension one foliations without holonomy

By Shigeyuki MORITA*) and Takashi TSUBOI

In this note we prove the following result.

THEOREM. Let F be a codimension one C^2 -foliation on a compact smooth manifold M and assume that F is without holonomy, namely the holonomy group of each leaf is trivial. Then the Godbillon-Vey characteristic class of F defined in $H^3(M; \mathbb{R})$ ([3]) vanishes.

For the proof of the above result, the argument of Herman used in [4] to prove the triviality of the Godbillon-Vey invariant of foliations by planes of T^3 and also the work of Novikov [7] and Imanishi [5] on codimension one foliations without holonomy play very important roles.

1. Codimension one foliations without holonomy.

Let M be a compact connected smooth manifold and let F be a codimension one C^2 -foliation without holonomy on M. We fix a base point x_0 , a flow $\Phi: \mathbb{M} \times \mathbb{R} \to \mathbb{M}$ whose orbits are transverse to leaves of F and we denote $\varphi(t)$ for $\Phi(x_0, t)$ ($t \in \mathbb{R}$). Following Novikov [7] (also see Imanishi [5]), we define a homomorphism

$$\chi : \pi_1(M, x_0) \longrightarrow Diff_+^2(R)$$

as follows, where $\mathrm{Diff}_+^2(\mathbb{R})$ is the group of orientation preserving diffeomorphisms of class C^2 of \mathbb{R} . Let ω be an element of $\pi_1(\mathbb{M}, \, \mathbf{x}_0)$ represented by a closed curve $\mathrm{p}: (\mathrm{I}, \, \dot{\mathrm{I}}) \to (\mathbb{M}, \, \mathbf{x}_0)$

^{*)} Supported in part by the Sakkokai Foundation.

and let t be a point of \mathbb{R} . Then $\chi(\omega)(t)$ is defined to be a point t_1 of \mathbb{R} such that there is a leaf curve ℓ : $(I,0,1) \longrightarrow (L,\varphi(t_1),\varphi(t))$ (L is the leaf passing through $\varphi(t)$) satisfying the condition: two curves p_+ and ℓ_- are homotopic, where p_+ is the product of two curves p_+ and $\varphi([0,t])$ (if $t \geq 0$) or $\varphi([t,0])$ (if t < 0), while ℓ_- is the product of two curves $\varphi([0,t_1])$ (or $\varphi([t_1,0])$) and ℓ .

 χ is a well defined homomorphism (we define the product of two elements f and g of $\mathrm{Diff}_+^2(\mathbb{R})$ to be fog) and it is known that $\mathrm{Image}\,(\chi)$ is abelian (see [5] [7]). Now using the homomorphism χ , we can construct a locally trivial foliated \mathbb{R} -bundle (or the suspension foliation) E over M as follows. Let $\widetilde{\mathrm{M}}$ be the universal covering space of M. Then $\pi_1(\mathbb{M}, \, \mathrm{x}_0)$ acts on $\widetilde{\mathrm{M}} \times \mathbb{R}$ by the deck transformation on the first factor and through the homomorphism χ on the second. This action is free and preserves the trivial foliation on $\widetilde{\mathrm{M}} \times \mathbb{R}$ defined by $\{\mathrm{t}=\mathrm{constant}\}$. Therefore the quotient manifold $\mathrm{E}=\widetilde{\mathrm{M}} \times \mathbb{R}/\pi_1(\mathbb{M},\, \mathrm{x}_0)$ has the structure of a locally trivial foliated R -bundle over M .

Now our first important step is the following.

PROPOSITION 1. Let E be the locally trivial foliated R-bundle over M defined by the homomorphism χ . Then there is a cross-section $\sigma: M \longrightarrow E$ such that ${\rm Image}(\sigma)$ is transverse to the codimension one foliation on E and the induced foliation on M is the same as the original one F.

Proof. We define a mapping $\psi:\widetilde{\mathbb{M}}\to\mathbb{R}$ as follows. Let $\widetilde{\mathbb{Q}}$ be a point of $\widetilde{\mathbb{M}}$ represented by a path $q:(I,0)\to(\mathbb{M},x_0)$. Then $\psi(\widetilde{\mathbb{Q}})$ is defined to be a point of \mathbb{R} such that there is a leaf curve $\ell:(I,0,1)\to(\mathbb{M},\,\varphi\circ\psi(\widetilde{\mathbb{Q}}),\,q(1))$, so that two curves \mathbb{Q} and ℓ are homotopic where ℓ is the product

of two curves $\varphi([0,\psi(\widetilde{q})])$ (or $\varphi([\psi(\widetilde{q}),0]))$ and ℓ . Now we define an imbedding $\widetilde{\sigma}:\widetilde{\mathbb{M}}\to\widetilde{\mathbb{M}}\times\mathbb{R}$ by $\widetilde{\sigma}(\widetilde{q})=(\widetilde{q},\psi(\widetilde{q})).$ Then it can be checked that $\widetilde{\sigma}$ is equivariant with respect to the $\pi_1(\mathbb{M}, x_0)$ -actions. Moreover $\widetilde{\sigma}$ is transverse to the trivial foliation on $\widetilde{\mathbb{M}}\times\mathbb{R}$ defined by $\{t=\text{constant}\}$ and the induced codimension one foliation on $\widetilde{\mathbb{M}}$ coincides with the lift to $\widetilde{\mathbb{M}}$ of the original foliation F. Therefore the induced mapping $\sigma:\mathbb{M}\to E$ satisfies the required conditions.

q.e.d.

REMARK 2. In the construction above, suppose that the orbit Image(φ) is periodic, namely for some k the equality $\varphi(t+k)=\varphi(t)$ holds for every $t\in\mathbb{R}$. Then for any element ω of $\pi_1(\mathbb{M},\,x_0)$, $\chi(\omega)$ is a periodic diffeomorphism of \mathbb{R} ; $\chi(\omega)(t+k)=\chi(\omega)(t)$. Thus χ induces a homomorphism $\chi':\pi_1(\mathbb{M},\,x_0)\to \mathrm{Diff}_+^2(\mathrm{S}^1)$ where we identify $\mathbb{R}\mod k2$ with \mathbb{S}^1 . Imanishi [5] has proved, among other things, that $\mathrm{Image}(\chi')$ is topologically conjugate to rotations. Now the same proof as that of Proposition 1 gives the following.

PROPOSITION 1'. Let E' be the foliated S¹-bundle over M defined by the homomorphism χ '. Then there is a cross-section σ ': M \rightarrow E' such that Image $(\sigma$ ') is transverse to the codimension one foliation on E' and the induced foliation on M is the same as the original one F.

2. The Godbillon-Vey class of foliated S^1 and R-bundles.

Let E be a foliated S¹-bundle of class C² over a smooth manifold M defined by a homomorphism $\pi_1(\mathbb{M}) \to \mathrm{Diff}_+^2(\mathrm{S}^1)$. For such object, the Godbillon-Vey class (integrated over the fibres)

is defined as an element of $H^2(\mathrm{Diff}_+^2(\mathrm{S}^1); \mathbb{R})$ (the 2-dimensional cohomology group with trivial coefficients \mathbb{R} of $\mathrm{Diff}_+^2(\mathrm{S}^1)$ considered as an abstract group). According to Thurston (cf. [1] [4]), this element is represented by the following cocycle $\alpha \in C^2(\mathrm{Diff}_+^2(\mathrm{S}^1); \mathbb{R})$.

DEFINITION 3. Let u, v be elements of $\mathrm{Diff}_+^2(S^1)$. Then

$$\alpha(u, v) = \int_{S^1} \log Dv(t) D \log D(u)(v(t)) dt.$$

Now let E be a locally trivial foliated R-bundle over a smooth manifold M defined by a homomorphism $\pi_1(M) \longrightarrow \mathrm{Diff}_+^2(R)$. Then similarly as above, the Godbillon-Vey class for such objects is defined as an element of $\mathrm{H}^3(\mathrm{Diff}_+^2(R);\,R)$ as follows.

Let f, g, h be elements of $Diff_{\perp}^{2}(\mathbb{R})$ and we set

A =
$$\log Df^{-1}(t)$$

B = $\log Dg^{-1}(f^{-1}(t))$
C = $\log Dh^{-1}(g^{-1}f^{-1}(t))$.

Let $\Delta^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_1, x_2, x_3 \ge 0, x_1 + x_2 + x_3 \le 1\}$ be the 3-simplex and let $s: \Delta^3 \to \mathbb{R}$ be a function defined by

$$s(x_1, x_2, x_3) = \begin{cases} (x_1 + x_2 + x_3) f\left(\frac{x_2 + x_3}{x_1 + x_2 + x_3} g\left(\frac{x_3}{x_2 + x_3} h(0)\right)\right), x_2 + x_3 \neq 0 \\ x_1 f(0), x_2 + x_3 = 0. \end{cases}$$

s is C^{∞} on the interior of Δ^3 , $\mathring{\Delta}^3$, and continuous on Δ^3 . Let $S:\Delta^3 \to \Delta^3 \times R$ be defined by $S(x_1,x_2,x_3) = (x_1,x_2,x_3,s(x_1,x_2,x_3))$. Now we define a cochain $\beta \in C^3(\text{Diff}^2_+(R);R)$ by the formula DEFINITION 4.

 $\beta(f,g,h)$

$$= \int_{3}^{2} s^{*} \left\{ A dx_{1} + (A+B) dx_{2} + (A+B+C) dx_{3} \right\} \left\{ A^{*} dt dx_{1} + (A^{*}+B^{*}) dt dx_{2} + (A^{*}+B^{*}+C^{*}) dt dx_{3} \right\}.$$

Since the derivatives $\frac{\partial s}{\partial x_1}$, $\frac{\partial s}{\partial x_2}$, $\frac{\partial s}{\partial x_3}$ are bounded over $\mathring{\Delta}^3$, the integral exists. We can show

PROPOSITION 5. The cochain β is a cocycle.

Thus β defines an element $[\beta] \in H^3(Diff_+^2(\mathbb{R}); \mathbb{R})$.

A proof of Proposition 5 together with related topics will be given in [6]. This is because, for a proof of our THEOREM, the form of the cocycle β is not essential. We need only the fact that the Godbillon-Vey class of a locally trivial foliated R-bundle can be calculated by group cohomology argument. More precisely, let β : $\pi_1(T^3) = \mathbb{Z}^3 \to \mathrm{Diff}_+^2(\mathbb{R})$ be a homomorphism defined by three mutually commuting diffeomorphisms f, g, h of R and let E be the locally trivial foliated R-bundle over T^3 defined by β . Then the Godbillon-Vey class of this foliation on E is an element of $H^3(E;\mathbb{R}) \cong H^3(T^3;\mathbb{R}) \cong \mathbb{R}$. Let us denote $\mathrm{GV}(f,g,h)$ for the corresponding real number. Under these situation, we have

PROPOSITION 6. Let f, g, h be mutually commuting elements of $\operatorname{Diff}_+^2(\mathbb{R})$. Then z=(f,g,h)-(f,h,g)+(g,h,f)-(g,f,h)+(h,f,g)-(h,g,f) is a cycle (of the group $\operatorname{Diff}_+^2(\mathbb{R})$) and the equality

$$GV(f, g, h) = \beta(z)$$

holds.

A proof of this Proposition will also be given in [6].

3. Foliated S¹ and R-bundles over tori.

In [4], Herman has proved the following

THEOREM 7. Let E be a foliated S^1 -bundle of class C^2 over T^2 . Then the Godbillon-Vey invariant of the codimension one foliation on E is zero.

In this section, we prove the following results which can be considered as generalizations of Theorem 7.

THEOREM 8. Let E be a foliated S¹-bundle of class C^2 over a torus T^k ($k \ge 2$). Then the Godbillon-Vey class of the codimension one foliation on E vanishes.

THEOREM 9. Let E be a locally trivial foliated R-bundle over a torus T^k (k \geq 3). Then the Godbillon-Vey class of the codimension one foliation on E vanishes.

Before proving the above Theorems, let us recall the argument of Herman [4] briefly. Let E be a foliated S^1 -bundle over T^2 defined by commuting diffeomorphisms u, $v \in Diff_+^2(S^1)$. Then c = (u, v) - (v, u) is a cycle of the group $Diff_+^2(S^1)$ and by Thurston (cf. [1] [4]), the Godbillon-Vey invariant of E, denoted by Gv(u, v), is given by

$$Gv(u, v) = \varkappa(c).$$

Herman has proved $\alpha(c) = 0$ by an elegant argument using known properties of elements of $Diff_+^2(S^1)$. Now we prove Theorems 8 and 9.

Proof of Theorem 9. Since the cohomology group $H^3(\mathbb{T}^k;\mathbb{R})$ ($k \geq 3$) is generated by 3-dimensional cohomologies of various 3-dimensional subtori of \mathbb{T}^k , we have only to prove the case k=3. Thus let f, g, h \in Diff $_+^2(\mathbb{R})$ be mutually commuting diffeomorphisms and let E be the locally trivial foliated

R-bundle over T^3 defined by them. We have to prove GV(f,g,h) = 0. We consider two cases.

Case 1. All of f, g, h have fixed points.

In this case it can be proved that f, g, h have a common fixed point. In fact this follows from the following general statement.

PROPOSITION 10. Let f_1, \ldots, f_r be mutually commuting homeomorphisms of R and assume that all of f_1 have fixed points. Then there is a common fixed point of f_1, \ldots, f_r .

Proof. If f is an orientation reversing homeomorphism of ${\bf R}$, then ${\bf f}$ has a unique fixed point ${\bf p}$ and for any homeomorphism g of R such that $f \circ g = g \circ f$, clearly g(p) = p holds. Therefore if at least one of f_1, \ldots, f_r reverses the orientation, then the assertion is clear. Hence we assume that all of $f_1, \ldots,$ $\mathbf{f}_{\mathbf{r}}$ preserve the orientation. Now first assume that at least one of f_1, \ldots, f_r , say f_i , has a maximum (or minimum) fixed point p. Then since any f_j (j = 1, ..., r) leaves the fixed point set of f_i , $F(f_i)$, invariant, we have $f_j(p) = p$. So p is a common fixed point. Next assume the contrary and let (a, b) be a maximal open interval contained in $\mathbb{R} - \mathbb{F}(f_1)$, thus a, b ϵ $F(f_1)$. Let (a_1, b_1) be the maximal open interval containing (a, b) such that (a_1, b_1) is contained in $R-F(f_1)$ for some i. We claim that a_1 and b_1 are common fixed points of f_1 , ..., f_r . For from the definition, either $(a_1, b_1) \subset R - F(f_i)$ or f_j has a fixed point on (a_1, b_1) . But in either case we should have $f_i(a_1) = a_1$ and $f_i(b_1) = b_1$. This completes the proof of Proposition 10.

REMARK 11. In Proposition 10, if we assume that f_1, \ldots, f_r are orientation preserving diffeomorphisms of class C^2 , then

we can obtain a stronger statement that if (a, b) is a maximal open interval contained in $R-F(f_1)$, then a and b are common fixed points of f_1, \ldots, f_r (cf. [4] Lemma 1).

Now we go back to the proof of Theorem 9, Case 1.

We have just proved that f, g, h have a common fixed point p. Then this fixed point defines a cross-section $\sigma: T^3 \longrightarrow E$ such that $Image(\sigma)$ is a compact leaf of the foliation on E. Since the restriction of the Godbillon-Vey class to any leaf is trivial and since $Image(\sigma)$ generates the 3-dimensional homology group of E, we conclude that GV(f,g,h) = 0.

Case 2. At least one of f, g, h has no fixed point. First we claim that

$$GV(f,g,h) = GV(g,h,f) = GV(h,f,g).$$

This follows from the definition of GV. It also follows from Proposition 6. Therefore to prove our assertion GV(f,g,h) = 0, we may assume that h has no fixed points. Now let us define a Z-action on $\mathbb R$ by $n(t) = h^n(t)$ $(n \in \mathbb Z, t \in \mathbb R)$. Then since h has no fixed points, this action is free and the quotient manifold can be identified with S^1 by an orientation preserving diffeomorphism $k: \mathbb R/\{h^n\} \cong S^1$. Let $\widetilde{k}: \mathbb R \to \mathbb R$ be the lift of k such that $\widetilde{k}(0) = 0$. It is a diffeomorphism of class C^2 . Now we set $f_1 = \widetilde{k}^{-1}f\widetilde{k}$, $g_1 = \widetilde{k}^{-1}g\widetilde{k}$, $h_1 = \widetilde{k}^{-1}h\widetilde{k}$. Then f_1 , g_1 , h_1 are mutually commuting diffeomorphisms of class C^2 of $\mathbb R$. Let $\mathfrak{F}=(f,g,h)-(f,h,g)+(g,h,f)-(g,f,h)+(h,f,g)-(h,g,f)$ and $\mathfrak{F}_1=(f_1,g_1,h_1)-(f_1,h_1,g_1)+(g_1,h_1,f_1)-(g_1,f_1,h_1)+(h_1,f_1,g_1)-(h_1,g_1,f_1)$. Then the cycle \mathfrak{F}_1 is conjugate to $\mathfrak{F}:\mathfrak{F}_1=\widetilde{k}^{-1}g\widetilde{k}$. Since inner automorphisms of a group induce the

identity on the homology groups ([2]), we have

$$\beta(z_1) = \beta(z).$$

Therefore from Proposition 6, we obtain

$$GV(f, g, h) = GV(f_1, g_1, h_1).$$

Now from the construction, h_1 is the translation of \mathbb{R} by 1 (denoted by T) or by -1 according as h(0)>0 or h(0)<0 respectively. By the definition of GV, clearly we have

$$GV(f_1, g_1, h_1) = -GV(f_1, g_1, h_1^{-1}).$$

Therefore we may assume that $h_1 = T$. Since f_1 and g_1 commute with $h_1 = T$, f_1 and g_1 are lifts of some diffeomorphisms f_1^* and g_1^* of S^1 . Now we claim

PROPOSITION 12. Let u, v be mutually commuting elements of $\text{Diff}_+^2(S^1)$ and let \widetilde{u} , \widetilde{v} be their arbitrary lifts to R. Then we have

$$GV(\widetilde{u}, \widetilde{v}, T) = Gv(u, v)$$
.

Proof. We consider $\mathbb{R}^2 \times \mathbb{R} = \{(x_1, x_2, t); x_i, t \in \mathbb{R}\}$, $\mathbb{R}^3 \times \mathbb{R} = \{(x_1, x_2, x_3, t); x_i, t \in \mathbb{R}\}$ and let

$$\lambda(x_1,x_2,t) = (x_1+1,x_2,\widetilde{u}(t)), \quad \lambda_1(x_1,x_2,x_3,t) = (x_1+1,x_2,x_3,\widetilde{u}(t))$$

$$\mu(x_1,x_2,t) = (x_1,x_2+1,\widetilde{v}(t)), \ \mu_1(x_1,x_2,x_3,t) = (x_1,x_2+1,x_3,\widetilde{v}(t))$$

$$\nu(x_1, x_2, t) = (x_1, x_2, t+1), \qquad \nu_1(x_1, x_2, x_3, t) = (x_1, x_2, x_3+1, t+1).$$

Then λ , μ , ν and λ_1 , μ_1 , ν_1 generate free \mathbb{Z}^3 -actions on $\mathbb{R}^2 \times \mathbb{R}$ and $\mathbb{R}^3 \times \mathbb{R}$ respectively. These actions preserve the trivial foliations defined by $\{t = \text{constant}\}$. The quotient manifolds E and E₁ carry the structures of foliated S¹-bundle over \mathbb{T}^2 defined by u and v and locally trivial foliated

R-bundle over \mathbf{T}^3 defined by $\widetilde{\mathbf{u}}$, $\widetilde{\mathbf{v}}$, \mathbf{T} respectively. Now define a mapping $\boldsymbol{\pi}\colon \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^2 \times \mathbb{R}$ by $\boldsymbol{\pi}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{t}) = (\mathbf{x}_1,\mathbf{x}_2,\mathbf{t})$. Then $\boldsymbol{\pi}$ is equivariant with respect to the \mathbf{Z}^3 -actions. Therefore it induces a mapping $\boldsymbol{\pi}': \mathbf{E}_1 \to \mathbf{E}$. Moreover it is easy to see that the pull back of the foliation on \mathbf{E} by the submersion $\boldsymbol{\pi}'$ coincides with the given foliation on \mathbf{E}_1 . Therefore from the naturality of the Godbillon-Vey class, we obtain

$$(\pi')^*(gv(E)) = gv(E_1),$$

where gv(E) (resp. $gv(E_1)$) is the Godbillon-Vey class of the foliation on E (resp. E_1). Now since $(\pi')^*$ gives an isomorphism $H^3(E; \mathbb{R}) \cong H^3(E_1'; \mathbb{R}) \cong \mathbb{R}$, we obtain

$$GV(\widetilde{u}, \widetilde{v}, T_1) = Gv(u, v)$$
.

This completes the proof of Proposition 11.

Now by the above Proposition and the argument before it, we have

$$GV(f, g, h) = Gv(f_{1}^{i}, g_{1}^{i})$$
.

But Herman's result (Theorem 7) implies

$$Gv(f_1', g_1') = 0.$$

Hence GV(f, g, h) = 0. This completes the proof of Case 2 and hence Theorem 9. q.e.d.

Next we prove Theorem 8.

Proof of Theorem 8. Since the case k=2 is just Theorem 7, we assume that $k \ge 3$ and let E be a foliated S^1 -bundle of class C^2 over T^k defined by mutually commuting diffeomorphisms $u_1, \ldots, u_k \in \mathrm{Diff}_+^2(S^1)$. Since E is a trivial bundle as a differentiable S^1 -bundle, there is a cross-section $\sigma: T^k \longrightarrow E$.

defines an isomorphism $E \cong T^k \times S^1$. Now the Godbillon-Vey class of the foliation on E, gv(E), lies in $H^3(E;\mathbb{R}) \cong H^3(T^k;\mathbb{R}) \oplus H^2(T^k;\mathbb{R}) \otimes H^1(S^1;\mathbb{R})$. However Herman's result (Theorem 7) implies that the second component of gv(E) is zero. Now let $\widetilde{E} = T^k \times \mathbb{R}$ be the covering space of $E = T^k \times S^1$ corresponding to the subgroup $\pi_1(T^k) \subset \pi_1(E)$. Then the projection $\pi: \widetilde{E} \to E$ induces a codimension one foliation on \widetilde{E} . In fact \widetilde{E} has the structure of locally trivial foliated \mathbb{R} -bundle over T^k defined by mutually commuting diffeomorphisms $\widetilde{u}_1, \ldots, \widetilde{u}_k \in \mathrm{Diff}_+^2(\mathbb{R})$, where \widetilde{u}_1 is a suitable lift of u_1 to \mathbb{R} defined by the cross-section σ . Hence $gv(\widetilde{E}) = 0$ by Theorem 9. Therefore we obtain $\pi^*(gv(E)) = gv(\widetilde{E}) = 0$. Now since gv(E) lies in $H^3(T^k;\mathbb{R}) \subset H^3(E;\mathbb{R})$ as remarked before, we conclude gv(E) = 0.

5. Proof of THEOREM.

Let M be a compact smooth manifold, F a codimension one foliation of class C^2 over M and assume that F is without holonomy. Then by Proposition 1, there is a locally trivial foliated R-bundle E over M defined by a homomorphism $\chi:\pi_1(\mathbb{M})\to \operatorname{Diff}^2_+(\mathbb{R})$ and an imbedding of M in E transverse to the codimension one foliation on E such that the induced foliation on M coincides with the original one F. Moreover $\operatorname{Image}(\chi)$ is abelian. Therefore by Theorem 9, we conclude that $\operatorname{gv}(E)=0$. Then by the naturality of the Godbillon-Vey class, we obtain $\operatorname{gv}(F)=0$. This completes the proof of THEOREM. We could also use Proposition 1' and Theorem 8 instead of Proposition 1 and Theorem 9.

REFERENCES

- [1] Bott, R., On some formulas for the characteristic classes of group-actions, Differential Topology, Foliations and Gelfand-Fuks Cohomology, Proceedings, Rio de Janeiro 1976, Springer Lecture Notes vol.652, Berlin, 1978.
- [2] Cartan, H. and S. Eilenberg, Homological Algebra, Princeton, 1956.
- [3] Godbillon, C. and J. Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris 273 (1971), 92-95.
- [4] Herman, M., The Godbillon-Vey invariant of foliations by planes of T³, Geometry and Topology, Rio de Janeiro 1976, Springer Lecture Notes vol.597, Berlin, 1977.
- [5] Imanishi, H., On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ. 14 (1974), 607-634.
- [6] Morita, S., On characteristic classes of foliated S^1 and R-bundles, in preparation.
- [7] Novikov, S. P., Topology of foliations, Trans. Moscow Math. Soc. 14 (1965), A.M.S. Translation (1967), 268-304.

Department of Mathematics College of General Education University of Tokyo

Department of Mathematics Faculty of Science University of Tokyo