goooboooogn
0 3530 19790 1-10

Representability Problem for Relational Database Design with Multivalued

Dependencies

College of Liberal Arts, Kobe University
Katsumi TANAKA

Dept. of Information Science, Kyoto University
Yahiko KAMBAYASHI
Shuzo YAJIMA

1. Introduction

In the relational database model introduced by Codd[1l], data values
are collected as tables called relations. The columns of a table are
labelled by distinct attributes. Several types of dependencies about
attribute relationships have been introduced to specify the intensional
properties of a relation, such as functional dependencies(FDs) [1] and
multivalued dependencies(MVDs) [2].

One essential problem of the relational database design is the
representability problem in the normalization[1l,2], that is concerned
with how much the designed felation schemata (table skeltons) répresent
the intensional properties of data.

Recently, Beeri et al. Provided several criteria for the representability
problem[3]. One of the criteria is as follows: A set of relation schemata
represents the same information as a given initial relation schema if the
former has the samekdependencies and the same data as the latter. In [4],
Rissanen showed a necessary and sufficient condition for a set of relation
schemata to satisfy this criterion when only FDs are involved. When MVDs,
a generalization of FDs, are also involved, Rissanen's result cannot be
directly applied because of the difference between FDs and MVDs.

In this paper, we provide a new criterion for the representability
of the decompositional schema design of a relational database when MVDs
and FDs are involved as constraints. The representability problem
including MVDs is concerned with lossless join[3,5], covering for MVDs
and FDs, and preserveness of MVDs under update operations. In order to
handle these problems, several properties of embedded multivalued
dependencies[2] are first investigated. By the results, we introduce
two independent properties for a necessary and sufficient condition of

the representability, and provide the methods to examine them.
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‘2. Basic Concepts

A relational database schema consists of a finite set of relation
schemata, a éet of domains and a set of integrity constraints. Each
relation schema consists of a schema name, together with a finite set
of attributes. A relation schema is denoted by R(Al""'An) orvR(Ui,Vi,
Wi'xi’Yi'Zi) etc., where R is a schema name, uppercase letters from the
begining of the alphabet are names for attributes, and those from the
end of the alphabet are names for sets of attributes. An instance of
R(A ,...,A ) is a finite mathematlcal n-ary relation, which is a subset

1
of the Cartesian product TrD(A ). Here, D is a mapping from the set of

attributes to the set of égﬁalns. When no confusion occurs, R is used
‘to denote an instance of the schema and called a relation.

R[X] denotes a projection{l] on a set X of attributes of R. R*S
denotes a natural join[l] of relations R and S. Following Fagin's
notation{2], we denote ZR(x)={r[Z]; r[Xl=x, r€&R and X,Z SU}

A multivalued dependency (for short, MVD) X-e»Y holds for a relation
schema R(U) iff in every allowable instance R, ZR(x)=ZR(xy) holds for any
XY-value xy in R[XY]. Here, X,Y and 7 are sets of attributes such that
XV yVYz=y. 1In this paper, the set union of X and Y is sometimes denoted
by XY for short. Whenthe MVD X—»>»Y holds for R(X,Y,Z), we also denote
it by X—>»»Y|7Z since X->>Y implies that another MVD X-»»7 complementarily
holds for R(X,Y,z). If Y or Z is an empty set, then X—3=»Y]Z is called
a trivial MVD; otherwise a non-trivial MVD.

The MVDs provide a necessary and sufficient condition for a relation
to be decomposable into two of its projections without loss of information.
The original rélation is obtained as the natural join of the two projections.
For example, X-—3»Y holds for R(X,Y,Z) iff every instance R is the natural
join of projections R[XY] and R[XZ].

A relation schema is called a projection schema on X of R(U), denoted
by Rk(X), if its instance is equal to R[X]. Let Rk(X,Y,Z) be a projection
schema of R(W,X,Y,Z), where W(#@) and XYYV7Z(#@) are disjoint. The MVD
X=»>»Y|7 of Rk(X,Y,Z) is called an embedded multivalued dependency (for
short, EMVD)[2] of R(W,X,Y,Z). If Y or Z is an empty set, then X~>>Y|Z
is called a trivial EMVD; otherwise a non-trivial EMVD.

1f an MVD X~»>Y holds for R(U) and every .YR(x) contains at most
one member, then the functional dependency (for short, FD) X—3>Y holds

for R(U).



It is important to distinguish a dependency satisfied in some
specific instances from the one satisfied in a relation schema. If for
some specific instance R of R(U) (U2xXVYYVZ), ZR(x)=ZR(xy) holds for any
XY-value xy in R[XY], then we say X->>»Y|Z is valid in R.

Let Di be a set of FDs, MVDs and EMVDs which hold for R(U). Let
d be a single dependency. The dependency d is said to be implied by Di
iff 4 is valid in any instance of R(U) for which Di holds. Two sets Di
and Dj of dependencies are said to be mutually derivable iff each element
in Di is implied’by Dj and each .element in Dj is implied by Di' denoted
by Dinij. If Di and Dj are not mutually derivable, then we denote it
by Diquj. If DiﬂuDj, then Dj (Di)'is called a covering of D, (Dj).

The binary relation A on a family of sets of dependencies is an
equivalence relation, that is, (1) DinvDi, (2) if DinuDj, then Djf»Di,
K

and (3) if D,~D. and D.~D., then D,~D
’ i Jj ] k i

3. Properties of Embedded Multivalued Dependencies

In this section, we provide basic properties of EMVDs which are
useful to handle the representability problem.

Fagin[2] and independently;‘Zaniolo[6] provided the following theorem
in order to obtain a set of all the EMVDs implied by an MVD.

Theorem 1: [2,6] If an MVD X~»>Y|Z holds for R(X,Y,Z), then the EMVD
X—=>>»Y'l z' holds for R(X,Y,Z), where X, Y and Z are disjoint sets of )
attributes and Y'€ Y, Z2'€ Z and either Y' or Z' is a proper subset.

We note that the following results cannot be obtained from Beeri's
complete set of inference rules for MvVDs[7] since their inference rules
are applicable only to a fixed, given relation schema.

Theorem 2: [8,9] Both the MVD XY~>%»Z and the EMVD X->»>»Y|Z hold for
R(U) iff the MVD X—>3>7Z7 holds for R(U), where U is a set of attributes
such that UgxVYyVz.

Corollary 1l: [8,9] Let U, U', X and Y be sets of attributes such that
UDU'2 XVY. Let Rl(U') be a projection schema of R(U). Any MVD X—3>>»Y
of Rl(U') also holds for R(U) iff the MVD U'-Y-#3»Y holds for R(U).
Theorem 3: [8,9] Assume that both Xl—>e>Yl|Zl and X2-e>>Y2\Zz hold for

U U U - U . . . . ,
R(U), where U;lxl Yl Z Xl Yl X2\)Y2 Z2 Xl' Y. and Z, are disjoint

1’ 1 1
and Xr ¥ and 22 are also.d15301nt. Then, X2(Y2—Yl)-9%>Yl(\Y2|ZlZ
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holds for R(U).



Example 1: Consider, for example, a bibliography relation schema which
consists of attributes: paper-ID, author, affiliation, keyword and
related-term. We assume that each author uniquely determines a set of
the author's affiliations, each keyword uniquely determines a set of the
keyword's related-terms, and each paper-ID uniquely determines a set of
authors and a set of keywords. These constraints are represented as:
(1) {author} —> {affiliation}|{paper—ID,keyword,related—term},
(2) {keyword} —s-> {related—term}]{paper—ID,author,affiliatiqn}
(3) {paper—ID} —>> {author}|{keyword} .
By Theorem 1, Augmentation rule[7] and (2), we obtain the EMVD:
(4) {paper-ID,keyword} —4>>ﬁelated—term}[{authof}.
By Theorem 2, (3) and (4), we obtain the EMVD:
(5) {paper-IDk —-> {keyword,related—term}‘{author).
By Theorem 3, (1) and (5), we obtain the MVD:
(6) {paper—ID) - {keyword,related—term}t{author,affiliation}.

In [10], Nicolas showed the first order logic formalization for FDs
and MVDs. We show that it is also possible to express EMVDs as well-
formed formulas (for short, wff) of logic. The first order logic
formalization for EMVDs are useful from the following reasons: (a) As
described in Section 4, EMVDs are important factors to consider the
representability problem including MVDs and FDs. The first order logic
will be a useful tool to investigate the properties of EMVDs, which are
not completely known. (b) Non-dependency constraints also play an
important role in the representability problem. As pointed out by Nicolas,
the first order logic is useful to investigate the interactions between
non-dependency constraints and dependency constraints, especially EMVDs.

For a relation schema R(U), U={Al,...,An} , let X, Y, 2 and W be
disjoint subsets of U and u'V w=y, XVYVZ=U'§E[L The EMVD X->-»Y|Z is
valid in an instance R iff R[XYZ] is the natural join of its projections
R[XY] and R[XZ].

Let us associate a variable X, to each AietL a second variable x!

to each A, € U-X, and a third variable xﬂ to each Aké-W. Let U'={A

5 ERAREY
A, (0%p<n), zVwW={A,. ,...,A, } (0%q4n), Y={A., ,...,A, (0£r-q4n)
lp} pe { j1 jqb (%9 2 53 =y
g+l r
- 2ol
and w={a ,,...,A } (0%s¢n).
Then, the wff WE corresponding to the EMVD X-=>»>Y|{Z is as follows:
WE: inl...inp((ale...aqu R(ul,...,un) A
ngq+l...3x j;axkl"' xksR(vl,...,vn))—?%-axkl...ax ksR(wl,...,wn)).
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Here, R is a name for an n-place predicate, and -—% denotes an
- [

implication. ui'is.identical to X, if Aié-X\)Y; otherwise xi. v, is
identical to xi if AielFY; otherwise xi. wi is identical to xi if
A.€ U'; otherwise xV.

i i
Theorem 4: WE is true in an interpretation iff the instance R satisfies
the EMVD. '

According to the formalization above, for example, the EMVD

X —eﬁ>X2‘X3 of R(Xl'XZ’X ,X4) is expressed by the wff WEl as follows:

1 3

. 1 L} 1 1 1 1
WELl: inVxéVxB((3x33x4R(xl,x2,x3,x4)A 3x23x4R(x1,x2,x3,x4))‘
-——L.—y 3x4R(xl,x2,x3,x4) ).

Both Theorem 1 and Theorem 2 can be proved by the first order logic

formalization for MVDs and EMVDs, and automatic theorem proving techniques[1l1].

4. Update-Independent Representability of Decompositional Schema Design

with MVDs

In this section, we provide a useful criterion for the representability
for the decompositional schema\design with MVDs and FDs. Properties of
EMVDs obtained in Section 3 are used to provide conditions for a set of
relation schemata to satisfy this criterion.

Fig. 1 shows several design methods and their criteria for the
representability problem. Rissanen's result is summarized by two properties:
lossless join property[4] and covering property for FDs. They are
formulated by R= iE!R[Ui] and FNTQFE' respectively, where {Ri(Ui);
ié{l,...,n}§ is a set of relation schemata obtained from the universal
(initial) relation schema R(U), and each Fi is a covering of all the FDs
that are defined on Ri(Ui) for a given set F of FDs of R(U).

The lossless join property guarantees that both an initial schema
and designed schemata have the same data, that is, the data of the initial
schema is obtained by join operations from the data corresponding to the
designed schemata. This property is automatically satisfied since Rissanen's
design method is based on the decomposition approachl[4].

The covering pfoperty for FDs guarantees that there exists no inter-
relational FDs in the designed set of relation schemata. On the other
hand, in Fagin's decomposition approach including MVDs,; the criterion for
having the same dependencies has not been studied.

Since Rissanen's result is based on only FDs, they cannot be directly



Fig.l Several criteria for the representability problem

Methods Synthetic Deéomposition Decomposition Decomposition
(Bernstein) | (Fagin) (Rissanen) (Authors)
Inputs FDs FDs+MVDs FDs FDs+MVDs
(+EMVDs)
Assumption uniqueness universal universal universal
of FDs relation relation relation
Same data - lossless lossless lossless
join join join
Same covering covering covering
dependencies|| Property - property property for
for FDs for FDs MVDs & FDs
Preserveness|{FD-preserved - FD-preserved MVD (FD) -
under :
updates preserved
generalized for handling the representability problem with MVDs and

FDs becausé of the following problems:

(a) Any FD used in the decomposition process always holds for the initial
schema. On the other hand, when MVDs are also involved, we often use

an EMVD X=—>>»Y|Z in a decomposition, such that neither MVD X—»>Y nor MVD

X—»»7 holds for the initial relation schema. It requires to handle
not only MVDs, but also EMVDs when MVDs are involved.

(B) Any FD X—>Y, that is used to decompose R(X,Y,Z) into Rl(X,Y) and

R2(X,Z), is embodied by the obtained schema Rl(X,Y). On the other hand,

any MVD X=—=»»Y (X—~»Y, Z#@), that is used to decompose R(X,Y,Z) into

Rl(X,Y) and RZ(X'Z)' is not embodied by Rl(X,Y) since MVD X—»»Y|Z

cannot be defined on Rl(X,Y). It requires to handle not only dependencies
embodied by relation schemata, but alsc those used in the decomposition.

(C) When only FDs are involved, any FD implied by a given set of FDs is

preserved to be valid in the instance R whenever some Ri is updated, if

the covering property is satisfied. On the other hand, some MVD is

not preserved to be valid in R even if the covering property for MVDs

and FDs (MVD-covering property) is satisfied.

As for (&) and (B), for example, the bibliography

Example 2: consider,

relation schema previously shown in Example 1. The initial relation schema



R(paper—ID,author,affiliation,keyword,felated—term)‘can be decomposed
into {Rl(author,affiliation), Rz(keyword,related—term), R3(paper—ID,
author), R4(paper—ID,keyword)}by using (1), (2) and (3).
The EMVD {paper-ID}—>> {author}|{keyword} is used in the decomposition
although neither the MVD {paper-ID} —»% {author} nor the MVD {paper-ID}
— {keyword} holds for the initial relation schema. Furthermore,
R3(paper—ID,author) embodies only trivial EMVDs such as {paper—ID} —>>
{authory} | @.
Example 3: Aé for (C), consider, for example, another bibliography
relation schema which consists of attributes: paper-ID, keyword, related-
term and category such that

(1) {keyword} —>> {paper-ID}l{related—term,category}

(2) {category} —>> { related-term}|{keyword, paper-ID}.
We can prove that {(1),(2)3 A—{(3),(4),(5)} such that

(3) {related-term, keyword} —»> { paper-1D}| {category }

(4) {kxeywora}{ —>» {paper-iD}|{related-term}

(5) {category} — {keyword}[{related-term}.
By (3), (4) and (5), we can obtain Sl= {Rl(keyword,paper—ID), Rz(keyword,
related-term), R3(category,kéyword), R4(category,related—term)}. We can
easily verify that some deletion of tuples from R_ would violate (5) in

2
* * *
(Rl R2) (R3 R4) .

Definition 1: Given a set of an initial relation schema SO={R(U)}, let
Sk={Rl(Ul),...,Rn(Un)i (k correspods to the subscript of Dk defined below)

be a set of relation schemata obtained from R(U) by a decomposition. IO

denotes a set of given FDs, MVDs and EMVDs that hold for R(U). Dk denotes
a set of MvDs , EMVDs and FDs of R(U) that are actually used to obtain

Sk in the decomposition. For each ie{l,...,nk, Ii denotes a covering of
the FDs, non-trivial MVDs and non-trivial EMVDs defined on Ri(Ui)' that
are implied by IO.

Assumption l: We assume that neither a trivial MVD nor a trivial EMVD is

used in any decomposition. That is, any D, does not contain such MVDs

k
and EMVDs.
Assumption 2: We assume that for any Sk’ each instance Ri of Ri(Ui) in
Sk is allowed to be updated according to only Ii'

Under Assumptions 1 and 2, our main problem for the representability

is whether or not the given set I_  of dependencies is at any time valid

0
in R, which is a reconstructed instance of R(U) by Jjoin operations in the



reverse order of the decomposition of R(U).
We define the criterion for the representability as follows:
Definition 2: Sk is said to have the Update-Independent(UI)-representability

0
that is reconstructed in the reverse order of the decomposition. Here,

for S. iff any dependency implied by IO is valid in any instance of R(U)

Sk obeys both Assumptions 1 and 2.

Definition 3: Sk is said to satisfy the MVD-covering property iff

Ioru ( U|I le ) holds. Sk is said to satisfy the MVD-preserving property

iff any dependency belonging to ( U‘I \ID ) is valid in any instance of .
R(U) that is reconstructed in the reverse order of the decomposition.

Here, Sk is assumed to obey Assumptions 1 and 2.

From Definitions 2 and 3, we immediately obtain the following theorem:
Theorem 5: Sk has the UI-representability for SO iff Sk satisfies both
the MVD-covering property and the MVD-preserving property.

The MVD-preserving property is based on the following theorems:
Theorem 6: Let V,W,X,Y,Z be arbitrary disjoint sets of attributes.
Assume that there are two relation schema Rl(W,X,Y,Z), for which WX—»3>»Y)Z

holds, and R2(V,X,Y,Z). WX~»>»Y]|Z is valid in Rl*R for any instances

2

Rl and R2 iff when WX-—/>Y and WX#—»Z, X—»>»Y|Z holds for R2 (V,X,Y,2)

(and consequently for Rl(W,X,Y,Z)). Here, we assume that each relation
schema obeys only dependency constraints.

Note that in Theorem 6, each relation schema is assumed to obey
only dependency constraints. If we allow non-dependency constraints,

the necessary condition does not hold in Theorem 6. For example, let
Rl(W,X,Y,Z) obey the non-dependency constraint:

1Y, (wyx,) =1 or |2, (w;x )l—l holds for all WX-value w X, in any R,.
In this case, WX~»»Y}Z is always valid in any R,*R_, even if WX—~>Y,

172
WX—~~7 and X-—/»»Y|Z.
Theorem 7: Let V'W'Xl'x2'Y1’Y2'Z1'Z2 be arbitrary disjoint sets of

attributes. Assume that there are two relation schemata Rl(w'xl'XZ'Yl'

Y2,Zl,Z ), for which X1X2—9%>Y Y ]lez holds, and R2(V,X1,Yl,zl).

< . a i * nst .
lxz-%»>Y Y |ZlZ2 is valid in Rl R2 for any instances Rl and R2 iff

Xl-eébYllzl holds for Rz(v,Xl,Yl,Zl) (and consequently for R (w, X , X
Yl'YZ’Zl’Z2) when Xlxz—f—>Yl and X1X2-¢—>Zl

Theorem 8: Let U(;fgb),V,W,Xl,Xz,Yl,YZ,Zl,Z2 be arbitrary disjoint sets

of attributes. Assume that there are two relation schemata Rl(U,W,X

2'

ll
X2,Y1,Y2,Zl,22), for which XlX2—,4>Y Y ‘ZlZ2 holds, and R (u,v, Xl Yl Zl)

. . * . .
Then, Xlxz—eﬁaYlY2|ZlZZ is valid in Rl R2 for any 1nstances Rl and R2 if



[1] Xlxz——e>Y Y, or X_.X_ —>Z_Z_ holds or
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[2] Xlxz""’Ylyz‘ZlZzU and xl-—>»Y1|le hold or
[3] xlxz—»ylyzulzlzz and Xl—->->YlU|Zlv hold.

From Theorems 7 and 8, the MVD-preserving property can be examined

(partly) by the following basic algorithm:
Step 1: Let R, (U;) and R, (U,) (i%) belong to s, such that R (U,) and
Rj(Uj) are obtained by decomposing a relation schema Rm(Uin). For each
such Ri(Ui) and R.(Uj), examine whether or not each dependency in Ii (Ij)
is valid in Ri*Rj by Theorems 7 and 8.
Step 2: If some dependency is proved not to be valid by Theorem 7, then
Sk does not satisfy MVD-preserving property. If Theorem 8 is applied
and the condition is not satisfied, then it is not known whether or not
Sk satisfies the MVD-preserving property by this algorithm.
If any dependency in Ii and I, is proved to be valid in Rl*Rz, then

8= (8, ~{R, (U)) /Ry (Uj)‘s Y {Rm (Uin)’s , and

LY I Y {Ui{\Uj—»Ui—Ulej—Ui";.

Step 3: Repeat Steps 1 and 2 until we obtain an initial relation schema.

For a given SO and IO, there may exist Di and Dj (i#j) such that
Si does not satisfy the MVD-preserving property, but Sj does although
both Si and Sj satisfy the MVD-covering property. Fig.2 shows such an

example, in which SO and IO are the same as Example 3.

Fig.2 Another decomposition of R(paper-ID,keyword,related-term,

category) .
SO={R(paper—ID,keyword,related-term,category)} IO={(1),(2)3in Example 3
Rl(keyword,paper-ID) R' (keyword,related-term, category)
R2(category,related—term)vR3(category,keyword)
52={Rl(keyword,paper—ID), R2(category,related—term),
R3(category,keyword)§
Di={ikeyword} ~>> {paper-ID} |{related-term,category},

{category} —>> {related—term}l{keyword}}

In this case, IO‘UD and MVD-preserving. property is also satisfied by S

2 2°
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