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1. Intfoduction

Cellular pyramids have been introduced by Rosenfeld and
Dyef [1,2] as interesting parallel pattern recognifion devices.
Bbttom—up pyramid acceptors have been defined as cellular
pyramids reStricted in information transmission, and their
properties and capabilities were extensively studied in [1-5]. In
these papers, it is shown that many basic image processing and
anélysis tasksrcan be implemented very efficiently using these
cellular acceptors. However, besides problems involving image-
Specific tasks, there are also interesting guestions about
pyramid acéeptors from the point of view of formal language
theory. We haQe already estdblished an important result [4]
along this line, namely thaf the class of sets accepted by
nondeferministic bottom-up pyramid acceptors is equivalent to

that accepted by nondeterministic bounded cellular acceptors.
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In this paper, we examine the formal language recognition
capabilities of bottom-up cellular pyramids. The accepting
powers of bottom-up pyramid acceptors and bounded cellular
acceptors are compared. The main resuits are as follows:
(1) 2-dimensional deterministic bounded cellular acceptors

are stronger than detefministic.bottom—ub ?yfamid
acceptors (DBPA < 2-DBCA).

(2) l1-dimensional deterministic bounded cellular acceptors
are stronger than deterministic bottom-up triangle
acceptors (DBTA < 1-DBCA).

As corollaries of (1) and (2), we show that
(3) Nondeterministic bottom-up pyramid acceptors are stronger

than deterministic ones (DBPA < NBPA);

(4) Nondeterministic bottom-up triangle acceptors are stronger
than deterministic ones (DBTA < NBTA).

2. DBPA < 2-DBCA

In this section, we prove that the class of languages
accepted by 2-DBCA's properly contains that accepted by DBPA's.
(In brief, we say that 2-DBCA's are stronger that DBPA's

or that DBPA < 2-DBCA.)

Theorem 2.1 2-DBCA's are stronger than DBPA's.
Proof: |
Let B be a special blank symbol. Given an m2—bounded
deterministic Turing machine (DTM) M which has input of the
form: #x;X,...x BB . . . B¥ where m=21 for some
m(m-1)
positive integer i, we can easily define a 2-DBCA C which

simulates M, since the input can be "folded" into an m—byém block.
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Let LDLBA be the class of sets accepted by deterministic
linear bounded acceptors. It has been shown [6] that

LDLBA 2 an—bounded DTM °

It is provable by the same considerations as in [6] that

Lm—bounded DTM £ Lmz—bounded DTM

where m is the same as before.

Since a triangle cellular acceptor can be simulated by a

- <
1~-DBCA [2], clearly LDBTA'*L1~DBCA' We also know that

Li-peca™ fprea [71- Therefore, if we can show that a

DBPA with input of the form:

XlX2 eese X

m
Py ...58
By ...B
can be simulated by a DBTA with input XXy e eX oy then for

this kind of input

L L

<
DBPA — T“DLBA
This will prove that

L L=”

DBPA L

< o
pLBA & I'm®-bounded bt < L2-pmCa -
We will now show that a DBPA with input of the form

XXy eee X
Py ...P8
g ... B
can be simulated by a DBTA with input XyXge oo X+

Given DBPA A with transition funtion §, construct a

DBTA B which acts as follows:

3
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1. At time t = 1 all cells compute a state pair
(ql,qz) such that
if cell ¢ is at level 0 in state s, at t = 0
then define
q,= s
q,= B
else cell ¢ is at level k > 0

in the quiescent state h , SO
define [ql= h

e

2. At time t > 1

iﬁ cell c is at level O

then qi = 5(ql,#,#,#,#)
qé = 6(q2,#,#,#l#)
else
begin

let (rl,rz) be the state pair
of c¢'s left son at
time t-1
(Sl’SZ) be the state pair
of c's right son at
time t-1
d; = 8(aysryeS;.Ly,Ty)

A = 8(dpsTyiTyiTyiry)
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Intuitively, A has cells of only two types: either a cell
has a descendant_in the top row of the input (call this cell
type 1), or it doesn't (call this cell type 2). Celi type'l
applies transitions of the form 6(pl,p2,p3,p4,p4) only, since
the cell' s southwest and southeast sons have identical inputs
(all blanks). Cell type 2 applies transitions of the form
G(pl,pz,pz,pz,pz) only, since all the cell's sons have iden-
tical inputs (all bléhks).

Thus a cell at level k in B can simulate (with its dq,-
state) the sequence of staﬁes that a type 2 cell at level k
in A would be making. In addition, a cell at level k in B
can simulate (with its ql—state) the sequence of states that
a type 1 cell at level k in B would be making, since its
north sons are type 1 cells and have the necessary state
information in their ql—statés (which are identical). [This
can be proved more rigorously by induction, if desired.] Thus
a DBTA can simulate a DBPA with input of the given form. //

Corollary 2.2 NBPA's are stronger than DBPA's.

Proof:
In [4], we proved that an NBPA can simulate a 2-DBCA.
Therefore, we get this corollary from Theorem 2.1 . //

3. DBTA < 1-DBCA

In this section, we prove that DBTA < 1-DBCA.

Let S be the set'{an n is a nonnegative integer} , let f be
a function from S into S such that‘f(Zn) > 2n, and let M be
a DBTA with a special blank state symbol P where P is as
before. Also, let L be a set of strings over the input

state QT—{#,b}. If M accepts the language L'={ohmlde L,
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m=f (|o|)-|o|} where |o| means the length of the string o,
then we say that M accepts L with f(2n) cells or that M

is a f(2n)—bounded DBTA. In particular, if £ is the identity

function, i.e. m=0, then M is called a linear-bounded DBTA.

Up to now we have exclusively studied linear-bounded (D or N)
BTA's. We now investigate the power of (Zn)z—bounded DBTA's,
where 2" is the length of the input string. |
Lemma 3.1 A detherministic linear-bounded automaton can simu-

late a (2n)2-bounded DBTA.

Proof:
e . . . n, 2 . 2n
The initial configuration in a (2°)“-bounded DBTA — i.e., 27 -
bounded DBTA —— has the form shown in Figure 1.

Figure 1
. 2n . 2n
While there are 2:277-1 cells in a 2" '-bounded DBTA, many
of these cells' subtrees have identical initial configurations
since most of the base is initially in the blank state.
Clearly any two cells whose initial subtree configurations
are identical must have identical state sequences. For example,

in level 0 there are m=22n—2n

cells with the initial subtree
configuration #,%\# . Since all of these cells have identical

state sequences, there are at most 2%+1 distinct level 0

cells, namely 2 hon-K-cells and one B-cell. (Actually, there

A
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are at most IQ] distinct non-YP-cells, but because ancestor
cells may have distinct subtrees, we will save these redundant
cells in order to simplify the computation of higher level.
cells' state sequences.) In general, at level k, 0 < x < n, there
are 22n/2k cells. Of these 2n/2k cells have non-blank bases,
and the rest have identical all-blank base segments. Hence
there are at most (2n/2k)+l distinct cells in level k. At
each of levels n+l through 2n there is exactly one cell per
level with non-blank input. Hence there are only two distinct
state sequences for cells at any one of these levels. Summing,
we find that there are at most 2a2n+3-log2n -1 distinct cell
types in any 22n—bounded DBTA. Thus, while there are O(22n)
cells in a 22n—bounded DBTA, there are only at most O(2n) which
have distinct state sequences.

We now show how a deterministic linear-bounded automaton
can simulate a 22n—bounded DBTA, M, by making use of the fact
that many cells have identical state sequences and hence all
of them need not be explicitly stored. In [2] it was shown
how a 1-DBCA can simulate a DBTA after using a breadth-first
ordering to linearize the DBTA cells. These cells' states
were then stored two per cell in the 1-DBCA, and cell index-
ing functions were defined for accessingthe states of a cell's
father, brothers, and sons. In a similar manner, we can order
the 2-2"-1 cells of M with non-blank bases breadth-first and
then map them into the 21 squares of a DLBA's input tape, two
states per tape square. Since a DLBA can simulate a 1-DBCA
[7], the cell indexing functions for accessing both sons'

state (described in [2]) can be used here. The remainder of
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the DBTA cells to be saved are of two types: 210g2n "blank
cells", i.e., cells with all-blank input, one cell from each

n "non-blank

level 0 through 2-1092n -1 in the DBTA; and log2
cells" with non-blank input, one cell in each of ;eQels
log(2"+1) through 2log2™. Let us map the 2log2™ blank cells
into the leftmost 21092n squares of the tape so that the cell
representing level k is stored in the kth square from the left
end. Similarly, let us store the log2n non-blank cells in
squares (logzn)+l through 21092n of the tape.

A DLBA can easily mark off blocks of tape of size log2n
by counting the number of input squares. Hence it can eaéily
find those sections of tape which contain these extra
3log2n cells' 'states. At any time step the states of both
sons of a blank cell are the same and are stored in the
square to the left of the square associated with the given
blank cell. The states of the sons of non-blank cells are
also located in the squares immediately to the left of the
given square. (There is one exception —— the cell in square
(log2n)+l has as its left son the root of the subtree con-
taining the input string XXy e xzn. This state is located
in cell 1 as described earlier.) Thus a DLBA simulates a
single step of M by sequentially accessing the states of the
two sons for each of the 2-2n+3-log2n -1 cells stored therein.
In particular, the state of the root of M is stored in tape
square 2log2™, which the DLBA can find at the completion of
each simulation step. If that cell is in an accepting state,

then the DLBA also enters an accepting state. Hence a DLBA

can can simulate a (2n)2—bounded DBTA. //
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Theorem 3.2 1-DBCA's are stronger than DBTA's.

Proof:

In [2] we proved that a l—bBCA can simulate a DBTA. We
now show that the converse is not true. Trivially, a 1-DBCA
with £(n) cells can simluate a f(n)-bounded Turing acceptor
by keeping track of the movement of the input and storage
tape heads. From [6] it is known that there exists a
language accepted by an n2—bounded Turing acceptor, but not
by any n-~-bounded Turing acceptor. Thus by these résults and
the previous lemma we can immediately conclude that there
exists a language accepted by a 1-DBCA with n2 cells, but not
by any nz—bounded DBTA. //

Corollary 3.3 NBTA's are stronger than DBTA's.

Proof:

In [4] we showed how an NBTA can simulate a 1-DBCA. 1In
particular, this means that an nz—bounded NBTA can simulate a
1-DBCA with n2 cells. This corollary now immediately follows

from Theorem 3.2. //
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