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The Spectrum of the Laplacian and Smooth Deformation
of the Riemannian Metric

by Masao TANIKAWA

Section 1.
Let M be an n-dimensional compact connected C” manifold
( with or without boundary aM ). Every Riemannian metric g of M

determines a Laplace—Beltrami operator Ag' We consider the

eigenvalue problem for Ag ( under Dirichlet condition );

(1.1) {(-Ag— Mu(x)= 0 X€M
u(x)= 0 X & oM ( if M ¥%¢ )
Let 0X Ao < A, L e+»~-+ Dbe the elgenvalues, which are determined
by the metric g. The totality of the Riemannian metrics of class

o metric
C which differ from a fixed,g, ‘'only on an open set U M forms

A

a separable Fréchet manifold B. Our main result is that for
almost all g in B, the eigenvalues of ploblem (1,1) are all simple.

In section 2, we will discuss transversality theorem on some
Fréchet manifolds, A differential operator of Cm-type is regarded
as a strong ILH mapping between Sobolev chains. We will prove
theorem 2.4 which is essential for this paper.

In section 3, we will obtain the result using some technige

originated in some similar work of K.Uhlenbeck [9] , who has

already obtained similar result in the case of class ck ( n+3gk <+w).



Section 2.
Let N(d) be the set of all integers m satisfying mg d.

We call a system {E, Ek, ke N(d)} a Sobolev chain, if every

Ek is a Hilbert space,

in Ek, and E is a intersection of all BX with inverse limit

topology. Let {E, EX, ke N}, {F; ¥, ke N(d)} bve Sobolev

. . d d
chains. Let U, U' be open neighbourhoods of X 9 Y, in E, F

Ek+1 is linerly and densely imbedded

where 'erE, Vo€ F. Suppdse a mapping f :UnE—2U'nF with
f(xo)=yo.
Definition

A mapping f is called a strong ILH mapping of class Cr,
if f satisfies the followings ( r2 2 )

. = r . fk . k ' Fk
(i) f can be extended to a C -mapping :UAE™—>T"

for every ke N(d).

(ii) For any xe¢ Un E, there exists a E% neighbourhodd wa U,

and for every uewxn E, v,v1,v26E

(2.1) "(ka)u V"k .S_Cx("u'xnkuvnd Hvily) + Pi(dh'xlfk-1)llvllk_1

1(2.2) [ @22, v 0w )l & Cxlomsdl I flabvalla + Il Ivall 4
vl glivall) + Pi("u’xnk-1)'
"V1"k-1"V2"k-1

where CX is a positive constant and is independant
of k, Pi is a polynomial with positive coefficients

depending on k.

After the simple calculations, the composition of two
Cr—strong ILH mappings is also Cr-strong I1H mapping re-

placing d with d+1. ILH means Inverse Limit Hilbert,



Theorem 2.1 ( Implicit function theorem, H.Omori (5] )
k k
, ke N@] , {F, P, xen@}, v, v, x, y,, are

as above, Let f :Uj\E-——eUin F be a Cr-strong IIH mapping with

{E, E

f(xo')=yO satisfying the followings ;

k

. k k . . . '
(i) (Df )X : E°—— F~ is an isomorphism for every k & N(d)
o

(ii) For every k € N(d)
(2.3) ||(ka>xovllk > cfivll, - ol _,

where C and Dk are pbsitive constants and C is in-
dependant of k.
Then there exist V, V' neighbourhoods of Xy Y, in Ed, Fd such
that the mapping f is a Cr4isomorphism from VA E into V'A F ‘
and f'1 is also a Cr-strong"ILH mapping satisfying inequality

(2.3).

By virture of theorem 2.1, we can consider manifolds based
on Sobolev chains and apply the implicit function theorem.

We call such manifolds strong ILH manifolds.

A Fredholm operator is a continuous linear mapping I : X—Y
from one Banach space to another with the properties ;

(i) dim Ker L is finite

(ii) Image L is closed

(iii) Coker L = Y/Image L has finite dimension

If L is a Fredholm operator, then its index is dim Ker L

- dim Coker L,‘so that index of L is an integer.

A Cr—strong ILH mapping f :Un E—2>U'A F is a Fredholm mapping

if the followings are satisfied ;



(i) For every ké&XN(d), every x€é Un E, (ka)X: EEFK i
a Fredholm operator,

(1i) The index of (Dff)_ is independant of k.

Since the set of all Fredholm operators is open in the
space of all bounded operators in the norm topology and
if U is connected, then the index of f is defined to be

the index of (ka)X for some k and x.

Lemma 2.2 The notations being as above. The condition (ii)
of the Cr-strong IIH Fredholm mapping can be replaced with
that Ker (Dfd)X=Ker (ka)x for every ke N(d), every xe¢ UnE.
proof) Ker (Dfd)X:)Ker (ka)x is trivial. Since Ek, F¥ are
densely imbedded to EY, F¢, codim (Df¥) EX = codim (p£?) 29,
index (DfF) = index (Df%)_ means that dim Ker (D£*)_ =

dim Ker (Dfd)x, so that Ker (ka)x = Ker (Dfd)x.

A subset of X is called residual if it is a countable
intersection of open dense subsets of X. In a metric space X,
a subset containing a residual set is also residual, In a
complete metric space X, a residual set is dense with the
Baire's theorem.

Let £ :X—3Y be a 01-mapping between two manifolds. xéX is
a regular point of f if the Fréchet derivative (Df)x: T X—
Tf(x)Y is onto, if not, x is a critical point. y €Y is a
regular value if every point xe.f-1(y) is a regular point,

if not, y is a critical wvalue.



Theorem 2.3 ( Sard's theorem )

Let U be an open set of RP and £ :U—RY be a Cs—mapping
where s)»max(p—q,O). Then the set of critical values in RY
has measure zero,

For a proof see [6] or [8].

Our main theorem is
Theorem 2.4

Let {E, BX, ken(a)} , {F, F¥, ke N(d)} be separable Sobolev

chains, let U, U' be open sets of E°, F%, let £ :UnE—1TU'A F

be a Cr—strong ILH Fredholm mapping with r).max(index of f£,1)
k k

(2.4) "(Df )‘xvnk 2 Cx“v“ k_Dx"v"k-‘l

for every x€UNE, veE, ke N(d), where Cops Di are

positive constants and CX is independant of k.

Then the regular values of f form a residual set in F.

The proof will be given in the several lemmas below,

Lemma 2.5 Notations and assumptions being as above., f is a
locally proper mapping. Namely there exists a neighbourhodd WX
of E¢ for every x € Un E such that f-1(I),\Wan is compact
for any compact subset IC F.

proof) Let x,€ UNnE be fixed, we set A=(ka)X giE—>F. Since
o

k)

(pf B is independant of k, A is well defined and is strong
o

IIH linear Fredholm mapping. Since dim Ker A is finite, E can

be written in the form E, X Ker A4, {EV E1k

, ké N(d)} is a
Sobolev chain and xo=(po,qo), Poé E1, qoéKer A. Then the
first partial derivative (D1f)x :E,—F maps E, injectively
onto a closed finite codimensional subspace of F for all

x=(p,q) sufficiently close to xo=(po,qo).



Since f satisfies the inequality (2.3), we can apply the
theorem 2.1 and choose a product neighbourhood‘D1x D, of
(py»a,) in E,X Ker A such that D, is compact and if q&D,
f restricted to D1X{q]is a C¥-strong ILH isomorphism onto

its image. We set WXO=D1X‘D2 and f(xi)=yi——-—-)y, xi=(Pi’qi)

in D1X D,, where i=1,2,3 -**=-*"*" . It is sufficient to show
that Xy have a convergent subsequence. Since D2 is compact
we may assume g;—>q and f(pi,Q)-——ey, even that Q;=Q.
But f restricted to D, X{q} is an isomorphism ontoc its

image, so P;— D, proving lemma 2.5.

Lemma 2.6 Let f' be the mapping f restricted to on.
Then the regular values of f' form an open dense subset

in F.

proof) In metric spaces, a proper mapping maps a closed
subset to a closed subset. Since the set of all critical

.points of f' is closed, the regular values of f' form a.n‘
open set in F. It is sufficient to éhow that we can find

a regular value of f' in any neighbourhood V of f£(x) in F.
Let T :F—>F/Image A be a projection and itv is a strong
ILH linear mapping to Rl. From the hypotheses of theorem
2.4 we can apply Sard's theorem to the mapping ﬁ:px Ker A
——>F/Image A = R defined by $(q)=°£(p,q) to as a

regular value z of § in V. Let y ¢ iﬂ(z)nv, then y

is our desired regular value.



proof of the theorem 2.4
Since E and F are separable and residual is closed under
countable intersection, it is sufficient to prove locally.

But lemma 2.6 has been proved.

Theorem 2.7

Let H, B and E be strong ILH manifolds of class ¢’. H and
B are. separable. Let f:HXB—E Dbe a Cr—-strong I1IH mapping
safisfying the followings;

(i) For every u=(h,b)e HXB, every ke N(d)

(2.5) “(ka)u(‘sh’Sb)”k 2 Cullsn, s}~ om0,

where §hé& T H, Sbe T,B, C, and Dﬁ are positive
constants and Cu is independant of k. v
(ii) There exists e& E such that e is a regular value of f.
(iii) For every be B, fb=f( ,b):H—E is a strong IIH
Fredholm mapping with index of fb< r.
Then the set {beB; e is a regular value of fb} is residual

in B.

proof) We set Q=f_1(e)c HX B. From theorem 2.1 Q is a
closed strong ILH submanifold of class CT in HX B. Let P

be the projection from QCHXB to B, P(q)=b where g=(h,b).
Let i be the inclusion from Q to HXB and p be the projection
from HXB to B. Note that P=pei.

Lemma 2.8 P is a Cr-strong ILH Fredholm» mapping with index
of P = index of fb.
Assuming lemma 2.8, we can apply theorem 2.4 to P which
satisfies inequalities (2.4), r? index of P, Then the set

of regular values of P is residual in B.



b&B is a regular value of P if and only if TqQ:Ker(Df)q
contains T\B for every h€H such that (h,b)=q€& Q. So that
(Df)thH = (Df)q(Tth TbB) = T _E, namely f, :H—E has e as

a regular value.

proof of lemma 2.8) It isn't difficult to show that P is
a CT- strong ILH mapping. We fix k& N(d) and g=(h,b)e Q¥.

K , K X K
T Q* - {(Sn,Sb)e T % 1,8, (0£F) (§h,5b)-0
_ K K K
Ker (DPk)q = Ker (Df) nT,H® = Ker (D£*)
X

K
Inmage (DP), = Ker (Di‘k)anbB

It is clear that Ker (DPk)q and Image (DPk)q are closed sub-

k

spaces of T, HS and T,B¥. We set l=index of £¥, m"=dim Ker (D£,¥)

k

n¥codim Image(bek) . 1= mf- n¥ is independant of k,

q

Since e is a regular value of f, there exist bys by, e bk

which are linealy independant such that (ka)q(o, bj> j=1,2.5nk’
k k k k . k

and (Df )thH span T _E. Then Ker(Df )qf\TbB and bj j=1, n*,

span Tka. codim Ima.ge(DPk)q = nk and index Pk = mk- nk =1,

so that P is a Fredholm mapping with index = 1,



Section 3

Let M be a compact connected n-dimensional manifold of

c® class ( with or without boundary M ). Let Ck(m) dencte
the R-algebras of c¥_functions of M into R, and Hk(ﬁ) denote
the R-algebras of k-th order Sobolev functions of M into k.
By the Sobolev's imbedding theorem, if k) l+ % and 120
then HE(M) C cl(4) and inclusion is continuous. Let C:(M)
denote the R-algebla of c®-functions with compact support

in the interior of M. HS(M)C H¥(M) is the closure of co(x).
We set EF = Hk(M)n H:)(M), E = Cw(M)an(M) and HS = BX(1),

*, xen(a)}, and {5, 2, xen(a)}

B = ¢¥(). Then {E, E
are Sobolev chains for dz 1 .
Let 8o be a C®-Riemannian metric on M, let dx be the
volume element with respect to g, and let (, ) be the
inner product of LZ(M,R) = HO(M) by (f,g) = LL(x)e(x)dx .
Let Hip(M, T'M @ T'M ) denote the totality of Hf-sections
of T°M @ T"M supported on U, where T 1 @ T M is the
symmetric product of cotangent bundle T*M, and U is
an open set of I,
We fix m> 2+ %, choose an open neibourhood V of 0 in
Hma(lvf, T*M@ N ) such that for every ge g,*V is a
CZ-Riemannian metric on M, We set
B =( g 4V ) aHSR(M, TTH@ T ), B = ( g4V ), 0%, THOTY ).

k is a Ck+2

k

Then geB -Riemannian metric on I and g=g_ on

M-U. {B, BT, keN(d)} is an open set in Sobolev chain.



10

Let [& be the Laplace-Beltrami operator with respect to
Riemannian metric g. In local coordinate with

n

g = i§1 glj dxi@dXJ s g Jz gJi for l,3=1,2~-" n.
s J=

3.1) A, = J_'_li1 (\/—gu,___)

where (g13)=(gij)-1, and G=det(g..),

We set Sk-:{ueEk"'z, (u,u)= 1} b—{_ueu, (u,u)= 1} .

sk is a Hilbert manifold and -{S S ké-N(d)} is a manifold

based on Sobolev chain., We consider a mapping fk from

s¥x Rx BX to HX given by fk(u,)\,g)=(-Ag- Mu .

Lemma 3.1 If k)5 , then £¥ is well defined and is a
Cb-mapping. And for every ge:Bk, fkg= fk( s 28): s¥x R—yuk

is a Fredholm mapping of index = O,

proof) In local coordinate

n

(3.2) e = -

"f]"" vx (‘/—gl:} 2 )‘)\u

2

If k) % , U is a function of class C” and fk(u,X,g) is

well defined in virtue of Sobolev's imbedding theorem.

Since both G and glJ are rational functions of g; K is

13’

a C*-function of g.:s u and \.

ij
Note that (-[&g—{k} Ek+%——)H is a Fredholm operator -
with index O for fixed A and g. The restriction of the

domain Sk gives index -1 and when A is allowed to vary

also, the final index of fkg is zero.

10
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Lemma 3.2 Let f be the mapping from SXRX3B to H given

by £lu\,g) = (—Ag— X)u . Then f is a strong ILH mapping
of class Cm.

proof) fk is a natural extention of f, it is sufficient

to show that fX satisfies the inequalities (2.1) and (2.2).

[¢3]

Using (3.2), they can be shown by a direct computaticn.

Lemma 3.3 f satisfies the inequality;
! k
(3.2) l,(DfK)x SXszCgllMlk- D 8]l -4
where x=(u,\,g)€ SXRXB, §x=(5u,8\,%)¢ T, SX IR X ’;‘gﬁ
proof)  From (3.2)
(D£%), §x = ~ASu + Dp(- A u) (58) -Asu -Su

where D2 denotes the partial derivative to g.

For the first term, using G&rding's inequality

I8l 2ol - £l

For other terms, there are no derivatives of order geater

than 1, so that we obtain the inequality (3.2)

Lemma 3.4

(i) «u belongs*hnA;eigensbace of ﬁAg, if and only if
f(u,A,g)=0.

(ii) X-eigenspace of ‘Ag is spanned by u , if and only if
f{u,A,g)=0 and (u,A\) is a regular point of fg:f( s 2E).

(iii)-[&g has only one dimensional eigenspaces if and only

if 0O€H is a regular value of fg’

11
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proof)
(1) f(u,)\,g)z(-Ag-)\)u = 0 is a definition of X\ -eigenspace
(o -Ag.

(ii) w lies in a one dimensional eigenspace if and only
if (-A_-X)Bu X O for every Sulu. It means that
&
. X ~ . x ,
dim Ker(ng)(u,A) = 0. Slnpe ng is a Fredholm opergtor,
with index 0, (u,\) is a regular point of fg.

(iii) The proof is the deductive conclusion of (i) and(ii).

Lemma 3.5 If dim M = n}2, then O&H is a regular value
of f. |

proof) H is densely imbedded in H5(M), so that if Oe H is
a regular value of fk then the lemma 3.5 is proved. But

K.Uhlenbeck has proved as to £ [9).

Theorem 3.6
If dim M = nZ 2, then the totality of metrics geB such that

all eigenspace of —z}g are one dimensional is residual in B.

proof) We apply the theorem 2.7 to f : SXRX B—yH,
Lemmas 3.2, 3.3, 3.5 imply f satisfies the hypotheses of
the theorem 2.7. Lemma 3.4 implies‘that the conclusion

of the theorem 2,7 is equivalent to disired result.

12
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