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ABSTRUCT

This paper describes a PL/1 like language compiler called

FGS which .generates an efficient microcode of MELCOM-COSMO 500
computer directly. The principal part of this microcode
compiler is the resource allocation algorithm in which a .two
phase allocation procedure is introduced in order to achieve
high object code quality for inhomogenious micro-architecture
of COSMO 500 computer.

- A consideration to attain a machine independent model
of microcode compilers is also discussed for supporting a

broad class of computers.
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INTRODUCTION

Recent decreasing of a memory cost has brought an economic
possibility for a microcode implementation of systems and user
programs so that the efficient running of the systems is
attained. However, because of very low level architecture of
micro machine, the support software such as a higher-level
language with microprogramming skills are required for
program productivity.

There have been many attempts to describe a microprogram by a
higher-level language, but the almost all of the works have
emphasized on the design methodology for the language that
suits to description of microprograms. From a standpoint of a
microcode implementation of user programs, however, a microcode
compiler for widely used languages such as PL/l, Fortran and
LISP are more significant.vThe first system of a microcode
compiler is introduced by C.J.Tan in 1978 which generates a
IBM370/145 microcode from a PL/1 source program. @

We have developed yet another microcode compiler called
FGS (Firmware Generator System) which directly translates a
source program written in PL/1l like language into a microcode

of MELCOM-COSMO 500 computer. (2)
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As the essential requirement for a microcode compiler is
the efficiency in the execution speeds and the size of object
codes, it is inevitable to use a lot of machine-specific opti-
mization rules in order to produce an efficient code..

This leads to the system to be machine-dependent.

Especially, a machine structure is radically different in the
micro-architecture level, so that it is a very complicated
problem to develop a machine independent firmware generator.
One of the serious drawbacks of FGS is, in fact, the lack of
a portability for target machines.

This paper introduces an overview of FGS and its exten-
tional works to attain a machine independent model of
microcode compiler which allows the generation of a micro-

program for a broad class of machines.
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OVERVIEW OF FGS

Source language

As a source language of FGS, we select a simplified
version of PL/S: an IBM dialecf of PL/1 for system descriptionm.
Some luxurious features sugh as dynamic ailocation are elimi-
nated for the simplicity and efficiency of an objeﬁt program.
A sample program written iﬁ this source language is given in

Figure 1.

SOURCE_LISTING

7% TYEST DHRGUAT RA=TS03 %/
_ MAINT PROC(MATX,ANST) S

TheL MATX(10) MMOFIXER,
ANS1 MM FIXFD,
1 MM FIXEiTs
ANS1=03
oA 1=1 10 105
_ o AMSIEAMSIHMATX(I)S
oNDS
e BETURMAS e
PENDS

Ficure 1. A sample source progran

(~
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Structure of a compiler

As shown in Figure 2, the current FGS consists of three
phases of processing. The first phase comprises a single pass
translator which transforms a source programrinto a text in
an intermediate form. A memory allocation and a high-level,
machine independent optimization are also performed in this
phase,

The 2nd phase is the essential part of the compiler
which contains the resource allocation of the actual micro
machine into a program space.

In order to simplify an allocation procedure, a text in
the intermediate form is segmented into the straight line
program part called a section. A register and function
allocation is performed on the basis’of’this notion of the
section.

A text generated in this 2nd phase contains scattered
sequences of micro—operétions so that the reorganization
of these set of micro-operations along with the micro-
instruction format is required. This procedure, called a
code consolidation, is perfdrmed in the 3rd phase.

Some microprogram optimization techniques afe also used
in a code consolidation to attain aﬁ efficient micro-

program.

U~
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Intermediate form

In the initial phase of the compiler, a source program is
translated into a sequence of the intermediate forms each of
which in turn corresponds to a microinstruction of a target
machine. The sequence of these forms retains the control
structure. The intermeciate forms are divided into two types:
the‘control type and the arithmetic type.

The control type contains the intermediate forms
correspoinding to a GOTO, CALL or RETURN statement.

The arithmetic type contains the triple form which represents
a data calculation or an address calculation.

The control structures of a source program such as a DO
statement and a GOTO statement play an dimportant role to the
optimized procedure for register allocation. Therefore, the
sentential markers for program structure are attached to the
intermediate  forms, Figure 3 illustrates a part of source
program and its corresponding intermediate forms.

To provede a compact representatioh of the best possible
code for each of the possible status settings, a 'microparadigm'
is provided for each intermediate form. A microparadigm is a
coding skeleton which genetates a concrete microprogram by
instanciation of the variable. A sample micro-paradigm is

given in Figure 4.

(&5}
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<Source Program>

DO I = 1 TO 15 ;
SUM = SUM + I ;
END ;

<Intermediate Form>

aswl 1 -> ODi (LI

Lsk asw2 ODsum + ODi => ODsum [LE]

asw2 OD1 + '1' -> ODi [M)
if  oDi - '15' 20 Lsk Lfk [LC)

Lfk ...

Figure 3. An Fxample of
Intermediate Form



form adl const -> adr

1AD1 (const,adr) transfer tody;
constructor tcdy;
construct a relative address
on adr;

CALL CONST (const,adr)
add a base address

V(1,8AAl) + adr -> Y;

end;

CONST (const,reg) selector body;

case of
zgnstructor body;
const=0: 1if reg=Ci,Cj then
reg <- 0;
else
0 -> reg; |
T
sznstructor tody;
1% const £ 15: <
if reg=C1,CJvCk,Cl then
reg, < | X‘OCﬁK’,
else
MD <~ X'0NOK', |
rec < D
end;

Figure 4, 2n Fxarrle of !Mleors Poradi-

109
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Section structure

The register assignment process in compiler is generally
divided into local and global phases.
In order to decide a restricted context for local assignment,
an intermediate text is broken into computational "section"
whose relationship may be represented by a derected graph that
illustrates the flow of control through the program.
Each section consists of a sequence of intermediate forms,
only the first of wﬁich may be branched to, and only the last
on which contains a branch.

The register allocation algorithm of FGS is broken into

two stages:

(1) A local assignment in which a register for each
variable is determined from the internal information
of the section which a variable belongs to.

(2) A global assignment in which the result of local

assignment is arranged and coordinated from the boundry
condition of neighboring sections.
As shown in Figure 5, a section is represented by a table
which contains
(1) Intemediate text
(2) A variable-information at each program point (e.g.
reference or assignment)
(3) Span of the variable that represents a distance from the
program point of current use of a variable to a point of
next use

(4) Control flow information of a section

i
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Code consolidation

In the final phase, a machine dependent oétimization is
performed in order to enhance the quality of the object code.
We have used the following strategies.

(1) Detecting a sequence of meaningless instructions and
deleting them.

(2) Combining a set of scatteréd simple instructidns into a
single mofe complex instruction.

In order to detect concurrently executable microinstructions,
we have divided the given microprogram into blécks which consist
of a sequence of a non-branch microinstruction. Concurrency
analysis is performed in three sﬁeps. The first step scans
symbolic code in each block to determine the variable
dependency. The second step scans symbolic code to find a
candidate instruction for code consolidation by checking the
following field conflicﬁ conditions

(1) Does the instruction consist of only auxiliary
function?
(2) Does the instruction consist of only tést function?
VThe third step chooses an instruction that consists of only
main function and examines whether that instruction and the
previously found candidate instruction can be consolidated

into a single instruction. Figure 6 illustrates a sample of code

consolidation.

(o
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After this optimizations, the resulted microprogram is
converted into the symbolic external form which is acceptaple
by the target machine. Figure 7 shows the resulted micro- _

program for a MELCOM 500 computer.

WA W2 <~ 0

[ WA 5 1110 -> SAA

WA V(1,SAAUL) + W2 -> Y;

WA W2 <~ O
3 1119 -> SAA

WA V(1,SAAN) + W2 => Y;

Fipgure 6. An Fxamnle of Code
Consolldation.
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BEGIN MA T
EXT DIVDER
_C30 _ nc. X*onik!
c40 nc X'0n2R!
_€s0 _ nC X'0032"
Z2RI1DT NS 16
- ZIR11IT ns . 6
EJECT .
MAIN VA A (=~ X'o0p0A
T BA voBh <= X"00°"
RA V?2R} <~ X'14°"
WA (A -> W?
WA TR <=~ 0
WA W2 - -> MD ’
o 1116->SAA v
WA V(1ySAAL) + TR
MEM MM(TR) <=MD 3
TR + 0 H
MEM  SYNC .
WA V2 -> ')
VA Vi + MD
WA W2 <- mD
WA TR (= X'0001"
WA W -> MD 3
1110=->DSAA
WA V(1,SAAG) + TR
MEM MMTR) <-MD )
- TR ey 0 H
MEM,SYNC.
RA visn <= X'00"
R A V1iRk1 - X132
VA V&) -> )
WA V1 -(+]1) MN
WA wo <~ MmN
L WA TR <~ X'0002!
WAT T W Ty TTebT T T :
1110->SAA
i A V(1sSA44) + TR
MEM MMITR) <=M) ’
Te - : 0 3
MEM, SYNC, -
Fipure 7. The resulited micrcorosram

JAy
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A TABLE DRIVEN RESOURCE ALLOCATION

In order to attain a machine independent firmware generator,
it is necessary to construct a mechnical microprogrammer who
accepts the coding rules for a specific target machine and ;hen
detailed understanding of micro architecture of the machine.

Such an intelligent compiler, although it is a generator

3)

for macroassembigr code, is studied by C.W.Fraser.
His XGEN system is a code-generator generator whichvproduces a
codegenerator for a speqific machine from the description of the
machine. He uses a production rﬁle to‘represent a machine
structure. This notion of "machine understanding' appears to
play a significant role in the design of target machine-
independent translator instead of the classical compiler-
compiler concept.

Another approach to the machine independent macro generator
is given by S.L.Graham. She has utilized a table specification

(4)

method for machine architecture.

In the following, we discuss about the possibility for a re-
source allocation algorithm on the basis of a table representa-
tion of micro machine architecture. Because the essential part of
microcode compiler is a resource allocation, especially register
assignment, the machine independent resource allocation algorithm

is required.

/&
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The many variant searches for efficient algorithms for
resource allocation have been performed from the time of the
first Fortran compiler for the IBM704.

The main difficulty of this problem in practical situations comes
from
(1) The problem to minimize the number of memory trafic (load
and store instructions) to evaluate an expression is
considered to be NP-complete. ()
(2) The register usage rules in a micro-architecture are not
s0 homogeneous as discussed in theoretical studies.
Therefore it appears to be an interesting problem to find a
technique to organize a resource allocation algorithm automati-
cally from a description of micro-architecture. From the stand-
point of resource allocation, only the expression of the machine
structure is necessary, though a description of a micro-archi-
tecture contains in general the representation of machine

structure and its running rule.
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A machine structure table

Inrorder to describe a machine structure, we use a table
form shown in Figure 8. Each row of the table contains the
resource usage rules. Each rule is divided into two parts.

The left part is the requirement condition to apply this rule
which is expressed in terms of the attributes of variables and
a functional expression. The right side of the rule contains the
transformation procedure which is a mappine from variables into
the registers of the target machine.
This mapping rules contaiﬁ the following terms.
(1) an ALU function-for the corresponding operator in an
iﬁfermediate fdrm |
(2) the class of allowable register for the left operand
(3) the class of allowable register for the right éperand
(4) the decision ruleiof the destination register ’
(5) ‘the correéponding micro-paradigm
Figure 8 illustrates the fable representaion qf COSMO SOO micro-

architecture.

e
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Resource allocation strategy

We have chosen a resource allocation précedure which is
broken into two stages;
(1) register-class allocation:
In this stage of procedure it is decided which class of
registers the data variable belongs to.
(2) register—néme assignment:
In this stége the name of register for each variable at
every program point is decided.
Such a separation of the class allocation from the register
assignment aims at the reduction of a backtracking process
contained in.a resource allocation algorithm. The similar
strategy is used in FGS, though the backtracking operation in

register assignment procedure is not performed.
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Register—class allocation

A classification of set of registers is infroduced to deal
with an inhomogeneous usage rule of resource in a microcode
architecture, Because a regisfer class for a variable is deter-
mined depending upon the position and the situations of the
expression in which that variable appears, the decision of a
class for thé variable is performed by examining the situa-
tions at every appearance of the variable.

For instance, Figure 9 fllustrates a simple register-
class allocation problem in the COSMO 500 micro-architecture.
‘This problem has two variables which should be assigned to
tﬁoregister& Suppose A and B are such variables. From the
first form, A can belong to a register class eiter Cl or C2.

1 '5' —>A A e ClvVe2
2 '8 ->B BeClvVcC2
3 A~ + B -> B

Figure 9. A Simple Register-class Allocation Problem
By examining the second form, B can also belong to a register
class C1 or C2. Thus, two variable can be permitted to assign
to one of possible four combinations of register class such as

(A, B)=((c1, €1), (c1i, c2), (c2, c1), (c2, C2)).
At the examination of the additive operation in the 3rd form,
the left operand A is assigned to class Cl and the right operand
B is assigned to class C2 by the register usage rule for the

additive operation.
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But a left and right operands of an additive operation are
exchangeable mutually, the final allowable assignment is
(A, B) = (Cl, C2) er (A, B) = (C2, Cl).
In practical situations, a more sophisticated procedure is
required. The class allocation procedure is broken into three
‘stages: an initial stage, an extenéion stage and an allocation

stage.

I. Initial stage: This stage contains an operand analysis and an
operator analysis. |

(1) An operand analysis is to defect the constant, which is
represented internally with the emit field of a micro
instruction rather than a register.

(2) An operator analysis is performed to detect the subtrac-
tive operator, foi the reason why the operands of sub-
traction are not exchangeable so that allowable class of
registers is usually limited.

An operand in a subtraction experssion is called a'key
variable which is used to decide the undefined class of a
variable in the extension stage. The initial and final condi-
tions of the section-—thg boundary situation of the class
assignment in the neighboring sections — are also used to
generate a key variable. A class for a key variable is autométi—

cally chosen by the system as shown in Figure 10. (a).

N
Gy
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II. Extension stage: In this stage, the decision of a register

class for appearances of the same variable in the neighboring
intermediate—forﬁé, only if the following class-conflict
Vc;nditién is satisfied.
The class-conflict conditions:
(1) The variable should not be a kgy Qariable for which the
different class is already established.
(2) The candidate class for the variable shoﬁld beiong to the
set of allowable class which is previously decided by the
registef usage rules, |

ITT. Allocation stage:

An usaual micoro-architecture contains the exclusive usage
rule 6f register class, that is, if.one variable belongs to
certain class, the another variable of the expression should be
assigned to the rgsts of ‘the register class. An allocation
stage détermins a register class by using this rule asrshown’in
Figure 10 (c). Those variables become to bé the new key variable,
in turn, and the extension stage is executed again. Thus the
extension aﬁd allocation stages arérrepeated alternately until
the new key variable can be detected no more. The final result
of this procedure for the sample case is given in Figure 10 (d).
The symbol * in Figure 10 (d) denotes the unspecified wvariable
for class allocation. This variable is called a selection-point
and is used to be a backtracking point by the register—name

procedure.
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Register-name assignment

The register—class assignment is performend under the

assumption that the registers in each class are infinite.

On the other hand, the register-name assignment defines a

register-name for each variable under the limitation of the

number of the given registers.

The register-name assignment algorithm consists of the

following steps.

(1)

(2)

(3)

(4)

A variable with the class which has an unused registers
is assigned to one of these registers;

If there exists no available register, the current
status is stored into a stack and the assignment
procedure returns back to the last selective point and
proceeds the re-assignment of registers.

If every possibility of reassignment is exhausted, a
register-release algorithm performs a detection of a
variable which is the last to appeaf from the current
program point by referencing to the variable-occurrence
table as shown in Figure 11. The register of such a
variaﬁle is released by transfering its content into the
memory.

An automatic garbage collecter for registers is also
provided. This works at every program point in order to
release a register occupied by the variable of which

'life-cycle' is terminated.
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Figure 11 shows an overview of the computation flow of the
register—-name aséignment'algorithm.

Figure 12 illustrates a simplified problem for register-
name assignment. Assume the given micro-architecture has two
register classes and each class consists of 3 registers.

We suppose an intial state is given as shown in Figure 12 (a).

The register-name assignment starts at variable A in the
1st row and assigné A to the register-name R21. The step (1) of
the name assignment procedure continues successfully because of
the existence of free registers until the variable B in the 5th
row (see Figure 12 (b)). .
(A variable C in the 3rd row is a selective point and is |
assigned to register class Cl at the first trial.)

But the all registers‘in the class Cl is already used at
program point of the variable E in the 5th row, so that the
procedure enters the backtracking process of the step (2)

and restarts from the selective point.

The backtracking process invokes re-assignments of register-
name. Figure 12 (c¢) illustrates the result of register-name

assignment,

27
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intermediate repister assirnment table | variable occurrence table
form * ‘
AlBlC|]DIE|F |G AlBlec|D|EJFI|G
8 => A c2 a {00 }JO0OJO0]O}O
2 '=-> B Cl 2 a (4} 0 0 0 0
6 ->cC X 1 2 a o] 0 (¢ 0
A ¥ D->C c2 Cc1 c2 [ 1 4 B 0 o] a
B=~-F ->E (03 Cl, C2 0 B 3 1 a B 3
E+F =D Cl} C1f c2 0 3 2 a 8 8 2
X & (c1vC2), X is a selective point,
(a) initial status
1ist of variatles ; Iist of variatles
form- | form-
number| A B C D F F G number| A B c D E P G
(1) R21 b (1) R21
{2) Glrag- (2) R11
s > i >
3 I mals _ (3 clradh
e i It N
(4y  PpR21}-—i—s|R13 R22 (#) . pR21|— =z |Rl2 | —1—>|R23
(5) |—>|r11] ——{CD [c2 (5) —3R11 >{R13|R21
(6) c1 {cr c2 (6) i R12 {R13{R21
(b) the first trial (fallure) {c) the result of the second trial (success)

Filpure 12. An Example of Register-Name Assignment
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Concluding Remarks

An experimental processor which allows the generation of

microcode is described. We have completed a construction of a

microcode compiler for COSMO 500 computer. The size of this

compiler is about 12000 steps in Fortran language.

Although a machine independent version of resource alloca-

tion algorithm has not been implemented, it appears to be a

promising approach toward a microcode compiler generator.

(1)

(2)

(3)

(4)

(5)
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