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Chaos and Its Description

Kazuhisa Tomita
Department of Physics, Faculty of Science, University of Kyoto

1. Introduction

There may be various different physical origins for the phenome-
non called "fluctuation". Here, however, we confine ourselves
to those fluctuations for which the best possible description is
& stochastic one. Furthermore, we are more concerned here with
the new aspects which emerge only in open system.

Physical measurements are essentially associated with a fi-
nite space-time extension. This means that a mathematical deter-
minism does not actually ensure a physically deterministic pre-
diction. In fact, the latter is made possible only by the exist-
ence of an orbital stability. Therefore,. even if a dynamical
system is clearly defined in mathematical sense, a deterministic
description becomes impossible in the realm of physical observa-
tion, when there appears an orbital instability. In this case a
stochastic description is a necessity rather than a convenience.

~~ Among those fluctuations which may best be described in a
stochastic language, there are two different kinds of noise which
have been treated in the literature, namely (a) the thermal noise
and (b) the non-thermal noise.

2. Thermal Noise in a Non-equilibrium State

Thermal noise is a kind of noise which appears as a residual
fluctuation when we project a conservative system, having many
microscopic degrees of freedom, onto a macroscopic dissipative
system, consisting of a few thermodynamic degrees of freedom.
This kind of noise is a result of a convolution of very many mi-
croscopic degrees of freedom (say N in number), and the resulting
statistical measure is well represented by a Gaussian distribution
(Central Limit Theorem). However, the variance o=<g(0)£(0)> is

of order 1/N as compared with the mean value, and the distribution
is thus very sharp.

At thermal equilibrium the stochastic information is com—
pletely specified when the variance ¢ is given. This is due to
the existence of the detailed balance condition of ONSAGER [1].

In an off-equilibrium condition, however, a second quantity should
be added in order to specify the stochastic information completely.
This quantity is called "irreversible circulation" [2-6] and is
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defined by
a = 3 <lE(0),E(0)]> .

This represents the rotational flow of the distribution, and in-"
dicates the degree to which Onsager's condition is violated,
therefore it may be taken as a measure of the distance from ther-
mal equilibrium. Expressed in different words, the antisymmetric
part of the correlation function <£(0)£(t)> is needed in addition
to the part that is symmetric with respect to time reversal. The
existence of the antisymmetric part has been confirmed in several
cases, e.g. in nerve membrance [7] reactor noise [6] etc.. How-
ever, in the case of chemical reaction it is technically not easy’
to observe this part. Biased Brillouin scattering [8] which is
predicted in a fluid under heat conduction seems to be another ex-
ample.

One of the differences between a conservative system and a
macroscopic dissipative system is that in the latter there may
appear a limit cycle, i.e. a periodic motion which is asymptoti-
cally stable or attracting. Assoicated with the Hopf bifurcation,
or a hard mode instability through which the limit cycle emerges,
there appears an anomalous increase in the irreversible circula-
tion a, provided the bifurcation is normal in character [2, 3].
‘This resembles an ordinary phase transition, or soft-mode insta-
bility, and the circulation in the fluctuation grows into the or-
bital revolution through the hard mode instability. The anomalous
increase should make observation easier; however, the range of
control parameter in which the fluctuation becomes large is fairly
small. If it can be observed o may be taken as a fore-runner of
the macroscopic orbital revolution which is to follow, ‘and may
have a usec 27 =uch [6].

3. Chaotic Phase and Non-thermal Noise

A second difference between a conservative system and a macroscop-

ic dissipative system is that in the latter there may appear a

chaotic motion which is attracting [9]. Let us consider a pair

of limit cycles which are interacting with each other in order to
get some feeling for the generation of chaos:. Three different
cases are expected [=*].

(i) The case in which the ratio of the two unperturbed frequen-
cies is sufficiently close to that of small integers. In
this case a synchronization is expected and a single limit
cycle results.

{ii) The case in which the ratio of the two unperturbed frequen—
cies is far from that of small integers. 1In this case a
quasi-periodic motion results involving two different fre-
quencies. '

(111)In the case in which the ratio of frequencies and amplitudes
are both approprlate, there may appear repeated subharmonic
bifurcations in a finite range of the parameter. When all
possible periodic orbits becomes unstable, there seems to
result a chaotic motion. The motion in a short time span
resembles periodic motion with a certain period; however,
orbital instability inhibits its continuation, thus leading
to chaotic behaviour. Although chaotic in behaviour, the
motion is structurally stable, and may be called a phase
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(chaotic phase). RUELLE and TAKENS [10] considers that this
kind of chaotic phase is the proto-type of hydrodynamic tur-
bulence.

(iv) A fourth case should be admitted in which chaos appears with-
out having the cascades of subharmonic bifurcations.

In what follows several examples of chaotic phase treated by
us are described and an attempted stochastic description is pre-
sented.

4. Examples of Chaotic Phase

(1) Forced Brussels Model (A non-autonomous example) [11-14]
This well known model exhibiting a limit cycle has been investi-
gated under the influence of a periodic external excitation. '
Solving the corresponding equations, i.e.

_g%=x2Y—BX—X+A+acos'(pt, | (1)
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Fig.1 Chaos in the Forced Brussels Model  F(x)
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depending on the values of parameters a and w, we found all three
types of result, mentioned in the previous section. In particu-
lar when the amplitude a is increased in the subharmonic resonance
band w v 2w_(w_ is the natural frequency), there appears a con-
verging cascade of bifurcations and beyond the limit there appears
an apparently chaotic phase of which an example is given in Fig.
1. Here (a) is the phase portrait, (b) is the Poincaré plot,
which is simply a stroboscopic plot in this case. If this plot
consisted of four isolated points it would mean a strict four
point periodicity. The fact that the four islands have a remark-
able continuous spread of their own indicates that the motion is
chaotic. 1In addition, the spread is fairly one dimensional for
each island. Using this fact one may use still another plot (c)
in which the consecutive visits to one particular island (here

the island (2)) are plotted in the form x + =F(x_). It is remark-
able that the transfer function F(x) has q %implg form, which is
nearly quadratic in the present case. In this form it is fairly
clear that nature of the motion is similar to the logistic chaos.
We have also computed the histogrammatic invariant measure for
this case, and the Liapounov characteristic exponent was found

to be +0.451. (cf. §5)

(ii) Belousov-Zhabotinsky Reaction under Stirred Flow Conditions
(an autonomous example) ~

Although there are several experimental reports on chaos in this
particular reaction [15-18] the theoretical possibility has been
in dispute [19, 20]. We have investigated our simplified model
[21] under stirred flow conditions [22]. In terms of scaled quan-
tities the model is governed by the equations

L= (1-9)E +n - En - EE ' (3)

3—2 = =(1+¢)n + ¢ - &n + m , (m=mg + ¢n0~) (4)

o §& = -(l+po)c + € - EE . o | (5)
Here £, n, ¢ and m, correspond to [HB_O,1, [B_], [C4+] and [CH

(COOH) ,]1, respectively, and ¢ stands %o% the Flow rite. The

control parameters are m, and ¢ in this case. In a relatively
narrow region in the (¢, m,) plane the system has three steady
states and in this region we have found a practically chaotic be-

2

haviour by analogue computation. An example is shown Fig. 2. 1In
(a) the phase portrait is shown projcted onto (£, z) plane. The
corresponding correlation spectrum is shown in (b). Although

there exist recognizable periods, the noisy character of the mo-
tion is fairly obvious.
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Fig. 2 Chaos in the Belousov-Zhabotinsky Reaction (XKyoto Model)
(a) Phase Portrait projected onto (£, r) plane (b) Correlation
spectrum of . The middle figure corresponds to (a).

5. The Invariant ‘Measure associated with Chaos [23]

As is indicated in the preceding example, there are cases in which
the stroboscopic map looks fairly one dimensional, although the

space behind the chaos has many dimensions (cf. Fig. 1lb). Based
on this experience we adopted the one dimensional logistic model
X 41 = A X (l—xn) = F(xn) (0 < x, < 1) (6)

to look into the invariant measure associated with chaos.

5.1 Histogram (Time Sequence Construction)

It is not very difficult to obtain an invariant measure associated
with a chaotic motion by constructing a histogram (with divisions
of finite size) according to

p. (x) = lim i §-}6(x—F(i)(x )) (7)
X0 Norw N f=1 0

when Oy (x) is independent of the initial point X then the mo-

tion is0 said to be ergodic .and the invariant measure, thus defined,
is unique. As an example the case A=3.9 is shown in Fig. 3, in
which the histogramatic measure is shown by the broken line.

5.2 The Covering associated with the Fixed Points (Phase Average)
Instead of tracing the time sequence, we now try to find an equiv-
alent to the histogramatic measure starting from the fixed points
in the phase space. We have investigated a covering by cells
which are associated with each fixed point, and found that the
histogramatic measure is reproduced only when appropriate weights
are assigned to the respective cells.

(N)

Let xj (j=1, 2, ..., N) be N-periodic points satisfying
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odic points,

and define a den

i.e.
M

oM™ (x) = X p(N)G(X—xJ(N))

where MN is the total number of N

are to be determined so as to sat
The following two cases have been

(A) The case in which ij)
In this case the rusulting measur
gramatic measure even for large en

cN/IF

The idea behind this particular
assignment of weight to each

cell is rougly the consideration
of the residence time in a par-
ticular cell. The resulting
measure does in fact converge to
the histogramatic measure when

N becomes large, provided the N-
periodic points are unstable, as
is shown in Fig. 3 by the solid
line. When the N-periodic points
are stable, the above assignments
lead to My isolated fixed points
under F(N .

5.3 Measure Theoretic Entropy
(Kolmogorov Entropy)

The measure theoretic entropy
h, (F), which is associated with
the invariant measure u with re-
sﬁect to the transformation F,

The case in which p
(N)
xj ) |-

N 4
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isfy the physical requirements.
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Fig.3 Invariant Measure for the
Logistic Chaos (A=3.9; Broken
Line: Histogram; Solid Line:
Weighted fixed point distribu-
tion)

is defined in the following way by using a partition 4= {A } of

the phase space, i.e.

= 1 l (N)
hu(F) = szp éig N hu(F, A ) . (9)
Here
h, (F, ANy = Zu(A(N)) in u(A(N)) (10)
and v
a® 20 oD () v FED v v FCEID 4y (11

-In the case of the logistic

model, let us start with a par-

tition which bisects the whole interval at the maximum of the

transfer function, i.e. at x=1/2.

L)

In this case the partition

is easily shown to be identical with the partition which
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consists of cells defined bK the consecutive minimum and maximum
in the transfer function F( Consequently, each cell contains
at most one fixed point of F N), which is the desired relation-
ship with the distribution of fixed points.

Remembering that

(A(N)) = J (N)p(X)dx ' A (12)
Ai .
and adopting the expression (A) or (B) for p(x), the measure given
to the cells which do not involve fixed points will vanish and
the corresponding K-entropy may be evaluated as follows.
In case (A) we are lead to the expression

n Mg , 3

AT

(F) = lim
u N->o0
which is equivalent to the togo}ogical entropy [24], provided the
ratio between the number of 4 cells and MN is not divergent
(This seems to be the case for the logistic model) .
In case (B) one is lead to the expression

hU(F) = { p(x) 1n |F'(x)] dx , ‘ (14)
where it is assumed that cN<«euN. Therefore, the measure theo-
retic entropy coincides with the Liapounov characteristic number.
This is a relation already confirmed for the histogramatic meas-
ure, and is taken to be a support that the weighted distribution
(B) of fixed points is a legitimate measure.

5.4 Variation Principle

Another support for the weighted fixed point distribution (B) is
obtained from the variation principle. BOWEN and RUELLE [23]
have proved that for Axiom A dynamical system

oG = n®) - [ @ 1 |rreo] fo, (15)

and the ergodic measure y may be determined by maximizing o (u).

Let us suppose that this variation principle applles to the
present case. Noting that y(dx)=p(x)dx, and varylng pPa N) in the
expression of p(x), one is lead by the varlatlon principle to
the result

(N) _ (Nn) ', (N)
P =g /IF x] (16)
where Cy is to be determined by the normalization. This is clear-
ly identical with the weight assumed in the distribution (B), and
is taken to be a support of its wvalidity.

6. Discussion

The validity which has been demonstrated for the weighted fixed
point distribution (B) in a number of ways has its own physical
background. As is experienced in the simulations, the motion of
the representation points on a short time scale often resembles
motion with a particular period; however, in the long run the
representative point cannot remain on that particular periodic
orbit, because every periodic orbit is unstable. This is the
mechanism through which chaos emerges. According to this picture
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it is not difficult to understand that the ergodic measure is re-

lated to the periodic point distribution, and the particular form

of the weight (16) is interpreted as a kind of mean residence time
of the representative point in the neighbourhood of the particular
- periodic point.

As we extracted the macroscoplc or thermodynamic degrees of
freedom from the microscopic ones by way of projection, it is con-
ceivable to extract the "megaloscopic" digrees of freedom from the
macroscopic or dissipative chaos. We are then left with a non-
thermal noise of macroscopic origin. It resembles the thermal
noise in so far as it corresponds to the sensitive dependence on
the initial condition; however, in several significant respects
it differs from the thermal noise. Namely,

(i) Non-thermal noise does not require many degrees of freedom
as its background, therefore there is no reason for expecting the
central limit theorem to apply. Consequently, the resulting dis-
tribution is not necessarily Gaussian, and may be dlfferent for
different problems.

(ii) In contrast with thermal noise, for non-thermal noise the
measure theoretic entropy does not in general coincide with the
topological entropy.

(iii) Under the circumstances in which both the thermal and the
non-thermal noises exist, the non-thermal noise is expected to
predominate, simply because it is macroscopic. This means that
the thermal noise is masked by the non-thermal in such a situa-
tion. .

In the interpretation of an actually observed noise in a
macroscopic system one should be aware of the above points.

Of course there is not the scale difference usually existent
when the conventional extraction of macroscopic motion is made
and to this extent the meaning of "megaloscopic motion" cannot be
so clear cut. However, this may also lead to a positive use of
megaloscopy. In contrast to the fairly sharp response on the
macroscopic level (small noise), the response on the megaloscopic
level must have a considerably larger flexibility (large noise).
From this point of view it is tempting to anticipate the existence
ofa macroscopic chaos on the part of the observer as a background
to pattern recognition. Suppose there are a number of orbits which
are markedly different on the macroscopic level, and yet belong to
the range of a common macroscopic chaos. One may associate these
different orbits with a single pattern, in so far as a common meg-
aloscopic motion may be extracted from them. The existence of
macroscopic chaos in this context will lead to a definitely larger
flexibility in the global identification of patterns. This seems
much more natural than the digital mechanism popular nowadays as
the basis of pattern recognition.
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