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Ribbon Knots and Ribbon Disks
Kouhei ASANO (Kinki Univ.),
Yoshihiko MARUMOTO (Osaksa City Univ.)

and Takaaki YANAGAWA (Kobe Univ.)

Given a ribbon knot, we will define, in § 1, the ribbon disk pair

associated with it. On the other hand, -J,F.P.Hudson and D.W.Sumners gave

" a method to construct a disk pair [3], [14]. In §1 and 2, we will gener-

alize this construction and show that a ribbon disk pair is obtained by
this construction énd vice versa;

In [11], C.D.Papakyriakopoulos proved that the complement of a clas—
sical knot is aspherical. As an analogy of this, we will prove, in §3,
that the complement of a ribbon disk is aspherical, and it follows from
thls that the fundamental group of a ribbon knot complement has no element
of fln;te order. In the final sectlon, we w111 calculate the higher homo~
topy groups of a higher—dimenéional ﬁibbon knot complement, and in Theorem
4.% we show that a ribbon n-knot for mnz23 is unknotted if the fundamen—
tal group of the knot complement is the infinite cyclic group. ‘This
result is proved independently by A.Kawauchi and T. Matumoto [6j

Throughout the paper, we work in the plecew1se—11near category

although the results remain valid in the smooth category.
§ 1. Prelimingries

1¢1. By S™ denote an n-sphere, and by B® or D" an n-disk.
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By °M, int M and ¢l M denote the boundary, the interior and the closure
of a manifold M respectively., In this paper, every submanifold in a
manifold is assumed to be locally flat. If 2M £ @, by &M we mean the
double of M, i.e. &M -is obtained from the disjoint union of two eopies
of M by identifying their boundaries via the identity map. For a sub-
complex C in a manifold M, N(C; M) is a regular neighbourhood of C
in M, 3By a pair (M, W) denote a manifold M and a proper submanifold
W in M, i.e. Wa3M = oW, Two pairs (M, W,) and (M, W,) are

o M

equivalent if there exists a homeomorphism from M which maps

1 2

W, to W, Let 3(M, W) = (aM, 3W) and B, W) = (BM, 8W).

/
An  n-knot will mean a pair’ (Sn+2, K.'n) with K homeomorphic to an
n-sphere, and we will ususlly refer to the n-knot K%, An n-knot is

unknotted if it bounds an (n+1)-disk in Sn+2. For a proper disk _Dn in

a manifold M, (M, D7) is unknotted, or D" is unknotted in M, if there

exists an (nt1)-disk D™ in M such that D" 'A2M is an n-disk in

n+1 n+1

2D and c¢1(2D™F'A int M) = D",  For terminologies in handle theory, we

refer the readers to [12], and for knot theory, to [15].

1.2, et Sp, s?, vee s 51

be mutually disjoint n—spheres in kay
g-manifold My for nz1 and q23. Suppose that an embedding g of
B'xI into M3, where T = [0, 1], satisfies the following : _ |
(1) pExT)n(sgY «.. YY) = B(E"x 21), and
(2) the orientation of B(B"x I) is coherent with that of
SOV L. Ut |

Then we call p or B(B"x I) a band compatible with Sg U,.. VY Sg.

Let ﬁ‘l’ . ’ /3m be bands compatible with Sg ... U Sﬁ such that

(1) P (EB*X DR (B %T) =g if 54, end

-2
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(2) U{S?; Osizm}V¥ U{ﬁj(an I); 1< j<m} is connected.e®
Then

(Ui5 0¢1em) - U{p, (82 1); 1¢34mP)Y ULE,6F% 1); 14 3¢m)

is an n~sphere, and denoted by

5‘(88, cee o SE; P1, cee ,,Gm).

Suppose that MI = s™*? and there exist mutually disjoint (n+1)-disks
B 70, B witn o3 2 8P for 0t¢ism. Then
0 m i i

= F(Sgs ees 5 505 Pys eee 5 )

is calied a ribbon n-knot of type (ﬁ1, ces o ﬁm)a

Our definition of a ribbon n-knot is equivalent to that of [27], [207.

1.3. Remark. In 1.2, it is easily seen that we can deform each
band isotopically so that
Pi(an 0) if j

B.(B"x I)nst ={ p.(B%x 1) if j=1i, and
i J i

0,

1

') otherwise,
1ede Let I)n-l_3 be obtained from the digjoint union of Sn+2x I and

n+2x1 and BBn+3. Let Kn be a ribbon n-knot of

1

B 1y identifying S
typé (p1, eee g ;3 ), then we can construct an (n+1)_dlsk e in an+3

which bounds KX 0 as follows : Let Di1 (S x [0, 3/11,:|)U(]3n+1 3/4)

M2, I for 0s%is<m, where B_?H and S:I.L1 are as in 1.2.

in 'S
For 1 <j¢m, let 'p'a : B'x IxI — Sn+2>§ I be the product of ﬁj and a
map from I into I which takes t to t/2, i.e.

Eﬁ(x, vy 1) = (p5(x, ), 4/2)
for x¢B" and vy, teI. Then

1 é(lJUf“1‘ $igm} - LJ{P(B PAIxI); 1egsm))

“Lﬂp(uaxxxz)dp(B xIx1L 1<ng}

-3 -



85

ig an (n+1)-disk and bounds Knx 0 in Dn+3. Note that the section of

™ vy s™% b s
(1) x4 , if 0<t<1/2,
(2) (U{S?; Cgiém}UU{ﬁj(anI); 1¢jsm})x1/2 if + = 1/2,
(3) (spY eee Ys)xt if  1/2<t<3/4,
4) (B5Y .e. VB x3/4 it & = 3/4,
(5) ¢ if 3/4<te,

(See Figo 1e1.)

£=0 t = 1/2 t =5/8 t =3/4
Fige 1.1

1

We call L™ in D™J the ribbon (n+1)-disk associated with a ribbon

n=knot Kn, or ,(Dn+5, Ln+1) the ribbon (n4-1 )-disk pair associated with

'

The double B(Dn+3, Ln+1) of a ribbon (n+1)-disk pair is an (n+1)-
n+3 '

knot in the (n+3)-sphere 8D  ~. Since .ﬂ(DnHU UDn+1)

O 200 m

(n+1)-link and each @(@i(an IxI)) is a band, L™

ig trivial
is a ribbon (n+1)-

n+1 n+1)

knot. We say that 3(D™2, 1™} is an equatorial knot of &(D*0, T

(see [20].)

1.5« We will generalize the construction of (n+1)-disk in [3] and

1

[14], for n21. Let D' be an umknotted (m+1)-disk in 3™*7, Adding
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1 n+3

m 1-handles h', e.. , h' 4o B .l
1 9 mn

0
we obtain an (n+3)-disk with m 1-handles, say V. We take mutually dis—
1

such that h;nD ! =@ for each i,

joint oriented 1-spheres 061, oo o dm on oV - 2D

0 such that &,
i

intersects the belt sphere of hl at only one point and Olin hJ:] = ¢ for

i # j. Then we call Oli a standard curve on 9V, Let AO be a proper

n+7 n+1

2-disk in N(aDO s ?V) such that AO intersects 2D, at only one point,

n+1

then we call AO a meridian disk of bDO

in 3V and 0£0=7>AO a

n+1

meridian of DDO in 2V, where we give an orientation to Let ug

Ol

o1 for 1¢4¢i<m such that there

0
exigts an ambient isotopy of 3V which carries uy to oci for all 1.

Then we add m 2-handles h2, ces o h2 to V along u ceo u_ -such
. 1 m 1? ' Um

be a simple closed curve in 2V = 23D

n+1

that h:.QLnDO =@ for each i. By the handle cancelling theorem, hi

 cancels h; for each i. Thus Vuhiu cee Uhxi is an (n+3)-disk D3,

In general, Dgﬂ is not unknotted in Dn+3, so we rewite DIOH'1 in Dm'3
as Ln+1. We say that the pair (Dn+3, LnH) ig of S~type, or simply
Lm_1 is of S-type when no confusion can arise.
Let AOi’ for 1£i4m, be mutually disjoint meridian disks of B])f)l+1
in 3V, and ¥ a band in 3V compatible with o, and o . =34 . such
i , i 0i 0oi
that (1) 78" I)n?’j(B1x I) =g for i# j, and

nt+l,

(2) 7’i(B1xi)nN(aDO 3 V) = 2’1(31x 0) for 14%itm.

Then there exists an ambient isotopy of 3V which carries v, to OCi for

14i¢m, where v, =fﬁ(a’i, dOi; 71) for each i. Thus the (n+3)-manifold

obtained from V by adding m 2-handles with Vi for 1<ig¢m, as the

attaching spheres is an (n+3)-disk which contains it

o as a proper (n+1)-

disk, then this disk pair is said to be of S*~type. Clearly, a disk pair

of 8*~type is of S-type.
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1.6+ Remark, In 1.5, if n22, then the attaching sphere us of
hi2 igs uniquely determined up to ambient isotopy by its homotopy class

[ui] in n1(av - aDg”). For n = 1, this is false.

Te7e  Let CO be a bougquet of m+ 1 T-spheres eg, eq, eoe g e;l.

Let éi be the element of 7 (CO) represented by e; for O <$ig ﬁ.

By C denote a 2-dimengional cell complex obtained from CO by attaching
2=cells ef, ece 9 en2:1 Wi‘th the boundary formulae oorresponding to Wiseeos
W where W, o= wi(zo, Zyy ess 9 zm) ig an element of 75,] (CO) such that
wi('l, Zyy seey Zm) = 2 for 1<£igm, Then We call C a cell complex of

S—type.

n+1

n+3 N(DO

In 1.5, c1(B 3 Bn+3)) has a 1-dimensional spine. Hence,
by the assumption on the attaching spheres us of hiz, we have the

following

043 4l
5 , L

1.8, Proposition. Let (D ) be an (n+1)-disk pair of

S=type for nzl1. Then cl(Dm'3 - N(Ln+1; Dn+3)) collapses to a cell

complex of S-type.

§ 2, Ribbon disks and disk pairs of S-type

2.1, Lemma. Let w = w(zo, Zyg eee s Zm) be a word in F, the

free group on Zzg, Z;, ees 5 Zge Then w(1, Ziy eee 3 Zm) = z; in ¥ if

and only if there exist a word ‘tj in F and an integer Ej such that

- €.
W = n t. 2z, t. Joz,
J ( J o ) i.
Proof,. The sui‘ficienéy is trivial. The necessity is proved by easy

calculation, see [1].
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2,2, Lemma.  Let DEH, V, &, and u, Dbe as in 1,5, Then there
exist disjoint meridian disks 4...'s of 202 in oV, a band % . in
0ij - 0 — - —_— ij —

2V compatible with o, and & . = 955 Tor Tgigm and 1¢j2x(i),

3
and i_n ambient isotopy {%,5 0 ¢t ¢1} of 2V such that
(1) 7,6 Dn7, @) =4 i (5 9) 4 (& 2),
(2) fij(B1XI)nN(aDg+1;
() 7Gx 1)n% =g ir 4%,

4) Y)tla])gﬂ ig the identity map for O0<t¢1,

— —— o—— et e

a7) = 73" 0),

(5) ?’O is the identity map, and

(6) 94(a) =F(e, &y wan s &y 5 Ygn eee s ()

for 1¢i¢m. (See Fig. 2.1.)

N1
0 Fig, 2.1
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Proof of Lemma 2,2, For n =1, the assertion is easily shown by

the modification as in Fig. 2.2.

u,
l \\

nt+l———y

D

< = <

Fig. 2.2

For Il%é, the assertion is proved by using Remark 1.6 and Lemma 2.1, For

details, see [1].

3

Using Lemma 2;2, we have the following Proposition 2.3, and we omit

the proof [1].

2.3+ Proposition, For nz21, an.(n+1)—disk pair of S=type is of

S*-type:f‘(Seé Figo 2.3.)

&

’\.
’
K
’
/

NN

7

'
1
ta

[__.,,\\\\ ‘ ; .
.

~

) \

Fige 2.3 !

Then we have the following theorem :

2.44.

Theorem,.

Suppose nz1, Then a ribbon (n+1)-disk pair ii
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pair. (For the proof, see [1].) : .
2.5. Remark, A.Omae [9] proved that the boundary pair of a 3-

disk pair of S-type is a ribbon 2-knot for a special case, and L.R.Hitt
[2] announced that he proved that the boundary pair of an (n+1)-disk pair

of S-type is a ribbon n-knot and the converse.

By Proposition 1.8, Lemma 2.1, Lemma 2,2 and Theorem 2.4, we have the
following Corollary 2.6 3
2.6. Corollary.  Let (D™2, 1™7) be a ribbon (n+1)-disk pair

S-type. Conversely, let C Dbe a cell complex of S-type. Then there

existe a ribbon (m+1)-disk pair (D%, I™1) for n21 such that C is
- —= _ ,

in Dn+3.

— i, — ——— — e

In’[20]5 the third auwthor proved the following Proposition 2.7, and

using Theorem 2.4 we can give an alternative proof [1] :

2.7« Proposition. Every ribbon n-knot has an equatorial knot,

for nz2.
§ 3. Asphericity of ribbon disks

In this section, we will show that the complement of a higher dimen-
siohal ribbon disk is aspherical which is an analogy to the case of clas-

sical knots [11].

3.4. Regarding 34 as‘a one-point compactification of R4,bwe may

consider that a 2—knof is in 34. Let Rz be the hyperplane of R4

9=
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whose 4-th coordinate is %, Ri the haif space of R4 whose 4-th coor-
dinate is non-negative, and Rf' = cl(RAr - Ri). By Proposition 2.7, wé can
assume that a ribbon 2-knot K> satisfies the followings :

(1) K° is symmetric with respect to Rg,

(2) K2 A Ri has elliptic critical points only in Rg, and

(3) Kzr\Ri has hyperbolic critical points only in R? (Fig. 3.1).

On the other hand, a ribbon 2-knot K° can be described as follows :
(1) all elliptic critical points occur at Rg or sz, and

(2) all hyperbolic critical points occur at Rg (Fig. 3.2).

I

3 3 3 3 3 3 3
Ro ®is B %o 1 M B
Fige 3.2

The latter description of a 2-knot is adopted by S.J.Lomonaco [8], then

he has stated the following in Theorem 3.2 in [8] : ‘

- 10 -
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3.2, "Proposition. Let K° be a ribbon 2-knot of type (Bys vee s

)y and d? a 3-disk in N(p;; s) such that the intersection of dg

and B (8°xI) is B,(8°x1/2) for 1¢i<m. Let [2d)] be the element

of 7C2(S4' - Kz) represented by bd.z. Then 7D2(S4 - Kz) is generated by

[ad?], cee s [Bdi] as a ZT-module, where Z7‘f1“ is the integral group

fing of T = n1(s4 - K2). (Fig. 3.3)

a0 RS ad5 n 35 240 ARD
i =1 1

nRU
@ g\ \@) @
M

. o
3dinR 1.5 24 nR1 5
Py, f 0B B N

Figse 3.3

~The following Proposition 3.3 has been proved by the third author [21]

using the Van-Kampen theorem :.

3.3, Proposition. Let (™3, 17+ be the ribbon (n+1)-disk

pair associated with a ribbon neknot K%, and (8™, ¥™1) = 8(p™3, 1™),

Then 7L1(Sn+2 - ¥ x> 711(1)”5 -1y o 7»1(sn+5 - &1y provided nz 2.

n+ n+1
5’ 1,

344 Lemma, Let (D ) be the ribbon (n+1)-disk pair

associabed with a ribbon n-knot K, If n22, then the inclusion from -

n+3 0+l

2 - L induces @ onto-homomorphism 7L2(Sn+2 - Kn)

s™e - k™ into D

o3 n+1

——-%7&2(1) ) as ZL-modules.

1

Proof. Let K™ be of type (P1, cen o ﬁm), then we will use the
notationsg in 1.4. 4

Note that, by the general position arguments, we can choose a base for

-1 -
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n+3 _ Ln+1)

ﬁé(D consisting of embedded 2-~spheres, ILet 22 be a 2-

1

n+1, then we may assume that 22 ig in Sﬂ+2x I -1,

sphere in Dn+3 -5

We can move iz into general position so that i? does not intersect

1

p, % [3/4, 1] where p, &int B?* . Since Bf.:”x [3/4, 1] is regarded as

a regular neighbourhood of p, X [3/4, 1] in s™2y [3/4, 1], we have

Z?,\B§+1x [3/4, 1] = ¢ for ()éi.gnh This implies that Z? can be pushed
into” §™2x [0, 3/4] - 1. For qeint 3%, let W = B (axI)x[1/2,5/4].
Again by the general position arguments, we can have Z?r\Wi = ¢ for each i.
Hence ZZ does not intersect @i(an I)x [1/2, 3/4] for each i, i.e. we

can deform Y2 isotopically imto §°t2x [0, 1/2] - I™'. Therefore §°

1 n+2 n

2,00 - 1™, i.e. into ™2 - K% By

can be moved igotopically into 'S

this fact and Proposition 3.3 the required result is implied.

/
\

3.5, Temma. For a ribbon 3-disk pair (D°, I°), we have

A - 1) = o.

Proof. Let ‘(DB, LB) be associated with a ribbon 2-knot of type
(P1, eos o ﬁm). We will use the notations in 1.4 for n =2 and in 3424
The 2-sphere adz bounds the 3-disk (adzx [o, 3/47) U(dgxs/z;), in

D - 17 for each i. This implies that 712(])5 -17) = 0 by Lemma 3.4.
The following Theorem 3.6 is a generalization of [19]

M5 121 e a ribbon (n+1)-disk pair with

3.6, Theorem, Let (D

n+1

nx1, then Dn+3 -1 is aspherical.

Proof . By Corollary 2.6, there exists a cell complex . C of S-type
such that Dn+5 - Ln+1 is homotopy equivalent to C. Again by 2.6, there

exists a ribbon 3-disk pair (DB, LB) such that D° - 170 is homotopy

- 12 -
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equivalent to C. It follows from Lemma 3.5 that WQ(C) = 0, Let T ve
the universal covering space of C. Then Hi(a) =0 for i23, since C. .
is 2-dimensional, Thus, by Hurewicz theorem, C is aspherical, because

nQ(E) ééﬁé(c) = 0, Therefore C 1is aspherical. This completes the proof,

3sTe Remark, A cell complex'of S=-type is a subcomplex of a con-
tractible 2-complex, hence the proof of Theorem 3.6 gives a partial answer
to a problem of J.,H.C.Whitehead : Is any subcomplex of an aspherical 2-

complex aspherical ?

3.8, Corollary. Let K" be a ribbon n-knot for n z1, then
— —— — y =

ﬂﬁ(sn+2 - X% has no element of finite order.

Proof. For n = 1, the assertion is a special case of [11]. For
nx2, this is true by Proposition 3.3, Theorem 3.6 and a result due essen~
tially to PeA.Smith (p.216 in [4]), namely : The fundamental group of an

aspherical polyhedron of finite dimension has no element of finite order.

TeYajima characterized the knot group of ribbon 2-knots in [17], then

by Corollary 3.8 and [17] we have the following :

349 Corollary. Let G Dbe a finitely presented group having a_

Wirtinger preéentation of deficiency 1 with G/G' ¥ Z. Then G has no

element of finite order.
§ 4. TUnknotting ribbon knots

4e1, Theorem, Tet Kn Pg giribbon n-knot ggy ny3, then yg have

n+2

™, (s -k for 24isn-1.

Proof. By Proposition 2.7, there exists a ribbon n-disk pair

- 13 -
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(™2, 1) such that 8(0™Z, 1) = (™%, ™). Iet (D22, 1%) e a copy

of (D**°, T®) for ¢ = % such that (D™

n+2

, I™ is obtained from the

disjoint union of (DTQ, Ln) and (D , L ) by identifying their bound-

n+1 n- ) _ 42

Ln). Let X be

the universal covéring space of Sn+ - Kn, X@ the 1ift of Dm'2 - Lré in

X for € =%, and X. the lift of g™t —KO_1 in X. By Proposition

aries via the identity map; Let (8 (D

0
3435, all of 3'(_!_, }?_ and io are also universal covering spaces. By the

Mayer-Vietoris theorem, we have the f oll‘owing exact sequence :

...—-»H(X )EBH (X)—-)H(X)-—vH 1(X)—»H (X )@H ()"c__) —eee .
By Theorem 3.6, H(XE) =0 for j21 and ¢ =%, Therefore it follows
that H(X)_H 1( %) for jz2. -

Suppos/e = 3, then (85 - KS) 4 Hz(s'() L H1 (}'EO) = 0. By induction
on the dime;lsion n, it is easily seen that the fact HJ(}'E) ~ H 1( X.) and

H,‘(io) imply Hl(ff) =0 for 1¢ig¢n-1. This implies the requlred result.

The following Proposition 4.2 is due to A.Kawauchi ([5] or pe.331 in

[151) ¢

4.2, Proposition. For a 2-knot K2, 84 - K2 is homotopy equivalent

to s ir (st -k zu.

4.3, Theorem. Let K" be a ribbon n-knot for n 33.

1w (s™? - 1%) 2 7, then ¥ is unknotted.

Proofo. We can use the notations in the proof of Theorem 4.1. In 'bhek
proof of Theorm 4.7, we have HJ()~() Hj-1 (;’EO) for jz2.

~ Suppose n =3 and 7\31(85 - KB) 2 Z, then by Proposition 3.3 it

1R

follows that %, (5% - k%) 2 7, vhere Kg is an equatorial knot of X2, By

Proposition 4.2, we have K, (x ) 0 for all iz1. This implies that

-4 -
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HJ(%) =0 for j2z1. Therefore s7 - k2 "ig homotopy equivalent to SJI,
nence by [7], [13] and [167, ¥° is unknotted. ~Similarly, for nzd, it is
easy to see the assertion is true by induction on the dimension n. This

completes the proof.

Recently A.Kawauchi and T.Matumoto have obltained independently the
same result as Theorem 4.3 [6].

The following ig obtained by Proposition 3.3 and Theorem 4.3 2

4.5, Corollary,  For a ribbon n-knot K with n24, any equa-

torial knot of K" is unknotted if K= is unknotted.

For n = 2, Corollary 4.5 is false.  For example, Kinoghita~Terasaka
knot is an equatorial knot of the unknot [9], The case n =3 still

remalns oOpen.
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