Ribbon Knots and Ribbon Disks

Kouhei ASANO (Kinki Univ.),
Yoshihiko MARUMOTO (Osaka City Univ.)
and Takaaki YANAGAWA (Kobe Univ.)

Given a ribbon knot, we will define, in § 1, the ribbon disk pair associated with it. On the other hand, J.F.P.Hudson and D.W.Sumners gave a method to construct a disk pair [3], [14]. In §1 and 2, we will generalize this construction and show that a ribbon disk pair is obtained by this construction and vice versa.

In [11], C.D.Papakyriakopoulos proved that the complement of a classical knot is aspherical. As an analogy of this, we will prove, in $\S 3$, that the complement of a ribbon disk is aspherical, and it follows from this that the fundamental group of a ribbon knot complement has no element of finite order. In the final section, we will calculate the higher homotopy groups of a higher-dimensional ribbon knot complement, and in Theorem 4.3 we show that a ribbon n-knot for $n \ge 3$ is unknotted if the fundamental group of the knot complement is the infinite cyclic group. This result is proved independently by A.Kawauchi and T.Matumoto [6].

Throughout the paper, we work in the piecewise-linear category although the results remain valid in the smooth category.

§ 1. Preliminaries

1.1. By S^n denote an n-sphere, and by B^n or D^n an n-disk.

By ∂M , int M and cl M denote the boundary, the interior and the closure of a manifold M respectively. In this paper, every submanifold in a manifold is assumed to be locally flat. If $\partial M \neq \emptyset$, by ∂M we mean the double of M, i.e. ∂M is obtained from the disjoint union of two copies of M by identifying their boundaries via the identity map. For a subcomplex C in a manifold M, N(C; M) is a regular neighbourhood of C in M. By a pair (M, W) denote a manifold M and a proper submanifold W in M, i.e. $W \cap \partial M = \partial W$. Two pairs (M_1, W_1) and (M_2, W_2) are equivalent if there exists a homeomorphism from M_1 to M_2 which maps W_1 to W_2 . Let $\partial (M, W) = (\partial M, \partial W)$ and $\partial (M, W) = (\partial M, \partial W)$.

An n-knot will mean a pair (S^{n+2}, K^n) with K^n homeomorphic to an n-sphere, and we will usually refer to the n-knot K^n . An n-knot is unknotted if it bounds an (n+1)-disk in S^{n+2} . For a proper disk D^n in a manifold M, (M, D^n) is unknotted, or D^n is unknotted in M, if there exists an (n+1)-disk D^{n+1} in M such that $D^{n+1} \cap \partial M$ is an n-disk in ∂D^{n+1} and $cl(\partial D^{n+1} \cap int M) = D^n$. For terminologies in handle theory, we refer the readers to [12], and for knot theory, to [15].

1.2. Let S_0^n , S_1^n , ..., S_m^n be mutually disjoint n-spheres in a q-manifold M^q for $n \ge 1$ and $q \ge 3$. Suppose that an embedding β of $B^n \times I$ into M^q , where I = [0, 1], satisfies the following:

- (1) $\beta(B^n \times I) \cap (S_0^n \cup ... \cup S_m^n) = \beta(B^n \times \partial I)$, and
- (2) the orientation of $\beta(B^n \times I)$ is coherent with that of $S_0^n \cup \dots \cup S_m^n$.

Then we call β or $\beta(B^n \times I)$ a <u>band compatible with $S_0^n \cup \dots \cup S_m^n$.</u> Let β_1, \dots, β_m be bands compatible with $S_0^n \cup \dots \cup S_m^n$ such that

(1) $\beta_{i}(B^{n} \times I) \cap \beta_{i}(B^{n} \times I) = \emptyset$ if $i \neq j$, and

(2) $U\{S_i^n; 0 \le i \le m\} \cup U\{\beta_j(B^n \times I); 1 \le j \le m\}$ is connected. Then

 $(\bigcup\{S_{\mathtt{j}}^{n};\ 0\leq\mathtt{i}\leq\mathtt{m}\}\ -\ \bigcup\big\{\beta_{\mathtt{j}}(\mathtt{B}^{n}\times\mathtt{bI});\ 1\leq\mathtt{j}\leq\mathtt{m}\big\})^{\bigcup}\bigcup\big\{\beta_{\mathtt{j}}(\mathtt{bB}^{n}\times\mathtt{I});\ 1\leq\mathtt{j}\leq\mathtt{m}\big\}$ is an n-sphere, and denoted by

$$\mathcal{F}(s_0^n, \ldots, s_m^n; \beta_1, \ldots, \beta_m).$$

Suppose that $M^q = S^{n+2}$ and there exist mutually disjoint (n+1)-disks B_0^{n+1} , ..., B_m^{n+1} with $\partial B_i^{n+1} = S_i^n$ for $0 \le i \le m$. Then

$$K^{n} = \mathcal{F}(S_{0}^{n}, \ldots, S_{m}^{n}; \beta_{1}, \ldots, \beta_{m})$$

is called a <u>ribbon</u> n-knot of type (β_1 , ..., β_m).

Our definition of a ribbon n-knot is equivalent to that of [2], [20].

1.3. Remark. In 1.2, it is easily seen that we can deform each band isotopically so that

$$\beta_{\mathbf{j}}(\mathbf{B}^{n} \times \mathbf{I}) \cap \mathbf{S}_{\mathbf{j}}^{n} = \begin{cases} \beta_{\mathbf{j}}(\mathbf{B}^{n} \times \mathbf{0}) & \text{if } \mathbf{j} = \mathbf{0}, \\ \beta_{\mathbf{j}}(\mathbf{B}^{n} \times \mathbf{1}) & \text{if } \mathbf{j} = \mathbf{i}, \text{ and } \\ \emptyset & \text{otherwise.} \end{cases}$$

1.4. Let D^{n+3} be obtained from the disjoint union of $S^{n+2} \times I$ and B^{n+3} by identifying $S^{n+2} \times I$ and B^{n+3} . Let K^n be a ribbon n-knot of type $(\beta_1, \ldots, \beta_m)$, then we can construct an (n+1)-disk D^{n+1} in D^{n+3} which bounds $D^{n+3} \times I$ for 0 as follows: Let $D^{n+1}_i = (S^n_i \times [0, 3/4]) \cup (B^{n+1}_i \times 3/4)$ in $D^{n+2} \times I$ for $D^{n+2} \times I$ for $D^{n+3} \times I$ and $D^{n+3} \times I$ for $D^{n+2} \times I$ for $D^{n+2} \times I$ be the product of $D^{n+3} \times I$ and a map from $D^{n+2} \times I$ be the product of $D^{n+3} \times I$ and $D^{n+3} \times I$ into $D^{n+3} \times I$ be the product of $D^{n+3} \times I$ and $D^{n+3} \times I$ and $D^{n+3} \times I$ be the product of $D^{n+3} \times I$ and $D^{n+3} \times I$ and $D^{n+3} \times I$ be the product of $D^{n+3} \times I$ and $D^{n+3} \times I$ and $D^{n+3} \times I$ be the product of $D^{n+3} \times I$ and $D^{n+3} \times I$ and $D^{n+3} \times I$ be the product of $D^n \times I$ and $D^n \times I$ be the product of $D^n \times I$ and $D^n \times I$

$$\overline{\beta}_{j}(x, y, t) = (\beta_{j}(x, y), t/2)$$

for $x \in B^n$ and y, $t \in I$. Then

$$\begin{split} \mathbf{L}^{n+1} &= (\bigcup \{\mathbf{D}_{\mathtt{i}}^{n+1}; \ 0 \leq \mathtt{i} \leq \mathtt{m}\} - \bigcup \{\overline{\beta}_{\mathtt{j}}(\mathbf{B}^{n} \times \mathtt{a} \mathtt{I} \times \mathtt{I}); \ 1 \leq \mathtt{j} \leq \mathtt{m}\}) \\ & \cup \bigcup \{\overline{\beta}_{\mathtt{j}}(\mathtt{a} \mathbf{B}^{n} \times \mathtt{I} \times \mathtt{I}) \cup \overline{\beta}_{\mathtt{j}}(\mathbf{B}^{n} \times \mathtt{I} \times \mathtt{I}); \ 1 \leq \mathtt{j} \leq \mathtt{m}\} \end{split}$$

is an (n+1)-disk and bounds $K^n \times 0$ in D^{n+3} . Note that the section of L^{n+1} by $S^{n+2} \times t$ is

(1) $K^n \times t$ if $0 \le t < 1/2$,

(2) $(\bigcup \{S_i^n; 0 \le i \le m\} \cup \bigcup \{\beta_i(B^n \times I); 1 \le j \le m\}) \times 1/2$ if t = 1/2,

(3) $(s_0^n \cup ... \cup s_m^n) \times t$ if 1/2 < t < 3/4,

(4) $(B_0^n \cup \cdots \cup B_m^n) \times 3/4$ if t = 3/4,

(5) \emptyset if $3/4 < t \le 1$.

(See Fig. 1.1.)

Fig. 1.1

We call L^{n+1} in D^{n+3} the <u>ribbon</u> (n+1)-<u>disk</u> associated with a ribbon n-<u>knot</u> K^n , or (D^{n+3}, L^{n+1}) the <u>ribbon</u> (n+1)-<u>disk</u> <u>pair</u> associated with K^n .

The double $\mathfrak{D}(\mathbb{D}^{n+3}, \mathbb{L}^{n+1})$ of a ribbon (n+1)-disk pair is an (n+1)-knot in the (n+3)-sphere \mathfrak{D}^{n+3} . Since $\mathfrak{D}(\mathbb{D}_0^{n+1} \cup \ldots \cup \mathbb{D}_m^{n+1})$ is trivial (n+1)-link and each $\mathfrak{D}(\beta_i(\mathbb{B}^n \times \mathbb{I} \times \mathbb{I}))$ is a band, \mathbb{L}^{n+1} is a ribbon (n+1)-knot. We say that $\mathfrak{D}(\mathbb{D}^{n+3}, \mathbb{L}^{n+1})$ is an equatorial knot of $\mathfrak{D}(\mathbb{D}^{n+3}, \mathbb{L}^{n+1})$. (See [20].)

1.5. We will generalize the construction of (n+1)-disk in [3] and [14], for $n \ge 1$. Let D_0^{n+1} be an unknotted (n+1)-disk in B^{n+3} . Adding

m 1-handles h_1^1, \dots, h_m^1 to B^{m+3} such that $h_{i,0}^1 D_0^{m+1} = \emptyset$ for each i, we obtain an (n+3)-disk with m 1-handles, say V. We take mutually disjoint oriented 1-spheres $\alpha_1, \ldots, \alpha_m$ on $\delta V - \delta D_0^{n+1}$ such that α_1 intersects the belt sphere of h_i^1 at only one point and $\alpha_i \cap h_i^1 = \emptyset$ for i \neq j. Then we call α_i a standard curve on δV . Let Δ_0 be a proper 2-disk in $\mathbb{N}(\partial \mathbb{D}_0^{n+1}; \partial \mathbb{V})$ such that Δ_0 intersects $\partial \mathbb{D}_0^{n+1}$ at only one point, then we call Δ_0 a <u>meridian disk</u> of ∂D_0^{n+1} in ∂V and $\alpha_0 = \partial \Delta_0$ a meridian of \mathfrak{dD}_0^{n+1} in \mathfrak{dV} , where we give an orientation to α_0 . Let \mathfrak{u}_i be a simple closed curve in $\,\delta V\,-\,\delta D_0^{n+1}\,$ for $\,1\, \leq \,i\, \leq \,m\,$ such that there exists an ambient isotopy of ∂V which carries u_i to α_i for all i. Then we add m 2-handles h_1^2 , ..., h_m^2 to V along u_1 , ..., u_m such that $h_i^2 \cap D_0^{n+1} = \emptyset$ for each i. By the handle cancelling theorem, h_i^2 cancels h_1^1 for each i. Thus $V h_1^2 \cup ... \cup h_m^2$ is an (n+3)-disk D^{n+3} . In general, D_0^{n+1} is not unknotted in D^{n+3} , so we rewrite D_0^{n+1} in D^{n+3} as L^{n+1} . We say that the pair (D^{n+3}, L^{n+1}) is of S-type, or simply Lⁿ⁺¹ is of S-type when no confusion can arise.

Let Δ_{0i} , for $1 \le i \le m$, be mutually disjoint meridian disks of ∂D_0^{n+1} in ∂V , and Υ_i a band in ∂V compatible with α_i and $\alpha_{0i} = \partial \Delta_{0i}$ such that (1) $\Upsilon_i(B^1 \times I) \cap \Upsilon_i(B^1 \times I) = \emptyset$ for $i \ne j$, and

(2) $\Upsilon_{\mathbf{i}}(\mathbf{B}^1 \times \mathbf{I}) \cap \mathbb{N}(\partial \mathbf{D}_0^{n+1}; \partial \mathbf{V}) = \Upsilon_{\mathbf{i}}(\mathbf{B}^1 \times \mathbf{0})$ for $1 \le \mathbf{i} \le \mathbf{m}$.

Then there exists an ambient isotopy of δV which carries v_i to α_i for $1 \le i \le m$, where $v_i = \mathcal{F}(\alpha_i, \alpha_{0i}; \gamma_i)$ for each i. Thus the (n+3)-manifold obtained from V by adding m 2-handles with v_i , for $1 \le i \le m$, as the attaching spheres is an (n+3)-disk which contains D_0^{n+1} as a proper (n+1)-disk, then this disk pair is said to be of S^* -type. Clearly, a disk pair of S^* -type is of S-type.

- 1.6. Remark. In 1.5, if $n \ge 2$, then the attaching sphere u_i of h_i^2 is uniquely determined up to ambient isotopy by its homotopy class $[u_i]$ in $\pi_1(\partial V \partial D_0^{n+1})$. For n = 1, this is false.
- 1.7. Let C_0 be a bouquet of m+1 1-spheres e_0^1 , e_1^1 , ..., e_m^1 . Let z_i be the element of $\pi_1(C_0)$ represented by e_i^1 for $0 \le i \le m$. By C denote a 2-dimensional cell complex obtained from C_0 by attaching 2-cells e_1^2 , ..., e_m^2 with the boundary formulae corresponding to w_1, \ldots, w_m , where $w_i = w_i(z_0, z_1, \ldots, z_m)$ is an element of $\pi_1(C_0)$ such that $w_i(1, z_1, \ldots, z_m) = z_i$ for $1 \le i \le m$. Then we call C a <u>cell complex of S-type</u>.
- In 1.5, $cl(B^{n+3} N(D_0^{n+1}; B^{n+3}))$ has a 1-dimensional spine. Hence, by the assumption on the attaching spheres u_i of h_i^2 , we have the following:
- 1.8. Proposition. Let (D^{n+3}, L^{n+1}) be an (n+1)-disk pair of S-type for $n \ge 1$. Then $cl(D^{n+3} N(L^{n+1}; D^{n+3}))$ collapses to a cell complex of S-type.
 - § 2. Ribbon disks and disk pairs of S-type
- 2.1. Lemma. Let $w = w(z_0, z_1, \dots, z_m)$ be a word in F, the free group on z_0, z_1, \dots, z_m . Then $w(1, z_1, \dots, z_m) = z_i$ in F if and only if there exist a word t_j in F and an integer ϵ_j such that $w = \prod_j (t_j z_0 t_j^{-1})^{\epsilon_j} \cdot z_i$.
- <u>Proof.</u> The sufficiency is trivial. The necessity is proved by easy calculation, see [1].

2.2. Lemma. Let D_0^{n+1} , V, α_i and u_i be as in 1.5. Then there exist disjoint meridian disks Δ_{0ij} 's of ∂D_0^{n+1} in ∂V , a band γ_{ij} in ∂V compatible with α_i and $\widetilde{\alpha}_{ij} = \partial \Delta_{0ij}$ for $1 \le i \le m$ and $1 \le j \le r(i)$, and an ambient isotopy $\{\mathcal{G}_t; 0 \le t \le 1\}$ of ∂V such that

- (1) $\gamma_{i,j}(B^1 \times I) \cap \gamma_{k\ell}(B^1 \times I) = \emptyset$ if (i, j) \neq (k, l),
- (2) $\gamma_{ij}(B^1 \times I) \cap N(\partial D_0^{n+1}; \partial V) = \gamma_{ij}(B^1 \times O),$
- (3) $\gamma_{i,j}(B^1 \times I) \cap \alpha_k = \emptyset$ <u>if</u> $i \neq k$,
- (4) $\mathcal{S}_{t} \mid \partial \mathbb{D}_{0}^{n+1}$ is the identity map for $0 \le t \le 1$,
- (5) \mathcal{G}_0 is the identity map, and
- (6) $\mathcal{G}_{1}(u_{i}) = \mathcal{F}(\alpha_{i}, \tilde{\alpha}_{i1}, \dots, \tilde{\alpha}_{ir(i)}; \gamma_{i1}, \dots, \gamma_{ir(i)})$ for $1 \le i \le m$. (See Fig. 2.1.)

<u>Proof of Lemma 2.2.</u> For n=1, the assertion is easily shown by the modification as in Fig. 2.2.

For $n \ge 2$, the assertion is proved by using Remark 1.6 and Lemma 2.1. For details, see [1].

Using Lemma 2.2, we have the following Proposition 2.3, and we omit the proof [1].

2.3. Proposition. For $n \ge 1$, an (n+1)-disk pair of S-type is of S*-type. (See Fig. 2.3.)

Then we have the following theorem:

2.4. Theorem. Suppose $n \ge 1$. Then a ribbon (n+1)-disk pair is

of S-type, and conversely an (n+1)-disk pair of S-type is a ribbon disk pair. (For the proof, see [1].)

2.5. Remark. A.Omae [9] proved that the boundary pair of a 3-disk pair of S-type is a ribbon 2-knot for a special case, and L.R.Hitt [2] announced that he proved that the boundary pair of an (n+1)-disk pair of S-type is a ribbon n-knot and the converse.

By Proposition 1.8, Lemma 2.1, Lemma 2.2 and Theorem 2.4, we have the following Corollary 2.6:

2.6. Corollary. Let (D^{n+3}, L^{n+1}) be a ribbon (n+1)-disk pair for $n \ge 1$, then $cl(D^{n+3} - N(L^{n+1}; D^{n+3}))$ collapses to a cell complex of S-type. Conversely, let C be a cell complex of S-type. Then there exists a ribbon (n+1)-disk pair (D^{n+3}, L^{n+1}) for $n \ge 1$ such that C is a spine of the exterior of L^{n+1} in D^{n+3} .

In [20], the third author proved the following Proposition 2.7, and using Theorem 2.4 we can give an alternative proof [1]:

2.7. Proposition. Every ribbon n-knot has an equatorial knot, for $n \ge 2$.

§ 3. Asphericity of ribbon disks

In this section, we will show that the complement of a higher dimensional ribbon disk is aspherical which is an analogy to the case of classical knots [11].

3.1. Regarding S^4 as a one-point compactification of R^4 , we may consider that a 2-knot is in R^4 . Let R_{t}^3 be the hyperplane of R^4

whose 4-th coordinate is t, R_{+}^{4} the half space of R^{4} whose 4-th coordinate is non-negative, and $R_{-}^{4} = cl(R^{4} - R_{+}^{4})$. By Proposition 2.7, we can assume that a ribbon 2-knot K^{2} satisfies the followings:

- (1) K^2 is symmetric with respect to R_0^3 ,
- (2) $K^2 \cap \mathbb{R}^4_+$ has elliptic critical points only in \mathbb{R}^3_2 , and
- (3) $K^2 \cap R_+^4$ has hyperbolic critical points only in R_1^3 (Fig. 3.1).

On the other hand, a ribbon 2-knot K^2 can be described as follows:

- (1) all elliptic critical points occur at R_2^3 or R_{-2}^3 , and
- (2) all hyperbolic critical points occur at \mathbb{R}_0^3 (Fig. 3.2).

Fig. 3.2

The latter description of a 2-knot is adopted by S.J.Lomonaco [8], then he has stated the following in Theorem 3.2 in [8]:

3.2. Proposition. Let K^2 be a ribbon 2-knot of type $(\beta_1, \ldots, \beta_m)$, and d_i^3 a 3-disk in $N(\beta_i; S^4)$ such that the intersection of d_i^3 and $\beta_i(B^2 \times I)$ is $\beta_i(B^2 \times 1/2)$ for $1 \le i \le m$. Let $[\partial d_i^3]$ be the element of $\pi_2(S^4 - K^2)$ represented by ∂d_i^3 . Then $\pi_2(S^4 - K^2)$ is generated by $[\partial d_1^3]$, ..., $[\partial d_m^3]$ as a $Z\pi_1$ -module, where $Z\pi_1$ is the integral group ring of $\pi_1 = \pi_1(S^4 - K^2)$. (Fig. 3.3)

The following Proposition 3.3 has been proved by the third author [21] using the Van-Kampen theorem:

- 3.3. Proposition. Let (D^{n+3}, L^{n+1}) be the ribbon (n+1)-disk pair associated with a ribbon n-knot K^n , and $(S^{n+3}, K^{n+1}) = \mathcal{D}(D^{n+3}, L^{n+1})$.

 Then $\pi_1(S^{n+2} K^n) \cong \pi_1(D^{n+3} L^{n+1}) \cong \pi_1(S^{n+3} K^{n+1})$ provided $n \ge 2$.
- 3.4. Lemma. Let (D^{n+3}, L^{n+1}) be the ribbon (n+1)-disk pair associated with a ribbon n-knot K^n . If $n \ge 2$, then the inclusion from $S^{n+2} K^n$ into $D^{n+3} L^{n+1}$ induces an onto-homomorphism $\pi_2(S^{n+2} K^n)$ $\to \pi_2(D^{n+3} L^{n+1})$ as $Z\pi_1$ -modules.

<u>Proof.</u> Let K^n be of type $(\beta_1, \ldots, \beta_m)$, then we will use the notations in 1.4.

Note that, by the general position arguments, we can choose a base for

 $\mathcal{H}_2(\mathbb{D}^{n+3}-\mathbb{L}^{n+1})$ consisting of embedded 2-spheres. Let Σ^2 be a 2-sphere in $\mathbb{D}^{n+3}-\mathbb{L}^{n+1}$, then we may assume that Σ^2 is in $S^{n+2}\times I-\mathbb{L}^{n+1}$. We can move Σ^2 into general position so that Σ^2 does not intersect $P_i\times[3/4,\ 1]$ where $P_i\in \operatorname{int} B_i^{n+1}$. Since $P_i^{n+1}\times[3/4,\ 1]$ is regarded as a regular neighbourhood of $P_i\times[3/4,\ 1]$ in $S^{n+2}\times[3/4,\ 1]$, we have $\Sigma^2\cap B_i^{n+1}\times[3/4,\ 1]=\emptyset$ for $0\le i\le m$. This implies that Σ^2 can be pushed into $S^{n+2}\times[0,\ 3/4]-\mathbb{L}^{n+1}$. For $q\in \operatorname{int} B^n$, let $W_i=\beta_i(q\times I)\times[1/2,3/4]$. Again by the general position arguments, we can have $\Sigma^2\cap W_i=\emptyset$ for each i. Hence Σ^2 does not intersect $P_i(B^n\times I)\times[1/2,\ 3/4]$ for each i, i.e. we can deform Σ^2 isotopically into $S^{n+2}\times[0,\ 1/2]-\mathbb{L}^{n+1}$. Therefore Σ^2 can be moved isotopically into $S^{n+2}\times 0-\mathbb{L}^{n+1}$, i.e. into $S^{n+2}-\mathbb{K}^n$. By this fact and Proposition 3.3 the required result is implied.

3.5. Lemma. For a ribbon 3-disk pair (D⁵, L³), we have $\pi_2(D^5 - L^3) = 0$.

<u>Proof.</u> Let (D^5, L^3) be associated with a ribbon 2-knot of type $(\beta_1, \ldots, \beta_m)$. We will use the notations in 1.4 for n=2 and in 3.2. The 2-sphere ∂d_1^3 bounds the 3-disk $(\partial d_1^3 \times [0, 3/4]) \cup (d_1^3 \times 3/4)$ in $D^5 - L^3$ for each i. This implies that $\pi_2(D^5 - L^3) = 0$ by Lemma 3.4.

The following Theorem 3.6 is a generalization of [19]:

3.6. Theorem. Let (D^{n+3}, L^{n+1}) be a ribbon (n+1)-disk pair with $n \ge 1$, then $D^{n+3} - L^{n+1}$ is aspherical.

<u>Proof.</u> By Corollary 2.6, there exists a cell complex C of S-type such that $D^{n+3} - L^{n+1}$ is homotopy equivalent to C. Again by 2.6, there exists a ribbon 3-disk pair (D^5, L^3) such that $D^5 - L^3$ is homotopy

equivalent to C. It follows from Lemma 3.5 that $\pi_2(C) = 0$. Let \widetilde{C} be the universal covering space of C. Then $H_i(\widetilde{C}) = 0$ for $i \geq 3$, since \widetilde{C} is 2-dimensional. Thus, by Hurewicz theorem, \widetilde{C} is aspherical, because $\pi_2(\widetilde{C}) \cong \pi_2(C) = 0$. Therefore C is aspherical. This completes the proof.

- 3.7. Remark. A cell complex of S-type is a subcomplex of a contractible 2-complex, hence the proof of Theorem 3.6 gives a partial answer to a problem of J.H.C.Whitehead: Is any subcomplex of an aspherical 2-complex aspherical?
- 3.8. Corollary. Let K^n be a ribbon n-knot for $n \ge 1$, then $\mathcal{R}_1(S^{n+2} K^n)$ has no element of finite order.

<u>Proof.</u> For n = 1, the assertion is a special case of [11]. For $n \ge 2$, this is true by Proposition 3.3, Theorem 3.6 and a result due essentially to P.A.Smith (p.216 in [4]), namely: The fundamental group of an aspherical polyhedron of finite dimension has no element of finite order.

T.Yajima characterized the knot group of ribbon 2-knots in [17], then by Corollary 3.8 and [17] we have the following:

- 3.9. Corollary. Let G be a finitely presented group having a Wirtinger presentation of deficiency 1 with $G/G' \cong Z$. Then G has no element of finite order.
 - § 4. Unknotting ribbon knots
- 4.1. Theorem. Let K^n be a ribbon n-knot for $n \ge 3$, then we have $\pi_i(S^{n+2} K^n)$ for $2 \le i \le n-1$.

Proof. By Proposition 2.7, there exists a ribbon n-disk pair

 $(\mathbb{D}^{n+2}, \mathbb{L}^n)$ such that $\mathfrak{G}(\mathbb{D}^{n+2}, \mathbb{L}^n) = (\mathbb{S}^{n+2}, \mathbb{K}^n)$. Let $(\mathbb{D}^{n+2}_{\epsilon}, \mathbb{L}^n_{\epsilon})$ be a copy of $(\mathbb{D}^{n+2}, \mathbb{L}^n)$ for $\epsilon = \pm$ such that $(\mathbb{D}^{n+2}, \mathbb{L}^n)$ is obtained from the disjoint union of $(\mathbb{D}^{n+2}_{+}, \mathbb{L}^n_{+})$ and $(\mathbb{D}^{n+2}_{-}, \mathbb{L}^n_{-})$ by identifying their boundaries via the identity map. Let $(\mathbb{S}^{n+1}, \mathbb{K}^{n-1}_{0}) = (\mathbb{D}^{n+2}_{+}, \mathbb{L}^n_{+})$. Let \widetilde{X} be the universal covering space of $\mathbb{S}^{n+2} - \mathbb{K}^n$, \widetilde{X}_{ϵ} the lift of $\mathbb{D}^{n+2}_{\epsilon} - \mathbb{L}^n_{\epsilon}$ in \widetilde{X} for $\epsilon = \pm$, and \widetilde{X}_{0} the lift of $\mathbb{S}^{n+1} - \mathbb{K}^{n-1}_{0}$ in \widetilde{X}_{\cdot} By Proposition 3.3, all of \widetilde{X}_{+} , \widetilde{X}_{-} and \widetilde{X}_{0} are also universal covering spaces. By the Mayer-Vietoris theorem, we have the following exact sequence:

Suppose n=3, then $\pi_2(S^5-K^3)\cong H_2(\widetilde{X})\cong H_1(\widetilde{X}_0)=0$. By induction on the dimension n, it is easily seen that the fact $H_j(\widetilde{X})\cong H_{j-1}(\widetilde{X}_0)$ and $H_1(\widetilde{X}_0)$ imply $H_j(\widetilde{X})=0$ for $1\leq i\leq n-1$. This implies the required result.

The following Proposition 4.2 is due to A.Kawauchi ([5] or p.331 in [15]):

4.2. Proposition. For a 2-knot K^2 , $S^4 - K^2$ is homotopy equivalent to S^1 if $\pi_1(S^4 - K^2) \cong Z$.

4.3. Theorem. Let K^n be a ribbon n-knot for $n \ge 3$.

If $\pi_1(S^{n+2} - K^n) \cong Z$, then K^n is unknotted.

<u>Proof</u>. We can use the notations in the proof of Theorem 4.1. In the proof of Theorem 4.1, we have $\mathrm{H}_{\mathbf{j}}(\widetilde{\mathbf{X}})$ $\mathrm{H}_{\mathbf{j}-1}(\widetilde{\mathbf{X}}_0)$ for $\mathbf{j} \geq 2$.

Suppose n=3 and $\pi_1(S^5-K^3)\cong Z$, then by Proposition 3.3 it follows that $\pi_1(S^4-K_0^2)\cong Z$, where K_0^2 is an equatorial knot of K^3 . By Proposition 4.2, we have $H_1(\widetilde{X}_0)=0$ for all $i\geq 1$. This implies that

 $H_{j}(\widetilde{X}) = 0$ for $j \ge 1$. Therefore $S^{5} - K^{3}$ is homotopy equivalent to S^{1} , hence by [7], [13] and [16], K^{3} is unknotted. Similarly, for $n \ge 4$, it is easy to see the assertion is true by induction on the dimension n. This completes the proof.

Recently A.Kawauchi and T.Matumoto have obtained independently the same result as Theorem 4.3 [6].

The following is obtained by Proposition 3.3 and Theorem 4.3:

4.5. Corollary. For a ribbon n-knot K^n with $n \ge 4$, any equatorial knot of K^n is unknotted if K^n is unknotted.

For n=2, Corollary 4.5 is false. For example, Kinoshita-Terasaka knot is an equatorial knot of the unknot [9]. The case n=3 still remains open.

References

- [1] Asano, K., Marumoto, Y. & Yanagawa, T.: Ribbon knots and ribbon disks, (preprint).
- [2] Hitt, L.R.: Characterization of ribbon n-knots, Notices Amer. Math. Soc. 26 (1979), A-128.
- [3] Hudson, J.F.P. & Sumners, D.W.: Knotted ball pairs in unknotted sphere pairs, J. London Math. Soc. 41 (1966), 717-722.
- [4] Hurewicz, W.: Beiträge zur Topologie der Deformationen IV, Proc. Akad. Amsterdam 39 (1936), 215-224.
- [5] Kawauchi, A.: On partial Poincaré duality and higher dimensional knots with $\pi_1 = Z$, Master's thesis, Kobe Univ., 1974.
- [6] Kawauchi, A. & Matumoto, T.: An estimate of infinite cyclic coverings and knot theory, (preprint).

- [7] Levine, J.: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
- [8] Lomonaco, Jr., S.J.: The homotopy groups of knots, II. A solution to Problem 36 of R.H.Fox. (to appear).
- [9] Marumoto, Y.: On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), 59-68.
- [10] Omae, A.: A note on ribbon 2-knots, Proc. Japan Acad. 47 (1971), 850-853.
- [11] Papakyriakopoulos, C.D.: On Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- [12] Rourke, C. & Sanderson, B.: Introduction to Piecewise-Linear Topology, Ergeb. der Math. 69, Springer, (1972).
- [13] Shaneson, J.L.: Embeddings of spheres in spheres of codimension two and h-cobordism of $S^1 \times S^3$, Bull. Amer. Math. Soc. 74 (1968), 972-974.
- [14] Sumners, D.W.: Homotopy torsion in codimension two knots, Proc. Amer.. Math. Soc. 24 (1970), 229-240.
- [15] Suzuki, S.: Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), 241-371.
- [16] Wall, C.T.C.: Unknotting tori in codimension one and spheres in codimension two, Proc. Camb. Phil. Soc. 61 (1965), 659-664.
- [17] Yajima, T.: On a characterization of knot groups of some spheres in \mathbb{R}^4 , Osaka J. Math. 6 (1969), 447-464.
- [18] Yanagawa, T.: On ribbon 2-knots, The 3-manifold bounded by the 2-knots., Osaka J. Math. 6 (1969), 447-464.
- [19] Yanagawa, T.: On ribbon 2-knots II, The second homotopy group of the complementary domain, Osaka J. Math. 6 (1969), 465-473.
- [20] Yanagawa, T.: On cross sections of higher dimensional ribbon-knots, (to appear).
- [21] Yanagawa, T.: Knot-groups of higher dimensional ribbon knots, (to appear).