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TOPOLOGICAL ENTROPY OF CIRCLE ENDOMORPHISMS

by

Shigenori Matsumoto

1° The purpose of this paper is to investigate the topol-
ogical entropy h(f) of a piecewise monotone and continuous trans-
formation f of the unit circle S1 and to relate it to the mapping
degree deg(f) of f. For such a transformation f, L(f) denotes the
number of the maximal intervals where f is monotone. Then the limit

G(f) = 1lim % log L(fn) exists and is called the growth number of f.

Our main results are the following theorems 1 and 2.

THEOREM 1 Let f be a piecewise monotone and continuous

transformation of Sl. Suppose that f is not a local homeomorphism.

Then h(f) = G(f).

THEOREM 2 . (1) For a piecewise monotone and continuous

transformation f, h(f) £ log deg(£f).

(2) For a local homeomorphism £ of 'él, h(f) = log deg(f).

REMARK Theorem 2 (1) is the simplest case of a general

theorem of Manning ([4]).

In the case of transformations of the interval, the concept
of growth number is introduced and extensively studied by Milnor and

Thurston ([3]).



29

Now let us recall the definition of the topological entropy of a
continuous transformation of a compact space X ([1]).

h(f) = sup{ H(f, O0C) , 0t is a open covering of X}‘ ‘

H(f, o) = 1113{3% log Noe Ve iy v ooo.. Vet
Here for open coverings 07 , B of X, ave denotes the cpen
covering { AAB { Aedl | Béﬁ}‘ , and N(9) is the smallest

cardinality of subcoverings of O .

2° A nonempty finite subset 4 of the unit circle S1

is called a partition; its cardinality is denoted by m(4); the

1

closure of a connected component of' S~ — 4 is - called a small interval

of 4 ; for a piecewise monotone and continuous transformation £,
An denotes the partition A4 UiV f_ZA Voo, uf_nﬂA .

A continuous transformation . f is called piecewise monotone if there
exists a partition 4 such that f is strictly monotone on‘e‘ac,h‘.
small interval of 4 . Such a partition A is called a monotone-
partition for f£. Hencéforfh in this paper, any transformation of Sl

is to be piecewise monotone and continuous.

LEMMA 3 For a monotone partition A for f,
. . 1
h(f) £ 1liminf = log m(4 )
N—»oo I - n
- . ‘s . ) . 1
FROOF Given an arbitrary covering X of &7, one can *

choose a partition A' such that (1) = A' contains as a subset the

. prescribed monotone partition A for f, (2) each small intertal

.._2. -
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of A' is contained in some member of % . Then m(4 2) 2 NV
fla Ve gV Ve™*lg) . ( Bach small interval of A! is

contained in at least one member of o V f-%ﬂ,v .....V/f—n+10L.. )
Let J be a small interval of 4 n° Then because <4 is a monotone
partition for f , fi maps J ~homeomorphically into some small
interval of A for each i€ { 0, 1, ...;., n-l‘} . Thus m(Akﬂlq 3)
< nb , where b is so chosen that - b = m(A'r\f) for each small
interval I of 4 . Hence m(A D < (nb+l ) m(4 o) - Thus
NV eV LY EPT )L (b1 ) mcA )
Letting n ->%®, we have
H(£,0L) S liming Liogmd) .

Now as OL was an arbitrary covering of Sl, we have done the proof.

3° A partition A is called a fine partition for a

transformation f of Sl,g in case (1) f embeds each small

interval of 4 into sl , '(2)_ the length of each small interval

of A , as well as that of its image by f , is smaller than
-;- of the whole length of S1 . Thus ‘a fine partition for f
is automatically a monotone partion for f . The next lemma is

a converse of .lemma 3.

LEMMA 4 For

h(f) 2 1limsup
n- ®

fine partition A for f,

a
1 10g m(4)
n log mla g

-3-
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PROOF Our proof is analogous to the argument employed

by Bowen in his paper [2] .

Given a positive integer N, we shall conétruct an open.
covering, say OZN , out of the partition A = { X1 Xpperaeer X,
For eacyboint x. of A , consider the open interval Uj whose

endpoints are those points of 4 N which are next to S These

: h o
Uj ’s, together with interiors of small intervals 'Ij ’s of A
(18 j£r) , constitute an open covering O N ©°f sl. For each .
- -1, -n+l Velv, v
member B = Aj f' Alf‘ ceve.nf A1 .of- OZN £y ..
Y f'n+101N ( Ai is either some Uj oT some Ij ), we shall count

the number of the small intervals of ‘511 which intersects B

Notice that a small interval of A o, 1is of the form I; n f—lli N
. . 0 l

-2 -n+1 v
f°I.n .....Nnf I. . ( Here we use the assumpton that
12 1n-1 L

A 1is fine. ) Now look at the sequence A Al’ cee 5 A

o’ n-1

which defines B . We shall construct a subsequence in the follow-

ing way. Let .il be the smallest number, if any,:suﬁg that: Ai; is

_ , 1
equal to.some Uj , then delete the ( N - 1) terms Ai +1 2o
: 1
Ai +N-1 from the sequence..Consider the new sequence, and let i2
1 v
be the next number, if any, such that Ai = Uj for some Uj . Then delete
2 :

the N - 1 terms A; .1, --- AiZ+N—1 from the sequence. Proceeding

2
in this fashion, one obtains finally a subsequence, say, Aj ,
1
A. , ... , A; . Notice that if A, = U. , Then A, is contained
I2 Is o3 3 Ik -

in a union of two small intervals of Z&br Thus
f'Jl(Aj N e f\f-JS(Aj_) , hence a forteriori B , is contained
1

1

n .
in a union of at most 2vN+ small intervals of A n Thus

-n+l £+1
N(@yVeer-- VER o) - B 2 m(d)
Letting n—>02, one gets |
1 . 1
H(f, 0Ty) + § log2 = lml_rglosoup = log m( 4 )

As N 1is arbitrary, one obtains

_4$_
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h(f) 2 1limsup 1 log m(4 ) , as is desired.
N-yoe I n

4° In this paragraph we shall complete the proof of theorems
1 and 2. To begin with one has the following easy consequence of

lemmas 3 and 4.

PROPOSITION 5 Let 4 Pe an arbitrary monotone partition
. ol

Then the following limit exists

for a transformation f f

and is equal ig h(f) .

. 1 ~
lip § log (4 )

PROOF Given a monotone partition A for f , there exists

a fine partition A' for f such that A'D4 . Then

o 1 - S .
h(f) £ limsup o lég m(al) 2 liminf & log m(4 1)
2 liminf & log m(4 ) Z h(f)
N n

Hence h(f) = %iﬁ % log m(A.n) , as is desired.

PROOF OF THEOREM 1 - Let £ be a transformatioﬂ of fSl,
which is not a local homeomorphism. Let A4 £ be a mono cone partition‘
for f with the smallest cardinality. Of course such a partition is
unique and each small interval of 43:f is a maximal interval where
f 1is monotone. Then clearly L(f) = m((Z%fln) . Thus Theorem 1

is impliied by Proposition 5.

__ér__
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. . 7/ a‘eaa,(‘lc)
PROOF OF THEOREM 2 (1) Notice that m(f {x}) for
1 .

each point x of S~ . Thus for a monotone partition A for f ,
one has m(A ) Z m(£ ™A ) Z mE™ 1 x ) Z (deg(5)™), where
x. ¢ A . Hence th(f) = lim 1 log m(4 ) > 1log deg(f)
0 n n n’ <

PROOF OF THEOREM 2 (2)°  Let x be an arbitrary point of SI.

Then {xk 1s a monotone partition for a locai homeomorphism £ .

Thus h(f) = Lim & log m({x} ) . Now m(f 1{x}) = (deg(£))} . Thus
n n 4 n
(deg (™1 < m({xj } € 1 + deg(f) + deg(£)% + ..... + deg(f) P71,

Hence we get Hh(f) = log deg(f)
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