TOPOLOGICAL ENTROPY OF CIRCLE ENDOMORPHISMS

by

Shigenori Matsumoto

The purpose of this paper is to investigate the topological entropy h(f) of a piecewise monotone and continuous transformation f of the unit circle S^1 and to relate it to the mapping degree $\deg(f)$ of f. For such a transformation f, L(f) denotes the number of the maximal intervals where f is monotone. Then the limit $G(f) = \lim_{n \to \infty} \frac{1}{n} \log L(f^n)$ exists and is called the growth number of f. Our main results are the following theorems 1 and 2.

THEOREM 1 Let f be a piecewise monotone and continuous transformation of S^1 . Suppose that f is not a local homeomorphism.

Then h(f) = G(f).

- THEOREM 2 (1) For a piecewise monotone and continuous transformation f, $h(f) \ge \log \deg(f)$.
 - (2) For a local homeomorphism $f ext{ of } S^1$, $h(f) = \log \deg(f)$.

REMARK Theorem 2 (1) is the simplest case of a general theorem of Manning ([4]).

In the case of transformations of the interval, the concept of growth number is introduced and extensively studied by Milnor and Thurston ([3]).

Now let us recall the definition of the topological entropy of a continuous transformation of a compact space X ([1]).

h(f) = sup
$$\left\{ H(f, \alpha) \mid \alpha \text{ is a open covering of } X \right\}$$

 $H(f, \alpha) = \lim_{n \to \infty} \frac{1}{n} \log N(\alpha \vee_{f^{-1}} \vee \dots \vee_{f^{-n+1}} \circ \chi)$

Here for open coverings α , β of X, $\alpha^{\vee}\beta$ denotes the open covering $\{A \cap B \mid A \in \alpha, B \in \beta\}$, and $N(\alpha)$ is the smallest cardinality of subcoverings of α .

is called a partition; its cardinality is denoted by m(A); the closure of a connected component of S^1-A is called a <u>small interval</u> of A; for a piecewise monotone and continuous transformation A, and denotes the partition $A \cup f^{-1}A \cup f^{-2}A \cup \ldots \cup f^{-n+1}A$. A continuous transformation A is called <u>piecewise monotone</u> if there exists a partition A such that A is strictly monotone on each small interval of A. Such a partition A is called a <u>monotone</u> partition for A. Henceforth in this paper, any transformation of A is to be piecewise monotone and continuous.

LEMMA 3 For a monotone partition Δ for f, $h(f) \leq \liminf_{n \to \infty} \frac{1}{n} \log m(\Delta_n)$

FROOF Given an arbitrary covering α of S^1 , one can choose a partition Δ such that (1) Δ contains as a subset the prescribed monotone partition Δ for f, (2) each small interval

of Δ' is contained in some member of \mathcal{O} . Then $m(\Delta_n') \geq N(\mathcal{O} \vee f^{-1}\mathcal{O} \vee f^{-2}\mathcal{O} \vee \dots \vee f^{-n+1}\mathcal{O})$. (Each small interval of Δ_n' is contained in at least one member of $\mathcal{O} \vee f^{-1}\mathcal{O} \vee \dots \vee f^{-n+1}\mathcal{O}$.) Let J be a small interval of Δ_n . Then because Δ is a monotone partition for f, f^i maps J homeomorphically into some small interval of Δ for each $i \in \{0, 1, \dots, n-1\}$. Thus $m(\Delta_n' \wedge J) \leq nb$, where b is so chosen that $b \geq m(\Delta' \wedge I)$ for each small interval I of Δ . Hence $m(\Delta_n') \leq (nb+1) m(\Delta_n)$. Thus $N(\mathcal{O} \vee f^{-1}\mathcal{O} \vee \dots \vee f^{-n+1}\mathcal{O}) \leq (nb+1) m(\Delta_n)$

Letting $n \rightarrow \infty$, we have

 $H(f, \pi) \leq \liminf_{n \to \infty} \frac{1}{n} \log m(\Delta_n)$.

Now as α was an arbitrary covering of S^1 , we have done the proof.

3° A partition Δ is called a fine partition for a transformation f of S^1 , in case (1) f embeds each small interval of Δ into S^1 , (2) the length of each small interval of Δ , as well as that of its image by f, is smaller than $\frac{1}{3}$ of the whole length of S^1 . Thus a fine partition for f is automatically a monotone partion for f. The next lemma is a converse of lemma 3.

LEMMA 4 For a fine partition Δ for f, $h(f) \ge \limsup_{n \to \infty} \frac{1}{n} \log m(\Delta_n)$. PROOF Our proof is analogous to the argument employed by Bowen in his paper [2].

Given a positive integer N, we shall construct an open. covering, say σ_N , out of the partition $\triangle = \{x_1, x_2, \dots, x_r\}$. For each point x_i of Δ , consider the open interval U_i whose endpoints are those points of \triangle N which are next to x_j . These U, 's, together with interiors of small intervals I_j 's of Δ $(1 \le j \le r)$, constitute an open covering α_N of S^1 . For each member $B = A_0 \cap f^{-1}A_1 \cap \dots \cap f^{-n+1}A_{n-1}$ of $\mathcal{O}_N \vee f^{-1}\mathcal{O}_N \vee \dots \vee f^{-n+1}\mathcal{O}_N$ (A_i is either some U_j or some I_j), we shall count the number of the small intervals of \triangle $_{n}$ which intersects B . Notice that a small interval of Δ_{n} is of the form $I_{i_0} \cap f^{-1}I_{i_1} \cap f^{-1}I_{i_$ $f^{-2}I_{i_2} \cap \dots \cap f^{-n+1}I_{i_{n-1}}$. (Here we use the assumpton that \triangle is fine.) Now look at the sequence A_0 , A_1 , ..., A_{n-1} which defines $\, B \,$. We shall construct a subsequence in the following way. Let i_1 be the smallest number, if any, such that A_{i_1} equal to some U_j , then delete the (N-1) terms A_{i_1+1} ,..., A_{i_1+N-1} from the sequence. Consider the new sequence, and let i_2 be the next number, if any, such that $A_{i_2} = U_j$ for some U_j . Then delete the N - 1 terms A_{i_2+1} , ..., A_{i_2+N-1} from the sequence. Proceeding in this fashion, one obtains finally a subsequence, say, A_{j_1} , A_{j_2} , ..., A_{j_s} . Notice that if $A_{j_k} = U_j$, Then A_{j_k} is contained in a union of two small intervals of Δ_N . Thus $f^{-j}1(A_{j_1}) \cap \cdots \cap f^{-j}s(A_{j_s})$, hence <u>a forteriori</u> B, is contained in a union of at most $2^{\frac{n}{N}+1}$ small intervals of Δ_n . $N(\alpha_N \vee \dots \vee f^{-n+1}\alpha_N) \cdot 2^{\frac{n}{N}+1} \geq m(\Delta_n).$

Letting $n \rightarrow \infty$, one gets

$$H(f, \alpha_N) + \frac{1}{N} \log 2 \ge \limsup_{n \to \infty} \frac{1}{n} \log m(\Delta_n)$$
.

As N is arbitrary, one obtains

 $h(f) \ge \limsup_{n \to \infty} \frac{1}{n} \log m(\Delta_n)$, as is desired.

4° In this paragraph we shall complete the proof of theorems 1 and 2. To begin with one has the following easy consequence of lemmas 3 and 4.

PROPOSITION 5 Let Δ be an arbitrary monotone partition for a transformation f of S¹. Then the following limit exists and is equal to h(f).

 $\lim_{n\to\infty}\frac{1}{n}\log m(\Delta_n)$

PROOF Given a monotone partition \triangle for f , there exists a fine partition \triangle' for f such that $\triangle' \supset \triangle$. Then $h(f) \geqq \limsup_{n \to \infty} \frac{1}{n} \log m(\triangle'_n) \geqq \liminf_{n \to \infty} \frac{1}{n} \log m(\triangle'_n) \\ \geqq \liminf_{n \to \infty} \frac{1}{n} \log m(\triangle'_n) \geqq h(f) .$ Hence $h(f) = \lim_{n \to \infty} \frac{1}{n} \log m(\triangle'_n)$, as is desired.

PROOF OF THEOREM 1 Let f be a transformation of \mathbb{S}^1 , which is not a local homeomorphism. Let Δ_f be a monocone partition for f with the smallest cardinality. Of course such a partition is unique and each small interval of Δ_f is a maximal interval where f is monotone. Then clearly $L(f) = m((\Delta_f)_n)$. Thus Theorem 1 is implied by Proposition 5.

PROOF OF THEOREM 2 (1) Notice that $m(f^{-1}\{x\})$ for each point x of S^1 . Thus for a monotone partition Δ for f, one has $m(\Delta_n) \geq m(f^{-n+1}\Delta) \geq m(f^{-n+1}\{x_0\}) \geq (\deg(f))^{n-1}$, where $x_0 \in \Delta$. Hence $h(f) = \lim_n \frac{1}{n} \log m(\Delta_n) \geq \log \deg(f)$.

PROOF OF THEOREM 2 (2) Let x be an arbitrary point of S^1 . Then $\{x\}$ is a monotone partition for a local homeomorphism f. Thus $h(f) = \lim_n \frac{1}{n} \log m(\{x\}_n)$. Now $m(f^{-i}\{x\}) = (\deg(f))^i$. Thus $(\deg(f))^{n-1} \le m(\{x\}_n) \le 1 + \deg(f) + \deg(f)^2 + \ldots + \deg(f)^{n-1}$. Hence we get $h(f) = \log \deg(f)$

REFERENCES

- [1] R.Adler, A.Konheim and M.Mc'Andrew, Topological Entropy, Trans. A.M.S. 114 (1965) PP. 309-319
- [2] R.Bowen, Topological Entropy and Axiom A, Proc. Symp. Pure Math. 14, A.M.S. (1970), pp. 23-41
- [3] J.Milnor and W.Thurston, On Iterated Maps of the Interval,
 Preprint.
- [4] A.Manning, Topological Entropy and the First Homology Group,

 Dynamical Systems Warwick, Springer Lecture Note 468,

 pp. 185-190

Shigenori Matsumoto

Dept. of Math., Colledge of Science and Technology Nihon University

Kanda-Surugadai, Tokyo 101, Japan