NORMAL EULER CLASSES OF PL EMBEDDINGS WITH ISOLATED SINGULARITY

By Mitsuyoshi KATO

§1. Introduction. We shall say that a PL embedding $f: V \to M$ of an n-polyhedron V into a PL (n+c)-manifold M has isolated singularity, if there is a set P of isolated points of V such that for each point x of V-P, there is an open neighborhood U_X of f(x) in M such that $(U_X, U_X \cap f(V))$ is PL homeomorphic to the standard pair $(\mathbb{R}^{n+c}, \mathbb{R}^n \times 0)$ of euclidean (n+c)- and n-spaces. Singular set Σf of the embedding f is the minimal set P. Regular part of f is a locally flat PL embedding $f \mid V - \Sigma f$ of a PL n-manifold $V - \Sigma f$ into M. In this paper, we shall restrict ourselves in the case where M is oriented and V is an oriented PL n-variety, namely, $V - \Sigma f$ is connected and oriented.

A second PL embedding $f': V \to M'$ with isolated singularity of the PL n-variety V into an oriented PL (n+c)-manifold M' is micro-isomorphic to f at a subset Q of V, if there are neighborhoods U and U' of f(Q) and f(Q') in M and M', respectively, and an orientation preserving PL homeomorphism $h: U \to U'$, called micro-isomorphism of f and f' at Q, such that

 $h \circ f(u) = f'(u)$ for all points x of $f^{-1}(U)$.

In case V = Q, we shall say that f and f' are <u>micro-isomorphic</u>. The micro-isomorphism (at Q) of embeddings of V is clearly an equivalence relation.

If $\sum f = \emptyset$, then f is a locally flat PL embedding of a PL n-manifold V into a PL (n+c)-manifold M and the

micro-isomorphism class of f is just the isomorphism class of a normal block bundle of f, which is classified by the homotopy class of its classifying map (see Rourke and Sanderson [8]).

If $\sum f \neq \emptyset$, we have obviously two invariants; the microisomorphism classes of f at V- $\sum V$ and at $\sum V$, respectively. The latter will be called <u>singularity</u> of f and denoted by $\sigma(f)$. Moreover, we may define <u>normal euler class</u> $X(f) \in H^C(V; \mathbf{Z})$ of f as to be a pull back of the Poincaré dual of the image of the fundamental class of V in M.

Assuming that V is a PL n-manifold (and hence c=1 or 2 by Zeeman's unknotting theorem [11]), Noguchi [7] classified essentially the micro-isomorphism classes of such PL embeddings in terms of the singularities and the normal euler classes. As is seen from his proof in case n=c=2, the normal euler class is linked to both of the structure of a normal block bundle of the regular part and the singularity.

It is our purpose in this paper to <u>split</u> the normal euler class into a certain relative euler class of the normal block bundle and (local intersection) multiplicity of the singularity.

For this, we shall prove existence and uniqueness of <u>longitudes</u> for locally flat PL embeddings of closed oriented connected PL manifolds into oriented spheres. This notion of longitude generalizes that of longitude for classical knots (see $\S 2$, Theorem 2.1). This enables us in $\S 3$ to define the notion of multiplicity of f at a singular point x as an invariant of the singularity of f at x, and to prove the splitting formula for the normal euler class (see Theorem 3.1). In $\S 4$, we shall extend the classification of Noguchi as follows;

Theorem. Let $f: V \to M$ be a PL embedding with isolated singularity of a compact oriented PL n-variety V into an oriented PL (n+c)-manifold M.

- (1) If c = 1, then the singularity $\sigma(f)$ is the complete invariant of the micro-isomorphism class of f.
- (2) If c = 2, then $\{\sigma(f), X(f)\}$ is the complete set of invariants of the micro-isomorphism classes of f.

More explicitly, the statement (2) in Theorem means that a second PL embedding $f':V\to M'$ is micro-isomorphic to f if and only if X(f)=X(f') and $\sigma(f)=\sigma(f')$, and furthermore, given a compact polyhedron V such that for a subpolyhedron P of V of dim $P \leq 0$, V-P is an oriented PL n-manifold, then for any cohomology class $\xi \in H^2(V; \mathbb{Z})$ and for any PL embedding $g:(V)_P\to \mathbb{R}^{n+2}$ with isolated singularity around P such that $\sum_g = P$, there is an oriented PL (n+2)-manifold M and a PL embedding $f:V\to M$ such that $\sigma(f)=\sigma(g)$ and $X(f)=\xi$.

Now let V be a compact complex variety with isolated singularity in a complex manifold M. Then a pair (M, V) admits unique oriented triangulation compatible with its complex analytic Whitney stratification, which will be denoted by the same symbol (M, V), refer to [5], p.44, Th.7). We shall say that a second pair (M', V') at Q' C V' is micro-equivalent to (M, V) at Q C V, if there are open neighborhoods V_Q and V_Q^i , of Q and Q' in V and V', respectively, and an orientation preserving PL homeomorphism $h: V_Q \to V_Q^i$, such that h(Q) = Q', and i and i'oh are micro-isomorphic at Q, where i: V \to M and i': V' \to M' are inclusion maps. If V is a hypersurface in M, then by Theorem, (M, V) and (M', V') are micro-equivalent if and only if there is an orientation preserving PL homeomorphism

g: V \rightarrow V' such that $\sigma(i) = \sigma(i' \circ g)$ and $g^*X(i') = X(i)$. In general, it would be a deep problem to find a such PL homeomorphism g.

Nevertheless, in case V and V' are curves in a complex surface we have

Corollary to Theorem. Let C and C' be compact irreducible complex curves in a complex surface S.

Suppose that C and C' represent the same homology class in S. Then (S, C) and (S', C') are micro-equivalent if and only if (S, C) at Σ C and (S, C') at Σ C' are micro-equivalent, where Σ C and Σ C' are singular sets of C and C', respectively.

In particular, if S = S' is a complex projective plane \mathbb{P}^2 , then $(\mathbb{P}^2, \mathbb{C})$ and $(\mathbb{P}^2, \mathbb{C}')$ are micro-equivalent if and only if they are micro-equivalent at singular sets and have the same self-intersection number.

§2, Longitudes and multiplicity.

Let $F: M \to S^{m+c}$ be a locally flat PL embedding of an oriented closed PL m-manifold M into an oriented (m+c)-sphere. Let ν be a normal c-block bundle of F over a simplicial division K of M, and let $\dot{\nu}$ be a (c-l)-sphere block bundle associated to ν (for block bundles see [8]). We shall denote the total space of a block bundle ξ by the same symbol ξ . Definition. For a block bundle ξ over a complex L, a PL map $\varphi: L \to \xi$ is a (block) section of ξ , if $\varphi(\sigma) \subset \xi$ (the block over σ) for all $\sigma \in L$.

It is known that for the PL embedding $F: M \rightarrow S^{m+c}$, the

normal sphere block bundle $\dot{\nu}$ over K admits a section over the c-skeleton K^(c) of K, since its euler class vanishes. We would like to specify a section of $\dot{\nu}$ restricted to the (c-l)-skeleton K^(c-l) of K which extends to a section of $\dot{\nu}$ restricted to the c-skeleton K^(c) of K by making use of the Alexander duality in S^{m+c}.

(1) Suppose that M is connected.

Definition. A section $\varphi: K^{(c-1)} \to \dot{\nu} \mid K^{(c-1)}$ is a longitude of $F: M \to S^{m+c}$, if an induced chain map $\varphi_{\#}: \sum\limits_{k=0}^{c-1} C_k(K) \to c-1$ $\sum\limits_{k=0}^{c-1} S_k(\dot{\nu})$ can be extended to a chain map

$$\overline{\Phi}: \sum_{k=0}^{c} C_{k}(0*K) \rightarrow \sum_{k=0}^{c} S_{k}(E),$$

where $C_k(K)$ is a simplicial k-chain complex of K, $S_k(X)$ for a space X is a singular k-chain complex of X, $E = S^{m+c} - Int \nu$ and 0*K is a cone complex of K with vertex 0.

Theorem 2.1. Let $F: M \to S^{m+c}$ be a locally flat PL embedding of an oriented closed connected PL m-manifold into an oriented (m+c)-sphere. Then for any normal block bundle ν of F over a simplicial division K of M, there is a longitude $\varphi: K^{(c-1)} \to \nu \setminus K^{(c-1)}$ of F unique up to homotopy of sections.

Proof. We have that by the general positive reason

$$\pi_{i}(S^{m+c}, E) = 0$$
 for all $i \leq c-1$,

and by the Alexander duality,

$$H_{i}(E, \dot{\nu} | \sigma) = 0$$
 for all $i \leq c-1$,

and

$$H_{c-1}(\dot{\nu} \mid \sigma) \cong H_{c-1}(E) = Z$$
,

since M is connected. Since $\pi_{i}(\dot{\nu}|\sigma) \cong \pi_{i}(E) = 0$ for

i \leq c-2, we have a section $\psi: K^{(c-1)} \to \dot{\nu} \mid K^{(c-1)}$ whose induced chain map $\psi_{\#}: \sum\limits_{k=0}^{c-1} C_k(K) \to \sum\limits_{k=0}^{c-1} S_k(\dot{\nu})$ can be extended to a chain map

$$\Psi: \sum_{k=0}^{c-1} c_k(0*K) \longrightarrow \sum_{k=0}^{c-1} s_k(E).$$

In order to extend $\Psi | \sum_{k=0}^{c-2} C_k(0*K)$ to a chain map $\sum_{k=0}^{c} C_k(0*K) \rightarrow \sum_{k=0}^{c} S_k(E)$, we have an obstruction theory with coefficients in $H_{c-1}(E; \mathbf{Z}) = \mathbf{Z}$ over a simplicial chain complex 0*K. Since 0*K is acyclic, it follows that $\Psi | \sum_{k=0}^{c-2} C_k(0*K)$ can be extended to a chain map

$$\Phi: \sum_{k=0}^{c} C_k(0*K) \longrightarrow \sum_{k=0}^{c} S_k(E).$$

From the fact that $H_{c-1}(E,\dot{\nu}|\sigma)=0$ and $\pi_{c-1}(\dot{\nu}|\sigma)=H_{c-1}(\dot{\nu}|\sigma;Z)=Z$ for all $\sigma\in K$, we may assume that

 $\underline{\Phi}(\sigma) \in S_{c-1}(\dot{\nu}|\sigma) \quad \text{for each (c-1)-simplex } \sigma \quad \text{of } K,$ and $\underline{\Phi} \setminus \sum_{k=0}^{c-1} C_k(K) \quad \text{is induced from a section}$

$$\varphi : \mathsf{K}^{(\mathsf{c-l})} \to \dot{\nu} | \mathsf{K}^{(\mathsf{c-l})}$$

which is the required longitude.

Now let $\varphi': K^{(c-1)} \to \dot{\nu} \mid K^{(c-1)}$ be a second longitude of F. Since $\dot{\nu} \mid \sigma$ is (c-2)-connected for each simplex σ of K, we have a homotopy $\eta: \varphi \mid K^{(c-2)} \simeq \varphi' \mid K^{(c-2)}$ of sections which induces a chain map of degree 1

$$\eta_{\#}: \sum_{k=0}^{c-2} c_k(K) \rightarrow \sum_{k=1}^{c-1} s_k(\dot{\nu})$$

such that

 $\gamma_{\#}(\sigma) \in S_{k+1}(\dot{\nu}|\sigma) \quad \text{and} \quad \partial \gamma_{\#}(\sigma) = \gamma_{\#}(\partial \sigma) + \varphi_{\#}(\sigma) - \varphi_{\#}(\sigma)$ for each k-simplex (k \leq c-2) σ of K. By the same reason as above, $\gamma_{\#} = \sum_{k=0}^{c-3} C_k(K)$ can be extended to a chain map of degree 1

$$\mathcal{N} : \sum_{k=0}^{c-1} C_k(0*K) \rightarrow \sum_{k=1}^{c} S_k(E)$$

such that

 $\mathcal{N}(\sigma) \in S_{c-1}(\dot{\nu}|\sigma)$ for each (c-2)-simplex σ of K and $\mathcal{N} \mid \sum_{k=0}^{c-2} c_k(K)$ is induced from a homotopy $\xi : \varphi \mid K^{(c-2)} \simeq \varphi' \mid K^{(c-2)}$ of sections. Let $d(\varphi, \varphi')$ be an obstruction to extending the homotopy ξ to a homotopy $\varphi \simeq \varphi'$ of sections. Then we have that for each (c-1)-simplex σ of K,

$$\begin{split} \mathrm{d}(\varphi,\varphi')(\sigma) &= \mathrm{L}(\mathrm{F}_{\#}[\mathrm{M}],\ \mathcal{N}_{\#}(\partial\sigma) + \varphi_{\#}(\sigma) - \varphi_{\#}'(\sigma)) \\ (\text{linking number of } \mathrm{F}_{\#}[\mathrm{M}] \ \text{and} \ \mathcal{N}_{\#}(\partial\sigma) + \varphi_{\#}(\sigma) - \varphi_{\#}'(\sigma) \ \text{in } \mathrm{S}^{\mathrm{M}+\mathrm{C}}) \\ &= \mathrm{L}(\mathrm{F}_{\#}[\mathrm{M}],\partial\mathcal{N}(\sigma)) = 0, \end{split}$$

since $\mathcal{N}(\sigma) \in S_c(E)$, where [M] is the fundamental class of M. Hence φ and φ' are homotopic as sections, completing the proof.

Remark 1. By the last arguments in the proof above, a longitude $\varphi: K^{(c-1)} \to \dot{\nu} \setminus K^{(c-1)}$ can be extended to a section $\ddot{\varphi}: K^{(c)} \to \dot{\nu} \mid K^{(c)}$.

(2) Suppose that M is not connected.

Let M_1, \ldots, M_r be the connected components of M and let ν_i be a normal block bundle of $F_i = F \mid M_i$ over a simplicial division K_i of M_i . For each $i = 1, \ldots, r$, we have a longitude $\varphi_i : K_i^{(c-1)} \to \nu \mid K_i^{(c-1)}$ of $F_i : M_i \to S^{m+c}$. We put $E_i = S^{m+c} - Int \; \nu_i$ and $E_{ij} \; (= E_{ji}) = E_i - Int \; \nu_j$. Note that $H_k(E_{ij}) = 0$ for $k \leq c-2$ and $H_{c-1}(E_{ij}) \cong H_{c-1}(E_i) \oplus H_{c-1}(E_j) \cong \mathbf{Z} \oplus \mathbf{Z}$. For each i, j, we have an obstruction $m_j(\varphi_i) \in C^c(0*K_i, K_i; H_{c-1}(E_{ij}))$ to extending $(\varphi_i)_{\#}$ to a chain map $\sum_{k=0}^{c} C_k(0*K_i) \to \sum_{k=0}^{c} S_k(E_{ij})$. Since φ_i is a longitude of F_i

and unique up to homotopy of sections, its cohomology class, denoted by the same symbol $m_j(\gamma_i)$, is well-defined as an element of $H^c(0*K_i, K_i; H_{c-1}(E_j)) = H^c(0*K_i, K_i; Z)$. Thus we have a cohomology class

$$m(\varphi_i) = \sum_{j=1}^{r} m_j(\varphi_i) \in H^{c}(0*M_i, M_i; Z)$$

and a cohomology class

$$m(F) = \sum_{i=1}^{r} m(\varphi_i) \in H^{c}(0*M, M; Z).$$

Let $f_0 = 0*F: 0*M \rightarrow 0'*S^{m+c}$ be a cone extension of F. Regarding of m(F) as an element of $H^c(0*M, 0*M-0; \mathbf{Z})$ (by deformation retraction $M \simeq 0*M-0$), we shall call the class m(F) as to be (local intersection) <u>multiplicity</u> of f_0 at 0 and denot it by $m(f_0)$. The following will be proved by the standard argumen and the proof will be left to the reader;

Proposition 2.2. (i) The multiplicity $m(f_0)$ is invariant under micro-isomorphism of f_0 at 0.

- (2) If $c \ge (m+1) + 1$, then $m(f_0) = 0$.
- (3) If c = m+1 ($m \ge 1$), then we have that for each local orientation $[0*M_i] \in H_{m+1}(0*M_i, 0*M_i-0; \mathbb{Z})$,

$$m(f_0)([0*M_i]) = \sum_{\substack{j=1\\j\neq i}}^{r} L(F_{\#}[M_j], (\varphi_i)_{\#}[M_i])$$
 (in S^{2m+1}).

(4) In particular, if r = 1, then $m(f_0) = 0$.

§ 3. Normal euler classes and the splitting formula.

Let $f:V\to M$ be a PL embedding with isolated singularit of a compact oriented PL n-variety V into an oriented PL (n+c)-manifold M. Suppose that $n \ge 2$. The fundamental class

[V] \in H_n(V; Z) = Z of V is determined by the orientation of V - Σ V.

<u>Definition</u>. We define euler class X(f) of f as to be an integral cohomology class

$$X(f) = f^* \circ j^{1*} \circ P_{M}^{-1} \circ f_{*}[V] \in H^{C}(V; \mathbf{Z}),$$

where $P_M: H^c(M; \mathbf{Z}) \to H_n(M; \mathbf{Z})$ is the Poincaré duality isomorphism of M determined by the orientation of M, and j': M \to (M, \mathfrak{Z} M) is an inclusion map.

Let $f:L\to K$ be a simplicial division of the PL embedding $f:V=|L|\to M=|K|$. Then a singular set $\sum f$ of f consists of vertices of L. For the second barycentric subdivisions K'', L'' of K, L and for each point x of $\sum f$, we put

$$\begin{aligned} &\mathbf{V}_{\mathbf{X}} = \operatorname{st}(\mathbf{X}, \; \mathbf{L}''), \quad \mathbf{B}_{\mathbf{X}} = \operatorname{st}(\mathbf{f}(\mathbf{X}), \; \mathbf{K}''), \quad \boldsymbol{\ell}_{\mathbf{X}} = \boldsymbol{\ell} \, \mathbf{k}(\mathbf{X}, \; \mathbf{L}''), \\ &\mathbf{S}_{\mathbf{X}} = \boldsymbol{\ell} \, \mathbf{k}(\mathbf{f}(\mathbf{X}), \; \mathbf{K}''), \quad \mathbf{f}_{\mathbf{X}} = \mathbf{f} \; | \; \mathbf{V}_{\mathbf{X}} \; : \; \mathbf{V}_{\mathbf{X}} \; \longrightarrow \; \mathbf{B}_{\mathbf{X}} \quad \text{and} \\ &\mathbf{f}_{\mathbf{X}} = \mathbf{f} \; | \; \boldsymbol{\ell}_{\mathbf{X}} \; : \; \boldsymbol{\ell}_{\mathbf{X}} \; \longrightarrow \; \mathbf{S}_{\mathbf{X}}. \end{aligned}$$

Note that ℓ_x is a closed PL (n-1)-manifold (called a link of x in V), B_x is a PL (n+c)-ball whose boundary $\partial B_x = S_x$ is a PL (n+c-1)-sphere and $f_x : V_x \to B_x$ is a cone extension

$$x * f_x : x * \ell_x \rightarrow f(x) * S_x$$

of a locally flat PL embedding $\dot{f}_X: \ell_X \to S_X$. We put $V_\Sigma = \bigvee_X V_X$, $B_\Sigma = \bigvee_X B_X$, $S_\Sigma = \bigvee_X S_X$, $\ell_\Sigma = \bigvee_X \ell_X$, $f_\Sigma = \bigvee_X f_X: V_\Sigma \to B_\Sigma$, $\dot{f}_\Sigma = \bigvee_X \dot{f}_X: \ell_\Sigma \to S_\Sigma$, $V_0 = (V - V_\Sigma) \cup \ell_\Sigma$, and $M_0 = (M - B_\Sigma) \cup S_\Sigma$, where x ranges over all points of ΣV .

In the following, we shall denote subcomplexes of L" covering $V_0, V_{\Sigma}, \ell_{\Sigma}, \ldots$ by the same symbols $V_0, V_{\Sigma}, \ell_{\Sigma}, \ldots$, respectively.

Following the construction of normal block bundles ([8] or [3], Part I), we have a decomposition of a regular neighborhood $\mathbb{N} = \mathrm{st}(f(\mathbb{V}), \, \mathbb{K}'')$ of $f(\mathbb{V})$ in $\mathbb{M}; \, \mathbb{N} = \mathcal{V} \cup \mathbb{B}_{\Sigma}$ such that \mathcal{V} is a normal block bundle of a locally flat PL embedding $f_0 = f(\mathbb{V}_0 : \mathbb{V}_0 \to \mathbb{M}_0 \text{ over } \mathbb{V}_0 \text{ and } \mathcal{V} \cap \mathbb{B}_{\Sigma} \text{ is a restriction of } \mathcal{V}$ over ℓ_{Σ} , denoted by \mathcal{V}_{Σ} , which is a normal block bundle of $f_{\Sigma}: \ell_{\Sigma} \to \mathbb{S}_{\Sigma}$ over ℓ_{Σ} . Considering of \mathbb{B}_{κ} as to be a block over \mathbb{V}_{κ} , we shall refer \mathbb{N} together with the decomposition $\mathcal{V} \cup \mathbb{B}_{\Sigma}$ as to be a (block) stratified regular neighborhood of $f: \mathbb{V} \to \mathbb{M}$, compare with Stone [10].

For each component $\ell_{x,1}, \ldots, \ell_{x,r_x}$ of ℓ_x $(x \in \Sigma f)$ we take a longitude $\varphi_{x,i}: \ell_{x,i}^{(c-1)} \to \dot{\nu} | \ell_{x,i}^{(c-1)}$ and put $\varphi_x = \bigcup_{i=1}^{r_x} \varphi_{x,i} \text{ and } \varphi_{\Sigma} = \bigcup_{x \in \Sigma f} \varphi_x: \ell_{\Sigma}^{(c-1)} \to \dot{\nu} | \ell_{\Sigma}^{(c-1)}.$

Definition. We define relative euler class $X(\nu, \varphi_{\Sigma}) \in H^{c}(V_{0}, \partial V_{0}; \mathbf{Z})$ of (ν, φ_{Σ}) as to be an obstruction to extending the section φ_{Σ} to a section $V_{0}^{(c)} \rightarrow \dot{\nu} \mid V_{0}^{(c)}$.

On the other hand, we have multiplicity

$$m(f_x) \in H^C(V_x, V_x-x; Z)$$

of $f \setminus V_X$ at $x \in \Sigma f$. We regard of $X(\nu, \varphi_{\Sigma})$ as an element of $H^c(V; \mathbf{Z}) \ (\cong H^c(V, \Sigma V; \mathbf{Z}) \cong H^c(V, V_{\Sigma}; \mathbf{Z}) \cong H^c(V_0, \mathfrak{d}_0; \mathbf{Z})$. Let $k_v^* : H^c(V_v, V_v^{-x}) \cong H^c(V, V_v^{-x}) \to H^c(V)$ be a natural homomorphism.

Theorem 3.1 (The splitting formula for X(f)).

Suppose that $n \ge 2$. Then we have that

$$X(f) = X(\nu, \varphi_{\Sigma}) + \sum_{x \in \Sigma f} k_x^* m(f_x).$$

 simplex σ of V_0 , Φ_0 can be extended to a section $\Psi_0:V_0\to\nu$ such that for each c-simplex σ of V_0 , $\Psi_0(\sigma)$ intersects transversally to $f(V_0)$ in ν . On the other hand, since S_{χ} is (n+c-2)-connected for each point $\chi \in \Sigma V$, we can extend $\Psi_0 \mid \ell_{\Sigma}: \ell_{\Sigma} \to \nu \mid \ell_{\Sigma}$ to a PL map $\Psi_{\Sigma}: V_{\Sigma} \to S_{\Sigma}$ such that for each c-simplex σ of $V_{\Sigma} - \ell_{\Sigma}$, $\Psi_{\Sigma}(\sigma)$ intersects $f(\ell_{\Sigma})$ transversally. Moreover, chain maps

$$f_{\#}: \sum_{k=0}^{n} C_{k}(V) \rightarrow \sum_{k=0}^{n} S_{k}(\nu \cup B_{\Sigma})$$

and

$$(\Psi)_{\#}: \sum_{k=0}^{n} c_{k}(V) \longrightarrow \sum_{k=0}^{n} s_{k}(\nu \cup B_{\Sigma})$$

are chain homotopic, where $\Psi = \Psi_0 \cup \Psi_{\Sigma}$.

Let $U \in H^{C}(N, \partial N; \mathbb{Z})$ be the Poincaré dual of $f_{*}[V]$ in N. It is not hard to see that

$$X(f) = f^* \circ (j)^* \circ P_N^{-1} \circ f_*[V] = f^* \circ (j)^*(U) = \Psi^* \circ (j)^*(U),$$

where $j : N \rightarrow (N, \partial N)$ is an inclusion map.

Let σ be a c-simplex of V.

If $\sigma \in V_0$, we have that

$$X(f)(\sigma) = \Psi^{\#} \circ (j)^{\#} (U)(\sigma) = (j)^{\#} (U)(\Psi_{\#}\sigma)$$

- = intersection number of f(V $_0$) and $\Psi_{\!\scriptscriptstyle\#}\sigma$ in ν
- = $X(\nu, \varphi_5)(\sigma)$, and

if $\sigma \in V_{\Sigma} - \ell_{\Sigma}$, we have that if $\sigma \in V_{X} - \ell_{X}$ $(x \in \Sigma f)$, $X(f)(\sigma) = (j)^{\#}(U)(\Psi_{\#}\sigma)$

- = intersection number of f_#[V_x] and $\Psi_{\#}(\sigma)$ in B_x
- = intersection number of f_#[ℓ_{X}] and $\Psi_{\!\scriptscriptstyle{\#}}(\sigma)$ in S_X
- $= \sum_{i=1}^{r_{x}} \text{ linking number of } f_{*}[\ell_{x,i}] \text{ and } \partial \Psi_{\#}(\sigma) \text{ in } S_{x}$
 - = $m(\varphi_X)(\sigma) = m(f_X)(\sigma)$.

This proves that $X(f) = X(\nu, \varphi_{\Sigma}) + \sum_{x \in \Sigma V} k_x^* m(f_x)$.

§4. Proofs of Theorem and Corollary.

First of all, we would like to give a general method to get a micro-equivalence.

Hypothesis 1. Suppose that $\sigma(f) = \sigma(f')$. Then we have simplicial divisions

 $f: L \to K \text{ and } f': L \to K' \text{ of } f: V \to M \text{ and}$ $f': V \to M',$

respectively, such that there is an isomorphism $h_{\Sigma}: B_{\Sigma} \to B_{\Sigma}'$ of f_{Σ} and f_{Σ}' ; $h_{\Sigma} \circ f_{\Sigma} = f_{\Sigma}'$. By the uniqueness of normal block bundles, we may assume that $h_{\Sigma}(\nu_{\Sigma}) = \nu_{\Sigma}'$, and $h_{\Sigma} \mid \nu_{\Sigma} : \nu_{\Sigma} \to \nu_{\Sigma}'$ is a block isomorphism.

Note that if we can choose h_{Σ} so that $h_{\Sigma} \mid \nu_{\Sigma} : \nu_{\Sigma} \to \nu'_{\Sigma}$ extends to a block isomorphism $h_0 : \nu \to \nu'$, then we have the required micro-isomorphism $h : N \to N'$ of f and f' by setting $h \mid \nu = h_0$ and $h \mid B_{\Sigma} = h_{\Sigma}$. In order to describe the obstruction to doing this, we make

Hypothesis 2. Suppose that ν_Σ is trivial and there is a block isomorphism $h_0: \nu \to \nu$. Then we have a block isomorphism

$$g = h_0^{-1} \circ h_{\Sigma} : \nu_{\Sigma} \rightarrow \nu_{\Sigma}',$$

which can be identified with a semi-simplicial map $\gamma: \ell_{\Sigma} \to \widetilde{SPL}_c$ from $\partial V_0 = \ell_{\Sigma}$ to the structural group \widetilde{SPL}_c of oriented c-block bundles.

Notice that γ is null homotopic if and only if g can be extended to a block isomorphism

 $G: \mathcal{V} \longrightarrow \mathcal{V} \quad \text{such that} \quad G(u) = u \quad \text{for each point } u$ of \mathcal{V} restricted to the outside of a collar neighborhood of $\partial V_0 = l_5 \quad \text{in} \quad V_0.$

Hypothesis 3. The map γ is null homotopic.

Then we have a block isomorphism $G: \mathcal{V} \to \mathcal{V}$ as above and $h_0 \circ G: \mathcal{V} \to \mathcal{V}'$ is an extension of $h_\Sigma \mid \mathcal{V}_\Sigma: \mathcal{V}_\Sigma \to \mathcal{V}'$.

Proof of Theorem.

In case c = 1, the structural group \widetilde{SPL}_1 is obviously of the homotopy type of one point. It follows that $\sigma(f) = \sigma(f')$ implies that f and f' are micro-equivalent.

In case c=2, the structural group $S\widetilde{PL}_2$ of oriented 2-block bundles has the homotopy type of a circle $S^1=K(\mathbf{Z},\ 1)$ (refer to [8] or, partially, [3], Part II) and hence the classifying space $BS\widetilde{PL}_2$ is $K(\mathbf{Z},\ 2)$. Thus for a polyhedron Y, a homotopy set $[Y,\ BS\widetilde{PL}_2]$ (= the set of all isomorphism classes of 2-block bundles over Y) can be identified with a cohomology group $H^2(Y;\ Z)$ by $\xi \mapsto X(\xi) =$ the euler class of ξ (the primary obstruction to constructing a section of ξ over a 2-skeleton of Y). As for \mathcal{V}_{Σ} , we have that $X(\mathcal{V}_{\Sigma})=0$ and hence \mathcal{V}_{Σ} is trivial, because of the existence of a longitude. Moreover, a (total) longitude $\varphi_{\Sigma}: \ell_{\Sigma}^{(c-1)} \to \mathring{\mathcal{V}} \mid \ell_{\Sigma}^{(c-1)}$ can be taken as to be a PL embedding which extends to a trivialization $\overline{\Psi}: \mathcal{E}^2(\ell_{\Sigma}) \to \mathcal{V}_{\Sigma}$, where $\mathcal{E}^2(\ell_{\Sigma})$ is a product PL disk bundle over ℓ_{Σ} .

We have a 2-block bundle

$$(\nu, \bar{\mathbf{p}}) = \nu \bigcup_{\bar{\mathbf{p}}} \varepsilon^2(V_{\Sigma})$$

from a disjoint union of ν and $\epsilon^2(V_\Sigma)$ by identifying $\epsilon^2(\ell_S)$ with ν_Σ via the isomorphism Φ .

The euler class $X(\nu, \Phi)$ of (ν, Φ) coincides with the relative euler class $X(\nu, \phi_{\Sigma})$. The assumption $\sigma(f) = \sigma(f')$ implies that $k_X^* m(f_X) = k_X'^* m(f_X')$ for each $x \in \Sigma f$. Thus X(f) = X(f') implies that by the splitting formula, $X(\nu, \Phi) = X(\nu', \Phi')$. Since V_X is contractible for each $x \in \Sigma f$, there is an

isomorphism $h_0: \nu \longrightarrow \nu'$ such that

$$h_0 \circ \Phi \mid \varepsilon^2(\ell_{\Sigma}) = \Phi' \mid \varepsilon^2(\ell_{\Sigma})$$

if and only if $X(\nu, \underline{\Phi}) = X(\nu', \underline{\Phi}')$.

On the other hand, from the uniqueness of longitudes

$$h_{\Sigma} \circ q_{\Sigma} : \ell_{\Sigma}^{(1)} \to \dot{\nu} \cdot | \ell_{\Sigma}^{(1)}$$

is again a longitude of $f'_{\Sigma}: \ell_{\Sigma} \to S'_{\Sigma}$ which is homotopic to g'_{Σ} as sections. Since \widetilde{SPL}_2 is K(Z, 1), this implies that

$$\Phi'^{-1} \circ h_{\Sigma} \circ \overline{\Phi} / \epsilon^{2} (\ell_{\Sigma})$$

represents a trivial element of $(H^1(\ell_{\Sigma}; \mathbb{Z}) =) [\ell_{\Sigma}, S\widetilde{PL}_2]$. Thus $h_0^{-1} \circ h_{\Sigma}$ (identified with $\overline{\mathcal{P}}'^{-1} \circ h_0^{-1} \circ h_{\Sigma} \circ \overline{\mathcal{P}}$) represents the trivial element of $[\ell_{\Sigma}, S\widetilde{PL}_2]$. It follows that by the arguments above we have a micro-equivalence $h: N \to N'$ of f and f'.

Suppose that we are given V, P, ξ and g: $(V)_P \to \mathbb{R}^{n+2}$ as in the explanation of Theorem. The micro-equivalence class of g at the singular set $\Sigma g = P$ is represented by

$$g_{\Sigma} : V_{\Sigma} \to B_{\Sigma}$$
.

Let $\Phi : \varepsilon^2(\ell_{\Sigma}) \to \nu_{\Sigma}$ be a trivialization of a normal block bundle ν_{Σ} of $\dot{s}_{\Sigma} : \ell_{\Sigma} \to s_{\Sigma}$. On the other hand, we have an oriented disk bundle η over V such that $X(\eta) = \xi$. By the same reason as above, we have a trivialization $\Psi : \varepsilon^2(V_{\Sigma}) \to \eta \mid V_{\Sigma}$.

We construct a compact oriented (n+2)-manifold M from a disjoint union of $\eta \mid V_0$ and \mathbf{B}_{Σ} by identifying $\eta \mid \ell_{\Sigma}$ and ν_{Σ} via an isomorphism $\Psi \circ \Phi^{-1} \mid \nu_{\Sigma} : \nu_{\Sigma} \to \eta \mid \ell_{\Sigma}$, and a PL embedding $\mathbf{f} : \mathbf{V} \to \mathbf{M}$ by setting

$$f \mid V_0 = \text{the zero-section of} \quad \eta \mid V_0$$

 $f \mid V_{\Sigma} = g \mid V_{\Sigma}$.

and

It is clear from the construction that M and f are the required ones, completing the proof.

<u>proof of Corollary.</u> We take stratified regular neighborhoods $\nu \cup B_{\Sigma}$, $\nu' \cup B'_{\Sigma}$ of C, C' in S, respectively. First of all, from the assumption that (S, C) at Σ C and (S, C') at Σ C' are micro-equivalent, we take an orientation preserving PL homeomorphism

$$h_{\Sigma}: (B_{\Sigma}, C_{\Sigma}) \rightarrow (B_{\Sigma}', C_{\Sigma}').$$

We put $\Sigma C = \{x_1, \dots, x_s\}$ and $\Sigma C' = \{y_1, \dots, y_s\}$, where $y_i = h_{\Sigma}(x_i)$, $i = 1, \dots, s$. We may assume that $h_{\Sigma} \setminus (B_{x_i}, C_{x_i})$ is a cone extension of $h_{x_i} = h_{\Sigma} \setminus (S_{x_i}, \ell_{x_i})$ for each x_i .

Now let $\rho:\widetilde{C}\to C$ and $\rho':\widetilde{C'}\to C'$ be normalizations of C and C', respectively. By ([4], Theorem B), we have that

$$\chi(\tilde{c}) = \chi(c) + \sum_{i=1}^{s} (r_i - 1) = (i * c^{1}(s) - X(i)) n[c] + \sum_{i=1}^{s} \mu_i + \sum_{i=1}^{s} (r_i - 1)$$

 $= c^{1}(S) \operatorname{Ai}_{*}[C] - \langle i_{*}[C], \ i_{*}[C] \rangle + \sum_{i=1}^{S} (\mu_{i} + r_{i} - 1),$ It stands for the suliz number, where $\int_{C} c^{1}(S)$ is the first chern class of S, $i:C \rightarrow S$ is an inclusion map, $\langle i_{*}[C], i_{*}[C] \rangle$ is the self-intersection number of $i_{*}[C]$ in S, \mathcal{H}_{i} is the Milnor number at the singular point x_{i} and r_{i} is the number of connected components of a link $\ell_{x_{i}}$ of x_{i} in C.

Note that μ_i and r_i are invariant under micro-equivalence of (S, C) at x_i . From the assumptions that $i_*[C] = i_*[C']$ and (S, C) at Σ C and (S, C') at Σ C' are micro-equivalent we have that $\chi(\widetilde{C}) = \chi(\widetilde{C}')$. Hence there is an orientation preserving PL homeomorphism

$$\widetilde{g}: \widetilde{C} \to \widetilde{C}'$$
.

Since $\rho^{-1}(C_{x_i})$ is a disjoint union of disks $\widetilde{C}_{i,j}$, $j=1,\ldots,r_i$, for each $i=1,\ldots,s$, by the homogeneity of disks on a connected surface we may assume that $\widetilde{g}(\widetilde{C}_{i,j})=\widetilde{C}_{i,j}'$ for i,j. By the isotopy theorem of PL homeomorphisms of PL balls, we may further assume that

$$\rho' \circ \widetilde{g} \mid \widetilde{C}_{i,j} = h_{\Sigma} \circ \rho \mid \widetilde{C}_{i,j}$$

refer to [2]. Therefore $\widetilde{g}:\widetilde{C}\to\widetilde{C}'$ gives rise to a PL homeomorphism $h:C\to C'$ extending h_{Σ} so that $\sigma(i)=\sigma(i'\circ h)$. Since $[C']=h_{*}[C]$, we have that $X(i)=h^{*}X(i')$. Therefore, by Theorem, i and $i'\circ h$ are micro-equivalent, completing the proof.

Remark 2. The formula;

$$\chi(\widetilde{c}) = c^{1}(s) \cap i_{*}[c] - \langle i_{*}[c], i_{*}[c] \rangle + \sum_{i=1}^{s} (\mu_{i} + r_{i} - 1)$$

in the proof above is equivalent to the adjunction formula;

$$2 - 2g(C) = -(K + C) \cdot C + \sum_{i=1}^{S} 2S_{i}$$

in the theory of complex curves in complex surfaces by passing to the Milnor-Jung formula;

$$2\delta_{i} = \mu_{i} + r_{i} - 1,$$

refer to Serre ([9], Lemma 2, p.74) and Milnor ([6], Theorem 10.5), where K and C are the canonical line bundle of S and the line bundle over S determined by a divisor C, and g(C) is the genus of $C \equiv$ the genus of \widetilde{C} .

Remark 3. Let V be a complex analytic subset with isolated singularity of a complex manifold M. For a point x of V, suppose that $\dim_{\mathbb{C}} V_x = n$ and $\dim_{\mathbb{C}} M = n+c$.

According to Barth [1], if $n-c-1 \ge 0$, then a link ℓ_x

of x in V is connected. Therefore, the multiplicity of V in M at x vanishes, provided that $n \neq c$.

Remark 4. Let $f:V\to M$ be a PL embedding with isolated singularity of an n-polyhedron into an oriented PL (n+c)-manifold. Suppose that $V-\Sigma f$ is oriented but not connected. Then we have the irreducible components V_1,\ldots,V_r of V as the closures of all the connected components of $V-\Sigma f$. Putting $f_i=f\mid V_i$, we have that $\Sigma f_i=\Sigma f \wedge V_i$. In case $c\le 2$, since the complete set of invariants of each f_i is induced from the complete set of invariants of f by the restriction, it follows that Theorem still holds in case $V-\Sigma f$ is not connected. However, Corollary should be modified as follows;

Corollary*. Let C and C' be complex curves in a complex surface S with irreducible decompositions $C = C_1 \cup \cdots \cup C_r$ and $C_1 = C_1 \cup \cdots \cup C_r$. Suppose that C_1 and C_1 represent the same homology class in S for each $i = 1, \ldots, r$. Then, there is a micro-equivalence of (S, C) and (S, C') inducing micro-equivalences (S, C_1) and (S, C'_1) , $i = 1, \ldots, r$, if and only if there is a micro-equivalence of (S, C) at ΣC and (S, C') at ΣC inducing micro-equivalences of (S, C_1) at ΣC_1 and (S, C'_1) at ΣC_1 respectively.

Remark 5. Let V be a complex hypersurface in a complex projective (n+1)-space \mathbb{P}^{n+1} . If $\Sigma V = \emptyset$, then the diffeomorphism class of an oriented pair (\mathbb{P}^{n+1}, V) is completely determined by the homology class of V in \mathbb{P}^{n+1} (or the degree In([12], Chap. 11, §3, p.14 and §5), Zaroski gives an example of a curve V (n=1) of V). such that the micro-equivalence class of (\mathbb{P}^{n+1}, V)

 \neq the PL homeomorphism class of (\mathbb{P}^{n+1}, V) .

References

- [1] W. Barth, Lokale Cohomologie bei isolierten Singularitäten analytischer Mengen, Schrift. Math. Inst. Univ. Münster 5 (1971).
- [2] V. K. A. M. Gugenheim, Piecewise linear isotopy of elements and spheres I, Proc. London Math. Soc. 3 (1953), 29-53.
- [3] M. Kato, Combinatorial Prebundles Parts I, II, Osaka J. Math. 4 (1967), 289-303, 305-311.
- [4] M. Kato, Approximating a complex hypersurface with isolated singularity by an almost complex submanifold, Sci. Papers College Gen. Ed., Univ. Tokyo, 26 (1976), 51-58.
- [5] M. Kato, Elementary topology of analytic sets, Sûgaku, 25 (1973), 38-51 (in Japanese).
- [6] J. W. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies 61 (1968).
- [7] H. Noguchi, One flat submanifolds with codimension two, Illinois J. Math. 13 (1969), 220-223.
- [8] C. Rourke and B. J. Sanderson, Block bundles, I, II, III, Ann. of Math. 87 (1968), 1-28, 256-278, 431-483.
- [9] J. P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959.
- [10] D. A. Stone, Stratified polyhedra, Lecture notes in Math. 252 (1972), Springer-Verlag.
- [11] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. 78 (1962), 501-526.
- [12] O. Zariski, Algebraic surfaces, Exychnesse der Mathematik, (vol. 3, No. 5, Springer Verlag, 1935,) Second supplemented edition; vol. 61, 1971.