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NORMAL EULER CLASSES OF PL ENB3EDDINGS

WITH TSOLATED SINGULARITY

By Mitsuyoshi KATO

§1. Introduction. We shall say that a PL embedding £

V — M of an n-polyhedron V into a PL (n+c)-manifold M has

isolated singularity, 1if there is a set P of isolated points

of V such that for each point x of V-P, there is an open

neighborhood U~ of f(x) in M such that (Ux, er\f(V)) is

n+c

PL homeomorphic to the standard pair (R s R” x 0) of

euclidean (n+§% and n-spaces. Singular set >f of the embed-

ding f 1s the minimal set P. Regular part of f 1s a locally

flat PL embedding fIYf—‘Zf' of a PL n-manifold V- 2f into
M. In this paper, we shall restrict ourselves in the case where
M 1is oriented and V 1is an oriented PL n-variety, namely,
V- Jf 1is connected and oriented.

A second PL embedding f' : V —> M'" with isolated singu-
larity of the PL n-variety V into an oriented PL (n+c)-

manifold M' 1is micrc-isomorphic to f at a subset Q of V,

if there are neighborhoods U and U' of f(Q) and f(Q') in

M and M', respectively, and an orientation preserving PL

homeomorphism h : U — U', called micro*isomorphish of f and
' at Q, such that

-1

ho f(u) = £'(u) for all points x of £ “(U).

In case V = Q, we shall say that f and f' are micro-
isomorphic. The micro-isomorphism (at Q) of embeddings of V
is clearly an equivalénce relation,

If Sf=¢ , then f is a locally flat PL embedding of

a PL n-manifold V into a PL (n+c)-manifold M and the
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micro-isomorphism class of £ 1s just the isomorphism class of

& normal blcck bundle of f, which i1s classified by the homotopy

class of its classifying map (see Rourke and Sanderson [8]).
PO2f# ¢ ,- we have obviously two invariants; the micro-

isomorphism classes of f at V- 2V and at 2V, respectively.

The latter will be called singularity of f and denoted by ¢ (f).

Moreover, we may define normal euler class X(f) € HC(V; Z) of

f as to be a pull back of the Poincaré dual of the image of the
fundamental class. of V 1in M.

Assuming that V is a PL n-manifold (and hence ¢ =1 or
2 by Zeeman's unknotting theorem [11]), Noguchi [7] classified
essentially the micro-isomorphism classes of such PL embeddings
in terms of the singularities and the normal euler classes. As
is seen from his proof in case n = c¢ = 2, the normal euler class
is linked to.both of the structure of a normal blockbbundle of
the regular part and the singularity.

It is our purpose in this paper to split the normal euler
class into a certain relative euler class of the normaliblock
bundle and (local intersection) multiplicity of the singularity.

For this, we shall prove existence and uniqueness of longitudes
for locally flat PL embeddings of closed oriented connected PL

"manifolds into oriented spheres. This notion of longitude
generalizes that of longitude for classical knots (see §2,
Theorem 2.1). This enables us in §3 to define the notion of
multiplicity of £ at a singular point x as an invariant of
the singularity of £ at x, and to pfove the splitting formula
for the normal euler class (see Theorem 3.1). 1In §4, we shall

extend the classification of Noguchi as follows;
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Theorem. ~ Let £ : V — be a PL embedding wilth isolated
singularity of a compact oriented PL n-variety V into an
oriented PL (n+e)-manifold M.

(1) If c =1, fhen the singularity ¢ (f) 1is the complete
invariant of the micro-isomorphism élassvof f.

(2) If ¢ =2, then {r(f), X(f)} is the complete set of

invariants of the micro-isomorphism classes of f,

More explicitly, the statement (2) in Theorem means that a
second PL embedding f° :'V —; M'" is micro—isomorbhic to °f
if and only if X(f) = X(f') and o(f) =o0(f'), and furthermore,
given a compact polyhedron 'V such that for a subpolyhedron P
of V of dim P £ 0, V-P 1is an oriented PL n-manifold, then
for any cdhomology class ge H2(V; Z) and for any PL embedding
g : (v)P — R™?  4ith 1solated singularity around P such that
S =P, there is an oriented PL (n+2)-manifold M and a PL

g
embedding f : V —> M such that o(f) =o(g) and X(f) = &

Now let V Dbe a compact complex variety with iéolated
singularity in a complex manifold M. Then a pair (M, V) admits
unique oriented triangulation compatible with its complex analytic
Whitney stratification, which will be dénoted by the same symbol.
(M, V), refer to [5], p.44, Th.7). We shall say that a second

pair (M', V') at Q'c V' is micro-equivalent to (M, V) at

Q CV, 1if there are open neighborhobds VQ ana Vé, of Q

and Q' in V and V', respectively, and an orientation preserv-
ing PL homeomorphism h : Vg = V4 such that h(Q) = Q',

and 1 and 1i'oh are micro-isomorphic at Q, where i : V — N
and i' : V' — M are inclusion maps., If V 1s a hypersurface
in M, then by Theorem, (M, V) and (M', V') are micro-

equivalent if and only if there is an orientation preserving PL

homeomorphism
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g : V— V' such that o(i) =c(i'eg) and g'X(1') = X(1).

PL

Tn general, it would be a deep problem to find a such

nomeocomorphism g.

Nevertheless, in case V and V' are Curves in a complex

surface we have

Corollary to Theorem. Let C and C' be compact irreducible

complex curves in a complex surface S.

Suppose that C and C' represent the same homology class
in S§. Then (S, C) and (8', C') are micro-equivalent if and
only if (S, C) at QZCv and (S, C') at ZC' are micro-
equivalent, where 2C and £C' are singular sets of C and
C', respectlvely. |

In particular, if 8 = §8' is a complex projective plane
P2, then (92, C) and (PE, C') are micro-equivalent if and
only 1 they are micrc-equivalent at singular sets and have the

same self-intersection number.

§2, Longitudes and multiplicity.

Let F : M — Sm+c be a locally flat PL embedding of an
oriented closed PL m-manifold M into an oriented (m+c)~sphere.
Let » be a normal c-block bundle of F over a simplicial
divislon K of M, and let P be a (c-1)-sphere block bundle
associated to » (for block bundles see [8]). We shall denote

the total space of a block bundle § by the same symbol ¥ .

Defirition. For a block bundle £ over a complex L, a PL
map ¢ [L} — £ is a (block) section of £, if ¢(e) £ E&

(the block over ¢ ) for all 6 &L.

Camte

It 1s known that for the PL embedding F : M — S , the
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normal sphere block bundle Y over K admlits a section over

the c-~skeleton K(C) of K, since its euler class vanishes.

We would 1like to specify a section of Y restricted to the (c-1)-

(e-1) of K which extends to a section of Y

(ec)

skeleton K

restricted to the c-skeleton K of - K by making use of the

Alexander duality in Sm+c.

(1) Suppose that M is connected.

x(e-1) (c-1)

1s a longitude
c-1
of F: M — S™C  if an induced chain map ¢y 2, C(K) —>

: : : k=0

Definition. A section e — ’K

c-1
Z:Sk(ﬁ) can be extended to a chain map
K=0 |
c. c
3: 5 0(05K) — 3 5,.(E),
k=0 k=0

where Ck<K) is a simplicial k-chain complex of K, §,.(X) for
E

m+c

a space X is a singular k-chain complex of X, =8 - Intwy

and 0%#K- 1s a cone complex of X 'with vertex 0.

+ g
Theorem 2.1. Let F : M-—38"% bea locally flat' PL embed-
. ding of an oriented closed connected PL m-manifold into an
oriented (m+c)-sphere. Then for any normal block bundle » of

F  over a simplicial diviSiQn K of M, there is a longitude

¢ K(Cfl) —s Q}K(O—l) of F unique up to homotopy of sections.
_Proof. We have that by the general posltive reason
Wﬁ(sm+c;'E) =0 for all 1€ c-1,

and by the Alexander duality,
H, (E, v]je) =0 for all i ¢ c-1,
and
Hc_l“’“‘) >H ,(E) =7,

\ .
since M 1is connected. Since R&(V}<r) g'7ti(E) = 0 for



K(c—l) (c-1)

i £ ¢c-2, we have a section Yo v | x whose
c-1
induced chain map y@ : Z_C (K) — 2. 8 (u) can be extended
k=0 k=0
to a chain map
, - c=-1
T : Zc(om)—»Zs()

c 2 c '
In order to extend YE! E:C (0%K) to a chain map ji.Ck(O*K) —
k=0

c
ELSK(E), we have an obstruction theory with coefficients in
K={0

c 1(u; Z) = Z over a simplicial chain complex O0x%K. Since
02K is acyclic, it follows that U?IEZ C,(0#K) can be extended

to a chain map
i3 S
¢: 2 ¢, (0sK) — > 8 (E).
k=0 k=0
From the fact that H, ;(E, ¥|¢) =0 ana 7w __ (¥]e) =
1(910—; 2) = 7 for all ¢ € K, we may assume that
3() € Sc_l(PlO‘) for each (c¢c-1)-simplex ¢ of K,

c-1
and 3| 2 C, (K) 1is induced from a section
k=0 ’

(c-1) (c-1)

? : K S LlK s
‘which is the required longitude.
Now let @' : gle-1) _, v lK(c_l> be a second longitude
of F. &Since i’lf‘ is (c-2)-connected for each simplex ¢ of
K, we have a homotopy ? : ?>|K(C—2);z<p'| K(c_2) of sections

which induces a chain map of degree 1
c=-2 c-1 .
Zc (X) = 38,0
k=0 k=1
such that

7#(6)6 S, ., (Ple) and 37#(5) = 7#(ar)+'?%(¢)"?#(6)

&

for each k-simplex (k © ¢-2) ¢ of K. By the same reason as

k+1

c-3 :
above, | Q#i 2 Ck(K) can be extended to a chain map of degree 1
k=0 '

-6 -
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c-1 _g
92 N ck<o~rzx) —> LSK(E)
k=0 k=1
such that

72(aﬁ e Sc_l(ﬁ]oﬁ for each (c¢-2)-simplex o of K

c-2 '
and N )g; Ck(K) is induced from a bomotopy £ ¢ ‘K(c—2)2:

=0

(=2)  of sections. Let d(¢, ¢') Dbe an obstruction to

¢ X
extending the homotopy g to a homotopy ?:k'?‘ of sections.
Then we have that for each (c—l)—simplex o of K, |
dlp,¢") () = L(F,[M], 7,06)+¢,(0)-p,(0))
(1linking number of F#[M] and 7#(2¢)+?%(6O—7%(0ﬁ in Sm+c)
= L(F#[M],97K¢0) = 0,

since 7)(c) € SC(E), where [M] 1s the fundamental class of
M. Hence - ¢ and ?' are homotopic as sections, completing

the proof.

Remark 1. By the last arguments in the proof above,

a longitude p: K(c_l) — i']K(c—l) can be extended to a section
g : k() — px(e),

(2) Suppose that M 'is not connected.

8

Let Ml’ vens Mr be.the connected components of M and
let »3 be a normal block bundle of Fi = F| Mi over é simplicial
division Ki of Mi' For each i =1, ...,r, we have a longitude
P, K§0'1> — i)lxgc‘l) of F, : M, — sP*C. We put E; =
R y; and Eij (= Eji) = E, - Int pﬁ. Note that
Hk(Eij) =0 for k ¢ c-2 and Hc_l(Eij) > H,_, (B ©H,_,(Ey)

& 728 2. For each 1, j, we have an obstrcution mj(?i)é
P .
c - ; ‘ .
C (O*Ki’ Ki’~hc—l(Eij)) to extending (?i)# to a chain map

c
Ck(O*Ki) —> k=Osk(Eij). Since ?i is a longitude .of F,

5o
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and unigque up to homotopy of sections, its cohomology class,
denoted by the same symbol mj(?i), is well-defined as an element

c
of H (O*Ki,

cohomology class

_ - uClns .
ﬁi, Hc—l(EJ)> H (OwKi, Ki,,Z). Thus we have a

r
= ¢ Ea .
m(goi) = j%lmj(?i) € H (0xM;, M, ; Z)
and a cohomology class

r
m(F) = 3 m(g) € H°(0sM, M; 2).
i=1

Let fo = 0%F : O¥]M —> O'%Sm+C be a cone extension of F.
Regarding of m(F) as an element of HC(O*M, 0xM-03 2) (by

deformation retraction M =¥ 0%M-0), we shall call the class m(F)

as to be (local intersection) multipliclty of fO at 0 and denot
it by m(fo). The following will be proved by the standard argumen

and the proof will be‘left to the reader;

Proposition 2.2. (1) The multiplicity m(fo) is invariant

under micro-isomorphlsm of fo at 0.
(2) If ¢ & (m+l) +1, then m<fo) = 0,
(3) If ¢

L]

m+l (m 2 1), then we have that for each local

orientation [O*Mi] € H (O*Mi, O*Mi—O; 7y,

m+1

(£ )([om.1) = > L(F [m (¢.),[M.1) (in s2™1)
miLy Myl = 2 LT 0, U )l in :

J=1
J#L

(4) In particular, if r = 1, then m(fo) = 0,

§3. Normal euler classes and the splitting formula,

Lg} £f: V-—-M be a PL embedding with isolated singularit

of a compact oriented PL n-variety V into an oriented PL

(n+c)-manifold M. Suppose that n <€ 2. The fundamental class
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[v] € HF(V; Z) = Z of V is determined by the orientation of

V- Z2V.

Definition. We define euler class X(f) of f as to be an

integral cohomology class

X(f) = £¥ o 3% o P

1 .
woofxlVl e HS(v; 2),

where P HC(M; Z) — H_(M; 2) is the Poilncaré duality isomor-

U n
phism of M determined by the orientation of M, and J' : M —

(M, ?M) 1is an inclusion map.

Let f : L — K be a simplicial division of the PL
embedding f : V = L] — M = |K|. Then a singular set 3 f of

f consists of vertices of L. For the second barycentric

subdivisions X", LY of K, L and for each point x of 2f,

we put
v, = st(x, L"), B, = st(f(x), K"), ﬁx = fx(x, L"),
S, = &k(£(x), k"), f_ = f}‘vX : V., —> B, and
fx = f !fx : EX —> Sx'

Note that fx is a closed PL (n-1l)-manifold. (called a

link of x 1in V), B, is a PL (ntc)-ball whose boundary

aBX7= SX is a PL (n+c-1)-sphere and fx : VX — B, is a

of a locally flat PL embedding fx : EX - Sx' We put

v =.%{va, B£=\;<JBX, SZ=LX/SX_, QZ=\'§()'€){’ i =L}j{f

pN x X

VZ_.——->B f}::%{)f

s> i dg =85, Vo= (V-Vy) ULy, and

1 = M-B.) VYV " » . . .
-MO (M Bl) Sz, whe_e_ X ranges over all points of V.
In the following, we shall denote subcomplexes of L" covering

VO’ Vs, lz, ... Dby the same symbols VO, Vi, ) respectively.

Z"'f’



o4

Following the construction of normal block bundles ([8] or [3],

Part I), we have a decomposition of a regular neighborhood

—
=
i

st(f(Vv), K") of f(V) in M; N =Y U By such that » 1is
a normal block bundle of a locally flat PL  embedding fo =

flv, @V, — M

0 0 0 over VO and rn %Z is a restriction of p

over [E , denoted by Vs which is a normal block bundle of

.ﬁ.\ . 4 el " . i i : .A
s Ls Sy over fz Considering of B, as to be a block
over Vx, we shall refer N together with the decomposition

yu By as to be a (block) stratified regular neighborhood of

£f:V —=M compare with Stone [10].

‘o

For each component ‘ix,l’ ...,_gx,rx of £ (x e 2°f)

we take a longitude s :.Z;cgl) — b,,ﬁic;l) and put
3 . 2 3

- .
(c-1)

X
. -1)
e = U? . and (e - u :/‘7 — ‘j(c .
LES T s tx T s b3
c : ’
Definition. We define relative euler class X(», ?Z)e H (VO’3V03 7)

cf (v, ?Z) as to be an obstruction to extending the section

—> bl Véc).

?2 to a section Véc)

On the other hand, we have multiplicity
C .
m(fx) € H (VX, VX—X, Z)
of f lVX at x € =2f. We regard of X(v, @z) as an element of

(v, 2) (2 BS(V,3V; 2) > HO(V, Vs Z,)@HC(VO, Vgs 2)). Let

i : HC(VX, Vx—x) > (v, V-x) — H%(V) be a natural homomorphism.

k

Theorem 3.1 (The splitting formula for xX(e)).

Suppose that n 2 2. Then we have that

X(£) = X(v, ¢g) + s k;m(fx).

xexf
. - . -1 .
Proof. We have a section §O : Véc 1) — yl'Véc ) extending
(c-1) . (c-1) . .
: —> . Since p|o is contractible for each

- 10 -
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simplex ¢ of VO,V §Q can be extended to a section 1_.[/0 : VO —> VY
guch that for each c-simplex & of Vov’ "\I/O(c') intersects
transversally to f‘(VO) in » . On the other hand, since S,  1is
(ntc-2)-connected for each point x € XV, we can extend \I_/O ],Ez:
[2-——>V 'IZ to a PL map \I/}__: Vg —> Si such that for each
c-simplex o of VZ —,Qz, \1}5_(0-) intersects f(,@z) transversalfy.

Moreover, chain maps
n : n
£, 5 ¢ (V) = 5 s (v VUBy)
and
B, 5 5
(B), : c (V) — > 8, (v VBg)
=0 K K=o K z
are chain homotopic, where W = P, v s .

Let U € H°(N, 9N; Z) be the Poincaré dual of f£,[V] 1in

N. It is not hard to see that
X(£) = £¥0(3)*ePyTor, [V] = £¥a(1)*(1) = F¥e ()% (1),
where J : N —> (N, 9N) is an inclusion map.

Let & be a c-simplex of V,

If -6 € V,,  we have that

x(£) (o) = Vo @) = (D ege

i

intersection number of f(VO) and \_I/#d‘ in V

]

X(v, ¢g)(¢),  and

if 6 €Vg~{sy, we have that if o€ vx—zx (x €e2T),

xX(0) (@) = (DI,

intersection number of f#[Vx] and \P#(y) in B,

fl

intersection number of f#[fx] and \_P#(G') in S

r
X

2 linking number of f,[f_ .] and 3%, () in S
Py : Xx,1 #

m(f ) (§) = m(£ ) ().

X

~
]

X

This proves that X(f) = X(v, ¢) + 2, k¥ m(f ).
. X X X
xexV



56

§4. Procfs of Theorem and Corollary.

First of all, we would like to give a general method to get

a micro-equivalence.

Hypothesis 1. Suppose that o(f) = ¢(f'). Then we have

simplicial divisions

f ¢+ L-—=+X and f' : L —» X' of f :V—=M and

£1o2V — M,

respectively, such that there is an isomorphism hZ : 32 —> Bi
of fy and f33; hgofy = 4. By the uniqueness of normal block
\ - = ' : !
bundles, we may assume that hg(Vs) v4, and hz,'?z Vs =g
is a block isomorphism. ‘
» 1
Note that if we can choose hy so that hyg lyz Py Y]
extends to a block Isomorphism ho : YV — p', then we have the
required micro-isomorphism h : N —» N' of f and f' by setting
h|y =hy and h|Bs = hs. In order to describe the obstruction
to doing this, we make

Hypothesis 2. Suppose that )Jz‘ is trivial and there is a block

isomorphism hO : Yy —p', Then we have a block isomorphism

-1
g = hO th: V}__-—>v',

which can be identified with a semi-simplicial map Y : fz_—a Sﬁic

from QVO = IZ. to the structural group Sfic of oriented
c-block bundles.

Notice that ¥ is null homotopic if and only if g can be

extended to a block isomorphism

G : Y — Y such that G(u) = u .for each point u

of ¥ restricted to the outside of a collar neighborhood of
vy = ﬁz in V.
Hypothesis 3. The map Yy 1is null homotopic.

- 12 -
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Then we have a block isomorphism G : VY — y as above and

. YA T 3 A~ . '
I St is an extension of hg )p% : L%_—> gi

Proof of Theorem.

e

‘ In case ¢ =1, the structural group. S Ll 1s obviously
~of the homotopy type of one point. It follows that ¢ (f) =o(f")
implies that f and ' are micro-equivalent.

In case ¢ =‘2, the structural group S§f2 of oriented
2-block bundles has the homotopy type of a circle Sl = K(Z, 1)
(réfer to [8] or, partially, [3],. Part. IT) and hence the
classifying space 1?5813\11,2 is .K(Z', 2). Thus for a polyhedron

Y a homotopy set [Y, BSI;I'?] (= the set of all isomorphism

2
classes of 2-block bundles over Y) can be identified with a
cohomology group H2(Y; Z) by g j—> X(E) = the euler class of

g (the primary obstruction to constructing a section of E

over a 2-skeleton of Y). As for Vs , we have that X(ys) =0
and hence 2/2 is trivial, because of the existence of a longitude.

\ . ’ o (e=1) - + 1 g(c=1
Moreover, a (total) longitude ?i oLy —_ p]lz ) can’be
taken as to be a PL embedding which extends to a trivialization
P 82(12) —> »_ , * where 82(,82) is a product PL disk
2

bundle over fz.

We have a 2-block bundle

(v,3) = » gﬁ}e?(vz)

from a disjoint union of p and 82(VZ) by identifying
52(,€Z) with Vs via the isomorphism % . v

The euler class X(», §) of (v, 3) coincides with the
relative euler class Xy, goz). The assumption 6 (f) =0o(f")
implies that k; m(fx) =k}‘i*m(f}'() for each x € Sf. ‘Thus X(£)
= X(f') dimplies that by the splitting formula, X(», }_)‘= Xy, 2").

Since VX 1s contractible for each x € 2f, there is an

- 13 -
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isomorphlism ho : Y —»p' such that
=1 .2 _ 2
hyo Bl e (ds) = 3'] € (£s)
if and only if XK(p,3) = X(w', ")

On the other hand, from the uniqueness of longitudes

. (1) ‘< (1)
is again a longitude of fé : 12 —> SZ‘ which is homotopic to

((r;'z as sections, Since Sﬁ? is K(Z, 1), this implies that
-1 =1.2
i' °h2° 2 ¥€ (22)
L. 1 o

represents a trivial element of (H (11; Z) =) [22 s SPLZJ.

- -1 o . — =1 -1

Thus hy~ ohy (identified with @' 7 ohj tho;i?) represents
the trivial element of [,(Jz, Sﬁ,zj. It follows that by the
arguments above we have a micro~equivalence h : N—N' of f

and f'.

Suppose that we are given V, P, g and g : (V)P —> an+2

as in the explanation of Theorem. The micro-equivalence class

of g at the sirgular set g = P 1is represented by

o

gE:Vz——eBz.

Let $ : EZ(EZ) —» Vs be a trivialization of a normal block
bundle Vs of Es ,{’z —> Sg. On the other hand, we have an
oriented disk bundle yi over V such that X(y) = §¥ . By the
same reason as above, we have a trivialization \p: 82('\72) —>
)'L lVZ.

" Ye construct a compact oriented (n+2)-manifold M from a
disjoint union of 72[\[0 and fz by identifying Qlfz and |
V. via an isomorphism Wod \VZ PV \[z, and a PL

2
/embedding f : V—= M by setting

f \VO the zero-settion of 7 l v,

and £flvs=elvs.

- 14 -
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Fay

1t is clear from the construction that M and [ are the

required ones, completing the proof.

proof of Corollary. We take stratified reglilar neighborhoods

yUBsg, »'U Bl of C, C' in S, respectively. First of all,

s
from the assumption that (S, C) at XC and (S, C') at XC°

are micro-equivalent, we take an orientation preserving PL

homeomorphism
he : (Bg, Cs) —> (BS, CJ).
We put 2C = {xl, ...,xs} and 2 C!' = {yl, ...?ys}, where

X

vy = hz(xi), i=1,...,s. We may assume that hg ‘(Bx.’ C i)

is a cone exten51on of h, = hg \(SX

, 4. ) for each x,.
1 L0 xy i

i
~ . ~
Now let p : C —> C and f' : C' —> C' be normalizations

of C and C', respectively. By ([4], Theorem B), we have that

~ 5 o
X(§) = x(C) + 2 (r, -1) = (1*%'(s) -x(1)) n[C]
i=1

S S
+ 2 MLt (r. -1)
1=1H1 i§=;l +

V S
eT(8) A1,L0T =<1 C], 1,[CI+ 5 v -1),
% slands fw P suler numbor, =1

where]:cl(s) is the first chern class of S8, i : C —= S is an
inclusion map, {14[C], 1,[C])> 1is the self-intersection number
of 1,[C] in s, ,ui is the Milnor number at the singular
point Xy and ri is -the number of connected components of a
link fx' of x, in C.
i
Note that ,ui and ri are invariant under micro-equivalence
of (S, C)  at X, - From the assumptions that 1,[(C] = 1}[C']
and (S, C) at XC and (8, C') at IC' are micro-equivalent
we have that x(83'= X:(g'). Hence there is an orientation
preserving PL homeomorphism
y’\z NS ~
g C—>7CT" .
- 15 -
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— N ~ Iy - 4 -—

Since p 1(C ) is a disjoint union of disks C, ., J =1, ...,r_,

b 1,0 i

i
for each 1 =1, ...,8, Dby the homogenslty of disks on a connected
‘ .,VA/ ~
surface we may assume that g(C:.L j) = C{ j for 1, j. By the
> 2

isotopy theorem cf PL homeomorphisms of PL balls, we may
further assume that

FVE lad ~
F!Oglcijj”hz()?‘ci i 05
refer to [2]. Therefore g': T —T gives rise to a PL
homeomorphism h : C — C' extending hz so that 6(i) = ¢(i'ch).

Since [C'] = ny[C], we have that X(i) = h*X(1'). Therefore,

by Theorem, 1 and i'oh are micro-equivalent, completing the

Remark 2. The formula;
s

A~
—

() = e1(s) A 1,000 ~<14lCT, 10010+ F (ayrr -D)

in the proof above 1s equivalent to the adjunction formula;

S
2-2g(C) = =(K+C):'C+ X 251
i=1

in the theory of complex curves in complex surfaces by passing to

the Milnor-Jung formula;
28, = my*ry -1,

refer to Serre ([9], Lemma 2, p.74) and Milnor ([6], Theorem
10.5), where K and C are the canonical line bundle of S
and the line bundle over S determined by a divisor C, and

g{C) 1is the genus of C = the genus of ¢

Remark 3. Let V be a complex analytic subset with isolated
singularity of a complex manifold M. For a point x of V,

suppose that dimm Vx =n and dimm M = n+c.

According to Barth [1], if n=-c-1 Z 0, then a link [

- 16 -
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of x in V 1is connected. Therefore, the multiplicity of V

in M at x vanlshes, provided that n # c.

Remark L. Let £ : V—-M be a PL embedding with isolated
singularity of an n-polyhedron into an oriented PL (n+c)-manifold.
Suppose that V- Xf is oriented but not conhected. Then we have
the irreducible componehts_.Vl, ""Vr of V as the closures of
all the connected'components of V-2f. Putting fi = f |Vi’

we have that Z:fi =2fn Vi; In caser ¢ £ 2, since the complete
set of invariants of each fi is induced from the complete set cf
invariants of f Dby the restrictibn, it follows that Theorem still
holds in case V- 2f 1is not connected.  However, Cbrollary should

be modified as follows;

Corollary*, Let C and C' be complex curves in a complex

surface S with irreducible decompositions C = CI\J.-- Ucr and
Ct = CiU ~--L)C£. Suppose that C4 and C§ represent the same
homology class in S for each 1 =1, ...,r. Then, there is a

micro-equivalence of (8, C) and (S, C') inducing micro-

equivalences (S, Ci) and (S, Ci), i=1, ...,r, if and only

if there is a micro—equivalence of (8, C) at I C and

- (8, C') at ZC' inducing micro-equivalences of (S, Ci) at

2C, and (3, Ci) at X C; respectively.

Remark 5. Let V Dbe a complex hypersurface in a complex

+1
"L If SV =@, then the diffeo-

L on+l
5

projective (n+l)-space P

V) is completely

determined by the homology class of V in Pn+1~ (or the degree

In (ElZ] , Mﬂ) 83, P\'LH- omaL £5), Zaroks g,wm an Mcwn‘»fvﬁz, a'g a cwne ¥V (n=1)

morphism class of an oriented pair (P

of V).
ouch That

n+1, V)

n+1
3

the micro-equivalence class of (P

% the PL homeomorphism class of (P V).

s
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