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SYMPOSIUM ON THEORY OF EXPERIMENTAL LAYOUTS AND

ZTS APPL:CATZONS

PIace : Research Tnstitute for Mathematical Sciences
Kyoto University, Kyoto, Japan

Date : July l4- l6, l980

Organizex : Sanpei Kageyama, Department oE Mathematics,
Faculty of School Education,

Hiroshima University

PROGRAM AND ABSTRACT

i. S. Kageyama

(Hiroshima University)

On 5-designs

Abstract: We show that an inequahty b) v(v-l)

holds for a 5-(vrkrXs) design. Furthermore, a Steinesc
system S(5e6,l2) is shown to be the unique 5-design

with b = v(v-l)r up to complementation.
N

2. M. Yoshizawa

(Kelo Unwerslty)

Block intersectzon nurabers of block deszgns

Abstract: The following results are gwen:

[rheorem l. For each n ) l and A ) l7

(a) there exist at most finxtely many block-schematic

t-(v,k,X) designs with k-t=n and t ) 3, and

(b) if also X l 2, there exist at most finitely many

block-schematzc t-(v,k,X) designs wzth k·-t=n and t l 2.
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Theorem 2. A Steiner system S(t,t+i,v) is block-gchematic

if and only if one o£ the followmg hoids: (i) t=2, (u)

t=3, v=8, (iu) t=4, v=ll, (iv) t=5, v=l2.

N. !to and H. Kimura

(Umv. of Zllinois and Hokkaido Univ.)

Hadamard rnatrices with 2-transitive automorphism groups

Abstract: We consider Hadamard matrices with

2-transitwe automorphism groups not containing regular

normal subgroups. Under some assumptions we have some

results. For example (l) the degrees of Hadamard

matrices are square; (2) automorphism groups are non-

solvabie and7 (3) they are not 3-transitive.

K. Takeuchi

(Umversity of Tokyo)

Randomzzation design Revisited
t

Abstract: RandomzzaUon Design, in which factor levels

are randomizedr was discussed by several authors includzng

Taguchi, Satterthwaite, some twenty years agor but has been

since nearly forgotten. Zn 1958 Kiefer proved that randomly

balanced extremely unbaZanced designs are optimum in terms

of the local power of the test of null hypothesisr which

£act has never been further analyzed. The author once wrote

a series of papers on this topic, and now wants to revitalxze

interests m this problem, and discusses its basic features

taking the szmplest case of comparmg means of severai normal

populations for illustration.
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K. Suda

(National Gunma Technicai College)

An automatical design and analysis system for orthogonal

expenments

Abstract: The use of fractional factorial designs

has now become widely accepted as an efficient way to carry

out experiments in 9uality Control. Howeverr one of the

main difficulties with the fracttonal factorial designs

involving rnany different factors is how to construct an

orthogonal design which can estimate various effects with-

out bezng confounded. Tn such situations, we developed the

program that can automatically construct an orthogonal

design and compute the estimates of the main effects and

interactions for any given model for micro-cornputer. We

show this automatical design and analysis system has wide

applications for improving product qua”ty.

T. Shirakura

(Kobe University)

Norm of alias matrices for (2+l)–factor interactions in

balanced fractional 2M factorial designs of resolution 22+l

Abstract: Consider a balanced fractional 2M factoriai
design of resolution 22+l derived from a balanced array of

strength 22+l. consider the norm llAll = {tr(A’A)}1/2 of

alias matrzx A for (£+1)-factor interactions m this design

This norm can be used as a rneasure for selecting a design.

rn this paper, an expliczt expression for llAll is gwen

by using algebraic structures o£ a balanced design. By

vE
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this expressioni designs of resolution V(2==2) which

mmimize llAH are presented for any fixed assembhes

satisfying (i) m == 5, 16 S N s 32, (ii) m = 6, 22 S N S 32,

and (ui) m= 7, 29 SNS 50·

Re NiShli

(Hiroshima University)

On fractional factonal designs with orthogonal structure

Abstract: Fold-over designs have been discussed as

they give the orthogonality between estimate of odd

parameter and one of even parameter. Here level-symrnetric

designs are defined, which aye given by generalization of

the concept of fold-over designs. Those designs are proved

to have the structure that any odd parameter and any even

parameter can be estimated uncorrelatedly, and it is proved

that designs with this structure must be level-symmetric

designs. i

M. Kuwada

(Maritzme Safety Academy)

On an alias relation to 3-factor interactions in balanced

fractionaZ 3M factonal designs derivabie from balanced

arrays of strength 5

Abstract: Consider a balanced fractional 3M factorial
design T denvable from a balanced array of strength 5.

By use of the multidimensional relationship and its algebra,

we wiil present an explicit expressxon for the norm of A[Dr

x.e., IIATll = {tr(AT’AT)}l/2, where AT is the ahas matnx.

ct
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Y. Ohashi

(University of Tokyo)

An application o£ ”sub-sampiing” to the robust estimation

of u (o2)

Abstract: !n this paper, a procedure utilizing B!BD

is proposed for the robust estimation of u(u2) from a normai

sample possibly with a few outiiers. An original sampie is

divided into m subsamples; m sample variances are calculated

and frorn them a robust estimate Ui (here, a wtnsorized mean)
is obtamed. Although 3i zs robust, its efficiency is
considerabiy low as compared with the usual estimatorr that

is, the sample variance, so ”sub–sampling” is repeated r

txmes, gxving 5;,”’,5i and the final estimate 52:=(2i3;)/r.
It is shown that much higher efficiency is achieved by the

systematic repetition scheme utilizing B!BD than by the

random repetition or other non-systematic schemes. Aleans

and MsE’s of 32 and 5 = conser/52 are numericany compared

with those of familiar alternatwes such as linear estimators

under the ”shppage” modei. The above procedure is applicable

to the estimation of error variance in a ”near modelr and

an applzcation to ”]ack-knife” is suggested.

1. Takahashi

(Unwersity of Tsukuba)

The least Hamming distance method applied to a file construction

Abstract: R.C.Bose and others introduced balanced fiies

based on k-dzmensionai subspaces S with strength t in GF(q)M.

We propose new filing scheme based on a subspace S fitted on

e)
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the set R of given records. ”i”he cnterion of the fitness

is the least Hamming distance and fitttng algorith is

essentially the same as decoding method of Reed Muller codes.

Il. M. Yamada

(Tokyo Woman’s Christian CoUege)

On the Wiliiarnson matrices of Turyn’s type

Abstract:

In l972 Turyn found an infinite family of Wilhamson matrices.

Namely if q = 2n-1 is a prime power E l (mod 4), then there exxsts

a Wilhamson matnx of order 4n. Whiteman gave a new proof by

2
using the trace from GF(q ) to GF(q) in 1973. In this paper we

interpret this theorem in terms of the theory of the Gauss sum

over a finite field.

we let: E = GF(q2), F = GF(q), q = pt :’ l (mod 4) and n = (q+1)/2,

SE = trace from E, SF = trace from Ft SE/F = trace from E to F,
2Xi/p

je:a generator of E*, gn : an n-th root of unityr l;p =e ·
X4 : the character of E such that X4(S) = i,

nlXn : the character of E such that Uh(g) = Sn and Xn = l,

,C= (h·Ai) = the character of E which gives the Legendre symbo1

wh en re stncted to F, ur = SI + Y-nr (r = lr ···r (n-l) /2),
s ct

?E(23) = liitllE 7((ot) ISpE = the Gauss sum over E,
sS

T, (X) = cliil I. X( o() gp = the Gauss sum over F.

Put Qu= rE(PC)/leF(X)· Then we have

eh = .(..:Etii :. F..x(o()51(sE/Foc)
n-l

= l.Z=o (-i)r{ U(sE/Fse2r) + i”x(sE/F}2r+n)} gkr
n-1

= (-,)(n+i)/2(-i+i){igi + i?l.i, ,B.gkr)·

lx



(n+l)/2 + r

where ,gS, = (-i) -in {x( sE/F S;2 r) + i” u( sE /F s;2 r+” )} (r = i, ...,
we know that ,Br is +l, -l, +i, or -i, and ./3n-r = JBr· Further zf

we put Kine” (-i)(.+i9X/2(-i+.) = iltlZ + lil.llil Askr then 2Kx2-Kx= 2q·
Therefore let A+, A-r B+, B- be a partitzon of R= {1,...,(n-1)/2}
for ,jBr = lr -lr ir -z respectively, then the Willxamson equation

4n = 2 + 2Kx2 Kx
22= l + 1 + (l+2Z ur-2:iE ur)2 + (1+2E: ur-2Z ur)2r

+ riA- reB+ reB-r6A

is true for every n-th root of unity.

We have several results on e5;. By the Davenport-Hasse theorem
we have

ei - J(x, if),
where J(X,.afI) is the Jacobi sum. And by Stickeiberger’s theoxem we

have the factozazation
-l

e,, ·v ser e–li- = .. dcr
r Bl ( ¡- 2il ’- llTt) ) ¿ OceZ*(4ne)

where 8 zs the prime ideal zn the cyclotomic field 9(S4nv) Such
‘fthat Xip, f is the smallest positive integer which sat-sfies p :. 1

(mod 4n’), Z*(4n’) is the multiplicative group of Z/4n’Z, eC! an

automorphzsm SZIn,e-¿12n, of Z*(4n’), and Bl(x) = x-l/2 zs the
Bernoulli polynomial of degree i.

!t is not settied whether we can get a new famzly of Willzamson

matrices by developing our xnteypretation.

×

n-i).



12.

l3.

l4e

K. Sawada

(Nagoya !nstitute of Technology)

The Williamson matrices of a special form

Abstract: We consider Willzamson equations of the

followmg type:

12”12”(1’2-EA.Uv-2v=tA-Uv)2”(1’2v=tB.Uv-2v=tB-Uv)2=4n’
n-lwhere A+, Ae, B+, B- is a partition Of {l,2,·e·r 2 },

corresponding to the decomposition 4n = l2+l2+a+4wl)2+(l+
24W2) e An infinite class of the Williamson matrices found

by Turyn belongs to this class. In this paper it is shown

that #A+, #Am, #B+, #B- are explicitly determined in terms

of Wl and W2. We have found that there are no Wilhamson
matrices of the above form, except for those due to Turyn,

£or n¡ 37 and for n= 61.

J. Kinoshita

(Hokkaido University)

Networks and Matroids

Abstract: This paper explains a max-flow and min-cut

theorem concerning networks with matroid restrictions in

capacity.

K. Ushio

(Nnhama Technical College)

On bipartite decomposztion of a complete bipartzte graph

Abstract: A complete biPartXte graPh Knl,n2 (nl =¡ n2)
is said to have a bipartite decomposition if zt can be

decomposed into a union of line-dis)oint subgraphs each

xi



isomorphic to a complete bipartite graph K
kl,k2 (kl E k2)·

ln this papert a necessary condition for a complete bi-

partite graph K
nl,n2 (nl E n2) to have a bipartite de-

composition is given. And several theorems which state

that the necessary condition is also sufficient in many

cases are glven.

15. S. Tazawa

(Hiroshima College of Economics)

On claw-decomposition of a complete multi-partite graph

Km(nl,n2,”’vnm)

Abstract:

Let Vl, V2,”’, Vm be point sets with nl, n2,e.e, nm point$ each. A graph

is said to be complete m-partite graph, denoted by Km(nl, n2,e”, nm), if no 1ine

joins two points in the same point set and if each point in Vi is adjacent to aLl

points of sets other than Vi. A complete bipartite graph K2(1, c) is, in par-
ticuLar, called a claw of degree c. In this paper two theorems are given, provideC

m-1 m

nl, n2,eee, nm are positive integers satisfying iil j.21+lninj/C = integer and nl :E
m

n2 E ’.’ :EL nm: (a) The case N-nm ¡ c, where N= 2 ni. Km(nl, n2,”’, nm) is
1=l

decomposed into a union of line-disjoint claws of degree c each if and only if

(N-nm)IIIIal!t -¡-. Ie.l/l j.:+ininJ/c s I:.l/iiniIN’cn2tl· Here LrJ is the greatest integer not
ex¢eeding r and rr;1 is the smaUest integer not less than r. (b) [[[he case

N’nm ) C· If Km(nl, n2,·”, nm) is decomposed into a union of line-disjomt claws
m-l m

of degree c each, then i;.i ji+ininj ) N’nm’

xvt


