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On the Riesz sums of .some arithmetical functions
S. Kanemitsu (Kyushu Univ.)

1. Introduction. The Riesz sums of arithmetical functions
a, referred to in the title, to be defined below, are frequently
used mostly for finding asymptotic formulas for the summatory

functions of 'an though they themselves are of interest. Let

«

k 2 0 be a real number and {21}

nd p=1 ¢ 185} :=1 be arbitrary

sequences of real numbers strictly increasing to infinity such

that A, > 1, 2

1 > 0. Let {an}

1 2 n=1 be any sequence of complex

numbers. Then we define

K 1 K
B = e r Ty 2a(x = Ag)

|
A~

>‘n

X

(1)
1

K —
Ag(x) = FrorIT

K
an(x - an) ’

A

L
n

X

and call Ai(x) (resp. Az(x)) the Riesz sum of order «, of the

[e]

second (resp. first) kind, associated with the series ) a, A;S
0 n=1
(resp. Z a, e ). For the special choice of X (resp. &), i.e.
n=1 ,
for An =n or Na (resp. Zn = logn or log N&) we denote

the corresponding A;(x) (resp. AZ(log X)) Dby A:(x) (resp.

Ai(x)) and call it the arithmetic (resp. logarithmic) Riesz sum

of order «, associated with the series a_ _° (resp. a, (Nz) ~ 5.
a

n=1 nn -
For the general theory of typical means of Riesz we refer to
Chandrasekharan & Minakshisundaram [3] and Hardy & Riesz [9], and

for some basic results on Riesz sums, see Karamata [12].
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Our previous intension was only to establish a general pro-
cedure by which one can obtain asymptotic formulas for Ai(x)
and A;(X) for any order «k > 0. But we can also deduce from
such asymptotic formulas of integral order a general Tauberian
theorem which shows its effect when applied to finding asymptotic
formulas for the sums of those a, whose generating functions
contain as a factor the reciprocals of some zeta-functions because
in such cases we can appeal to the zero-free regions, if any, of
the zeta-functions. A prototype of this kind of idea can be seen
e. g. in a recent work of Ivié [10]. It should be added that our
theorems are uséful to obtain asymptotic formulas with error terms
estimated uniformly with respect to some additional parameters
other than x, e. g. with respect to A= NT%-IdI or to k, as

will be illustrated in examples below.

Notations. € denotes any positive number, n a suitable
positive constant whose meaning is apparent from the context,
A, Al, ... dencte pbsitive constants depending on n = [K:Q],

not necessarily the same at each occurence.

2., Asymptotic formulas for Riesz sums and Tauberian theorems.
Theorem 1. Let g, > 0 (which we may assume without loss of

generality) be the abscissa of absolute convergence of the Dirichlet :

series ) anA;S = F(s), and for b > o, let B(b) denote
n=1 '
-b

lanlkn . Suppose that F(s}) can be continued analytically

I~ 8

n=1

to a function meromorphic in some region R' extending vertical-
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1y from top to bottom of the complex plane and bounded on the

jeft by a piecewise smooth Jordan curve T:0 = f£(t), 0 < £(t) < b,
and that all the poles of F(s) 1lying in R' are contained in

a finite part of R' and are not on T[. Take a subregion R
pounded by three line segments AB, BC, DA and that part CD

of I' with |t| £ T and T is so largé that all the poles of
F(s) are contained in R. Suppose that F(s) satisfies the

following growth conditions: there is a constant u < ¥ + 1 such

that
(1) F(s) = O(Tu+€) on AD and BC ;
(ii) F(s) = o(]t|'V(t)) on T if |t| 2 tg;
(i) F(s) = O(W(E(t),ty)) on T if lt] < tyr

where V, W are positive, integrable and V(y) = o(ye) as vy

+ «© , and t0 > 0 is some constant. Then:
I. If £(t) is given by (¢C)= log A(]t]| + 2))

£(t)

Ll

B-y(t) 2 n >0

P(t) = AL 2 (log £ 70"

with constants a, b, A, A, B such that a'> 0, >0, A>0,42> 1,
we have, by taking T = x% with a constant o > 0, to be fixed

when applied to specific problems, for any «k > T

(2) Ay (x) = Q. (x) + R} 1(x),

J —
provided that log A << (log x)l/(l+a) " for some n > 0, where

QK(x) is the sum of the residues of F(s)F(s)xS+K/F(s + K+ 1)
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in R,

xK+b(X(u+e—K-1)a + K+u

(3) Ri'l(x) = 0( x *B(b)) + ox"""w(B,4))

+ O(xK+BéA(x)),

(4) dp(x) = 6A,a',bl(X) = exp(-A(log X)l/(l+a')(log log x)_b'/(l+a'”

and u = max f(t).
|t]st,

IT. If £(t) 4is given by

f(t) = B (= constant),

then, with a constant o > 0, we have

- (5) Ay (x) = Q (x) + Ry p(x),
where
(6) Ry (x) = oGP (MHRTETLIA K5 ) 4 o R+ wie))).

Corollary 1. Suppose that the conditions of Theorem 1 are
satisfied and let g be the maximum of the real parts of poles
of F(s) in R, and r the maximal order of poles with real parts
g,and finally define 6 to be 1 or 0 according as F(s) has
a pole.in R' or not, and skl tobe 1 or 0 according as

a >0 for all n e N or not. Then

n -
(7) Ag(x) =,6Q0(x) + 08'0¢( 2 |an|) + eo(qu_llogr_lx)
X< A_ < X+Ky
n =
+ o(y_KRili(X)),

where Kk € N and i =1I or IO according to the choice of f£f(t).

Theorem 2. Suppose that the conditions of Theorem 1 are

satisfied. Then:
-f -
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m. If £f(t) is taken in the same way as in I, we have

for any K > T (taking T =.e%%y
K , K ~
(9) A (x) =P (x) + O(RX,IE(X))'
P (x) denotes the sum of the residues of _E(s) e*® in
where K S|<+l
R' and
10) RS p(x) = 0(ePX(eHETTlIoX o mXpa 1))+ 0(e™W(B,A))
+ oeP*s, (1),
With 0
B*(b) = ) ]anl exp (=% D).

n=1

IVv. If £(t) is taken in the same way as in II, we have

for any K > T

(11) Ay (x) = P (x) + R} ro(x),
where
12) RS (0 = o(ePX (e METRTLIOX oy o0k (1)) 4 0(ePF @+ w(B)).

Corollary 2. Under the assumptions of Theorem 1 and notations

of Corollary 1 we have

(13) AY(x) = Po(x) + 8'0( ] la_) + s0(ye®x"h)
x < An S xtKy

+ Oy "Ry 4 (),

where Kk €e N and i = I or IV according to the choice of £(t).

Corollary 2'. If the asymptotic formula for ) ]anl is
A, £ X
of the following shape: n
[ (.
(14) ) ’anl = x93 10g" 1y (C + o(1)),
A, S X
then

' v -
(15) Ag(x) = 6P, (log x) + 0'0(6xT log”® L)+ 006 xT10g" "1x)
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1 _-ak

+ 08 k¥ (p - gy [x'IHL

Xb+(u+e—K—l)u -1l.u

+ 140 (8 x%w (8, 8)) + o(xPs) .

For proofs of these results we use known information on the
gamma-function, etc. contained in [27]. For Tauberian theorems,

see, e. g. Postnikov [18].

3f Examples. We now state some examples.

Example 1 (For general reference regarding this examle, cf.
[13], [16], [25]). Let K be an algebraic number field of degree
n, fixed throughout, with discriminant 4. Let G = C}K be the
‘'ring of algebraic integers in K and ?’ be an arbitrary, fixed
non-zero ideal of C}} Let A%_ be the group of all the fraétional
ideals with numerators and denominators relatively prime to‘% y
and H*(%) denote the ray class group of K, i.e. the quotient of
A%_ by the group S% of principal ideals (o) with totally posi-
tive o such that o =1 (mod?%). We define the MSbius function
p(AA) on ideals in the same manner as in the rational case and for
Ze H* (“%) we put

M(x,Z) = ) u(@).
N®< x, e,

Then we have
Theorem 3 (A version of the Siegel—Waifisz prime ideal theo-

rem). If A = N%—o dl << logAx , with an arbitrary constant A,

however large it may be, we have
(16) M(x,Z) = Oy a(x exp(-a/Iog x)),
with a constant a = a(n,A) > 0 depending at most on n and A,
where the O-constant depends at most on n and A.
The proofs goes on the similar lines as those of Lemma 5 in

[4] using Fogels' results on the zero-free region of L(s,x) ([6],

[7]1). The details are omitted here.
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Remark i. The form of the reducing faétor 8 or of the
gero-free region can be generalized using Karamata's slowly oscil-
‘1ating (or regularly varying) functions (cf. Seneta [21]).

Remark 2. Now that we have a uniform estimate for M(x,R),
we can deduce asymptotic formulas by the "hypefbola method" (this
naming is due to Ahern [1]) for those arithmetical functions de-
fined on ideals which are given as the Dirichlet convolution of
some familiar arithmetical functions whose asymptotic formulas are
known. The details will appear elsewhere.

Remark 3. If we do not adhere to the uniformity of the esti-
mate, we may appeal to the zero-free regions for the zeta-functions
of algebraic number fields obtained by Mitsui [15] and Sokolovskil

[23] with the aid of which we can take a' =2/3 , b' = 1/3 in
(4) and we shall have
(16') M(x,£) = O(x exp(-a(log x)3/5(log log x)—l/s),
a = a(A,n) being a constant depending on K. In fact, this re-
sults from the following remark: Take the class fieldvcorre8pond—

ing to the ray class group H*(%&), where %&Fg; is the conductor

of X . Then from the decomposition theorem in class field theory
we have -
(17) ' CL(S) = CK(S) [ l L(s,X),

X%XQ

where on the RHS the L-function associated with yx appears. 1In
(17), CL(S) and CK(S) have the zero-free regions described above,
and L(s,Xx) are regular there, so that all the L's on the RHS
of (17) have zero-free regions of the same form. Now Corollay 2'

completes the proof.

Finally note that appealing to the results of Goldstein [8],

-7-
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we could obtain an estimate for the error term uniformly w. r. t.

n also.

Example 2. Let us consider two arithmetical functions appear-

ing in {14], the first relating to Eé%L and the second, to Euler'sg
function ¢(n). For Kk € K set
My = =5 Nagx FRe-(Log §0) < -
Since F(s) = QK(S + l)_l, we have
€ a
\PK(log X) = z TE_:EHTT(lOg x)K_n,

n=1
where a, are determined by

1

- n
Ty (8) I oa (s - 1"

n=1
Since QK(s) = L(s,xo) for %-=(9’, it follows from the analysis

of L's and Corollary 2' that
K s 4n K-n
(18) My (x) = nzl T myTeg x) T 4+ 0(8, ().
Note that (18) enables us to determine the power series co-~
efficients of C(s)—l, hence those of £(s) wusing the generalized

Euler constants Y, defined by (k € NU{0})

(19)

k ~ k
logn _ 1 k+1 log™x
o = %I log X+ Y F O( ),

HA D~

where

© k-1 o

the last being Euler's constant, thus giving another, more or less,

equivalent proof of Briggs & Chowla's result [2]: Actually, by

(19) and the 2nd Mobius inversion formula we get a relation bet-
m+1l

ween (M, ~(x) and ¢n§(x) for 1 £ n £ m, whence follows

-8 -
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n-1 r
(-1) =
an+1 T rEO r! 'Yr qn-r 0,
or letting
£(s) = —0— + § A (s - 1"
s -1 n ’
n=0
we see that
‘ n
. -1
(21) a =+ Ly .

Next, for m 2 0 and «k » % let

¥ wermy = 1 ¢ (n),. m K
;cba(x,m) = TT(—_I_—']—_T o Z « (—-n—)n (x = n) .
Then =
0 (=™ s (%))
Koo - I'(m + 1) m+K+1 A !
(22) @a(x,m) T + m + 2)2(2) + O(xm+K_l/2+€)

the latter being valid on the assumption of the Riemann hypothesis

(abbreviated: on the R. H.).  Using this and writing ©&(x) = Qg(x;l)
= —éf x2 + E(x), we have by partial summation
" X O(x26)
J1 SRS o (x>/2%¢€) on the R. H.,

which is, by a result of Segal [20], equivalent to

(23) ¥ E(n) = 3% + 066)

n < x B —;;7 O(x3/2+€) on the R. H.
(23) gives 4.109 & 4.110 in [14]. Pinally, write @g(x;O) = —Ej x
+ H(x). Then, using (22), we get "
(24)  H(X) = x 'E(x) + 0(8) = 0((log x)%/3(log log x)1*€)

by saltykov's result [19]. Other results concerning ¢ will ap-

pear elsewhere.

Example 3 (Piltz's divisor problem). For the summatory func-
tion of dk(n) one can obtain an asymptotic formula of the same

nature as that of Karacuba [11]. Note the slip on p. 481,%.11.
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Addenda. We add some more examples to which our theorems
are applicable: ' ]

Example 4. The characteristic function of the set of M-void
integers.. Let M be a fixed subset of N with the least ele-

ment > 2. A positive integer n is called M-void (M-leer) if

among the exponent of its canonical decomposition there do not
appear any element of M. This includes the concepts of square-
free, cube-free,..., k-free,... integers.and others. Our theorems

provide all the results contained on pp.66-106 in [24].

Example 5. Ivié's‘generalization of von Mangoldt's function.

Example 6. The characteristic function of the set of square-

full integers, where a positive integer n is called square-full
if p2|n for every prime factor p of n.

etc.
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