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DUALITY OF CUSP SINGULARITIES
By Iku NAKAMURA

INTRODUCTION

Arnold introduced the notion of modality of an
isolated singularity (roughly the number of moduli)
and classified isolated singularities of small moda-
lity. Zero-modal hypersurface isolated singularities
are Kleinian aingularities Anf Dh, E6’ E. and E,.

7 8
One~modal (unimodular) hypersurface isolated singula-

rities are simple elliptic singularities EG' §7, ﬁg,
14 exceptional(singularities and cusp singularities

Tp,q,r with (1/p)+(1/q)+(1/r)<l. Moreover he reported
that there is a strange duality of the 14 exceptional

singularities, which was made clearer later by Pinkham
[10]. The purpose of this note is to ‘show that there

are similar phenomena for the remaining unimodular

singularities. See [5], [6] and [7].

§1 THE STRANGE DUALITY OF ARNOLD
We consider the following germs S and S' of iso-

lated singularities at the origins;
s : x°z + y3 + 2% = 0o, s': x> & y8 + 2% = 0.
S and S' are among the 14 exceptional unimodular singu-

larities. Let f = xzz + y3 + 24, g = X3 + Y8 + 22-
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bz(Sé) 14 and there are bases S EARRTIT and f1,°",

f14 of Hz(st,zz) and H,(S!, Z ) such that their inter-

2
section diagrams are T3'3'4 + H, T2'3'9 + H where

H= (0 1
1 o0
3 4
T : 0-0-0-0-0-0
3,3,4

9
-0-0-0-0-0-0-0-0-0 .

{

We call therefore (3,3,4) and (2,3,9) the Gabrielov‘nqm—

IS
(o]

w O

O-0-

bers of S and S' and write Gab(S) = (3,3,4) etc. On the
other hand we have resolutions of S and S' with excep-
tional sets consisting of 4 nonsingular rational curves

as below;

where‘each line denotes a nonsingular rational curve, a
negative integer beside it denotes the self intersection
number of the curve. We call therefore (2,3,9) and (3,
3,4) the Dolgatchev numbers of S and S' respectively and

we write Dolg(S) = (2,3,9) etc. So we have

Gab (S) Dolg(S'), Dolg(S) = Gab(s').
For a Dolgatchev triple (p,q,r) of an exceptional singu-
larity U we define A(U) = pgr-pg-ar-rp. Then we have
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A(S) = A(s').

This is part of the strange duality of Arnold.

52 T3 4,4 AND T, 5 ¢

We denote by Tp q,r a germ of an isolated singular-
ras

ity
<P + yq + 2% - xyz = 0
at the origin. Here 1/p + 1/q + 1/r < 1. We define

. - ' et 1 e
deg(Tp'q,r) p+g+r, lndex(Tp,q'r) (p-1,9-1,r-1),

—4 — - — - *=
A(Tp,q,r) pgr-pg-qr-rp. Let T T3'4'4, T T2,5,6'

First we resolve the singularities. Their exceptional

sets in their minimal resolutions are cycles C = C1+C2,
C* = Ci+C§+C§ of nonsingular rational curves with self-
intersection numbers described below,

T T*
* *
| CI C3
¢y C, -2 -3
-3 -4
/ * \
c3
-3

By blowing up the former once we obtain a cycle C'

= Ci+Cé+Cé of nonsingular rational curves with Ciz = -1,
Céz = -4, Céz = -5 where Cé and Cé are proper transforms
of Cl and C2. Now we define cycle(T) = (1,4,5) and

cycle(T*) = (2,3,3). Then the first duality of T and

T* is



index (T) = cycle(T*), cycle(T) = index(T¥*).
The second is |

deg (T) + deg(T*%) = 24
although it is still unclear why this is part of the dua-
lity.. The third is |

A(T) = A(T*).

The intersection matrices of C and C* are

= - *C* = - *
(c;ep) = [-3 2}, (cfep) = (-2 11
2 -4| 1-3 1
1 1 -3

whose determinants are equal to A(T) or A(T*) up to
sign. Next we consider continued fraction expansions.
Let w = [[3,4]]. By definition

w=3 - — =3 -1 _ _(3+/8) /2.
4 - —1 4 - %

Then 1/w = [I[1,2,3,2,3]]. Since (2,3,3) and (3,2,3) are
identified by the cyélic permutation of the irreducible
components C;, we may identify (2,3,3) and (3,2,3).

Conversely if we start with w* = [[3,2,3]] for instance,

then we obtain 1/w* = [[1,2,4,3]]. This is the fourth
duality of T and T*. Finally we reconsider the excep-
tional sets in the minimal resolutions. The cycles C

and C* ‘are so-called fundamental divisors of the



singularities T and T*.v So we define Deg(T) = -C°,
Deg(T*) = —(C*)Z. Then Deg(T) = 3 and Deg(T*) = 2. The
fifth duality is |

Deg(T) = the number of irreducible components of C*,

Deg(T*) = the number of irreducible components of C.
The duality shown above looks like the strange duality
of Arnold very much. In factA(3,4,4)‘and (2,5,6) are
Gabrielov and Dolgatchev numbers of'one of the 14 excep-
tional singularities. By interpreting the above duality

suitably we can see a similar kind of duality for

Ty,3,6'T2,4,4'T3,3,320d I, 5 5 5 (inrother words ﬁa,
E,, E¢, Dg).
§3 DUALITY THEOREM
Let Hp,q;r,s be a germ of an isolated singularity
x4+ wh = yz, y3 4 2% = xw

at the origin where p,q,r,s are integers > 2, at least

one > 3. Let T =1 We define deg(T) = p+g+r+s,

p.q,r,s’
index(T) = (p,q,r,s), A(T) = pgrs - (p+r) (g+s). Let C
the

be the exceptional set (the fundamental divisor) of T EE\
minimal resolution of T. C is a cycle of rational

curves. We define Deg(T) = —CZ! length(T) = the number
of irreducible components of C. We define length(T )

p,q9,r

in the same way.



THEOREM 1. Let S be the set of all T and
= P.49,r

Hp;q;r,s with length less than 5. Then there is a bi-
~ jection i of S onto itself such that for any T of S
0) i(i(T)) =T,
1) index(T) = cycle(i(T)), cycle(T) = index(i(T)),
2) deg(T) + deg(i(T)) = 24,
3) A(T) = A(i(T)),
4) an assertion about continued fraction expansions,
5) Deg(T) = length(i(T)), length(T) = beg(i(T)).
By suitable extensions of the above definitions‘we ob-
tain Duality Theorem of cusp singula;itieé:h:fhegeneral
case. We notice that #(S) = 38 and i(Tp;q,r) = Ts,t,u

iff (p,q,r) and (s,t,u) are Gabrielov and Dolgatchev

numbers of one of the exceptional singularities.

§4 INOUE-HIRZEBRUCH SURFACES

Let K be a real quadratic field with ( )' the con-
jugation, M a complete module in K, i.e. a free module
in K of rank two. Let U+(M) = {aeK; oM = M, a>0, a'>0},
V be a subgroup of U+(M) of finite index. It is known
that U+(M) is infinite cyclic. Let H be the upper half

plane {ze<C; Im(z) > 0}. Define the actions of M and

ut (M) on € x H by
. . ]
m : (zl,zz) > »(zl+m,22+m )

o s (21’22) > (azl,a'zz) .
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Let G(M,V) be the group generated by the actions of M
and Von € x H as abo&e. The action of G(M,V) on € x H
is free and properly discontinuous so that we have a
quotient complex space X'(M,V) := CxH/G(M,V). By adding
to X'(M,V) an ideal point = called a cusp and endowing
the union of «» and X'(M,V) with a suitable topology and
a suitable structure as a ringed space, we obtain a nor-
mal complex space X(M,V). Let w be a real quadratic
irrationality with w>1>w'>0. Let 1/w = [[fl,---,fh,

elrfi-,ek]j, and set w* = [[el,---,ek]].

LEMMA 1. There exists 8 in K such that

BR' = -1, B(Z+ Zw) = Z + Zuw*.

Let M= Z+ Zw, N _ %+ Zw*. Then vty = vt.
Let V-beéisubgroup bf Uf(M) 6f finite index. Let (zr22)
and (wl,wz).belthe coordinates of X(M,V) and X(N,V)with
cusps deleted respectiveljl Then by identifying them
by the relation w, = le, W, = B'zz, we can form a com-

pact complex space Y = Y{(M,V) with cusp singularities.

THEOREM 2 (Inoue [2]). The minimal model S(M,V) of

Y(M,V) has b, = 1, b, > 0 and no meromorphic functions

1

except constants.

2

We call S(M,V) an Inoue-Hirzebruch surface (associ-
ated with (M,V)) and Y(M,V) a singular Inoue-Hirzebruch

surface (with two cusps). ©Let p and g be the cusps of
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X(M,V) and X(N,V) and we denote by the same p and g the
cuspsrof Y =Y(M,V).

W ti that £T and I is iso-
e notice at any o D,q,T nd I, o r,s 18 ;so

morphic to (Y,p) for someMandV. If T(eS) is isomorphic
to the germ of Y at p (Y,p), then i(T) is isomorphic to
(Y,q). And then A(T) = #(the torsion part of Hl(ZIRx H/
G(M,V),Z ))‘where RxH/G(M,V) is a subset of X(M,V) by
the natural inclusion of RxH into €xH. Since it is a
subset of X(N,V) too, this expiains THEOREM 1 3). The
relation bétween M and N is well described by the fol-
lowing

LEMMA 2 (Kenji Ueno) There exists a totally posi-
tive vy such that N = y(M¥*)' Qhere'M* = {xXeK; tr(xy) ¢ &
for any y in M}, (M*)' = {x'; xeM*}. In particular
X(N,V) is isomorphic to X((M*)',V).

THEOREM 3. Assume that (Y,p) and (Y,q) belong to
S. - Then Def(Y) (:= the deformation functor of Y) is.non—
obstructed and Def(Y) = Def(y,p) xDef(¥,q), Y is smooth-
able by flat deformation. Any smooth deformation of f
is a minimal K3 surfacé.

THEOREM 4. Assume that (Y,p) and (Y,q) belong to
S. Let Z be Y with g resolved (i.e. with g replaced by
a cycle C* of rational curves). Then Z is smoothable
by flat deformation with C* preserved. Any smooth de-

formation Z, of Z with C* preserved is the projective

t



planeIP2 blown up aldng fihitely manyvpoints lying on

a rational cubic curve with a node and KZ (:= the cano-

nical line bundle of Zt) = -C*. Moreover H(Y,p) :=

{aeHz(Zt,ZS); acg = 0 for any irreducible. component C§

of C*} has a Z -base in R(Y,p):= {aecH(Y,p): a2 = -2}

whose intersection diagram (Dynkin diagram) is Tp q,r
. ’ ’

or 1 corresponding to the type of the singularity
P.d,x,s : v

(¥,p).

The above two theorems were proved earlier and in -

more generality by J. Wahl and E. Looijenga [5].

By an elliptic deformation Zt (or Ut) of 2 (or (Y,

p)) we mean a fibre of T : Z » D (or £: U~+D) such that

: 1,3 h
Z0 = 2 (or Uo = (¥,p)) and h (Zt,Ozt) =1 (or h (Ut,
Oa ) = 1) where 2t (or Ut) is the nonsingular model of
t .
Zt (oxr ut).

By [5] we have

THEOREM 5 Let % be an arbitrary singular Inoue-
Hirzebruch surface with one cusp p and a cycie C* of
rational curves. Then there exists a proper flat fami-
ly £ : X - B such that XO = Z and f is versal both for
elliptic deformations of Z with C* preserved and for

elliptic deformations of (Z,p).
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We define the "Dynkin diagram" of 2 or (Z,p) as

follows;
Tp,q,r if indefo,p) = (p—l,q-;,r-l), Degree < 3,
Hpuqlr,s if index(z,p) = (p,q,r,s), Degree = 4
Wprq,f;s;t ifripéék(z'p)'=‘(p,qfr(sft),bDegree =5,

where index(z,p)vis by definitiog the sequence of (-1)
'tlmes selflntersectlon numbers of C* if Deg(Z,p) 2> 3.
We call a proper subdlagram r of the "Dynkin-dia-

" C s . ,
gram" elliptic if T contains one of T2 3,6 T2 4,4’

~

T3’3l3( 2,2,2,2. and W1 1,1,1, l (1n other.words E8’ 77
E6’D5 and A4). S e
_» P _a {I
OO e 0 o ‘e .

\s\w/

> {Iﬁ"““’ <

T i W ’
P.9,T p.d,x,s p,49,xr,s,t

Here we cite from [8] a theorem in‘the-classifi—
cation of surfaces with b1 = 1. | | |

THEOREM 6 Let S be a minimal compact complex sur-
face with b, = 1. Assume that there are two cycles C

and C* of rational curves on S and b2 = the number of

irreducible components of C+C*, Then S is isomorphic
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to an Inoue—Hirzebruch surface. Here bi denotes the i-
th Betti number of S.

We conjecture the following stronger

CONJECTURE Let S be a minimal compact complex sur-
face with bl‘=‘l. Assume that there are two cycles of
rational curves. Then S is 1somorph1c to an Inoue-
lezebruch surface.

Assuming the ahove conjecture we infer

THEOREM 5 (CONTINUED) With the same notationsasw
in THEOREM 5, we assume Deg(Z,p) L 5 Nonsingularxnodels
of X ‘are (not necessarlly m1n1mal) Inoue—lezebruch

[n] )

surfaces or Inoue surfaces S . The 51ngular1t1es of
Xg correspond to elllptrcdproper subdlagrams of the;
"Dynkln dlagram" of z. (The correspondence 1s leeC-
tive if Deg(Z,p) L 4 A It 1s Stlll unknownJJ1case Deg(Z,p)
= 5 whether any elllptlc proper subdlagram appears in ‘
correspondence w1th singularltles of some X .) In par—“‘
ticular the 31ngular1t1es of X are 31mp1e elliptlc 51n—;
gularltles, cusp 51ngular1t1es or ratlonal double singu-

larltles Ak

COROLLARY TO THEOREM 4 There exists a proper flat

family £ : Y+ D such that Yo = Z (a singular Inoue-
Hirzebruch surface with one cusp) and Vt (t#0) is a non-

singular rational surface.

- 11 -
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We notice that Z is by no means an aigebraic surface.
And it is interesting to compare the above with the fol-
ylowing | |

THEOREM 7 (T. Oda [9]) There exists a prdper flat
family £ : X » D such ﬁhat XO = a rational surface with
a double curve and Xt (t#0) is a nonsingular Inoue-

Hirzebruch surface.

§5 COHN'S SUPPORT POLYGONS

Let M be avcomplete module in a real quadratic field
K. We embed M into]R2 by the mappihg X »> (x,k'). By
this mapping we identify M as a subset of]Rz. We define
M+:='{XeM; x>0, x'>0}, M := {xeM; x>0, vx’ <0} which
we view as subsets of R>. We let I'(M) and I (M) be the
convex hulls of M" and M~ respectively. Then Zi(M) is a
convex set bounded by infinitely many line segments con-
necting two points of Mi. Let.afﬁM) be the boundary of
Zi(M). We number'af%M)nM consecutively. If M = Z + Z(n’

and o is a totally positive quadratic irrationality with

w>1>w">0 (i.e. reduced), then we may assume 82+(M) nM

{nj; JeZ }, 3L (M) nM = {ng; jeZ } , n, =1, n; = w, n¥

(w-1) /w*, nfl = w-1. U+(M) acts on m* therefore on

arf (M) aM.  #(9zT (M) M mod Ut (M)) is finite. There exist

n

positive integers ay and ag (> 2) such that
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= % n* = *n*% 1
nj—l + nj+l ajnj, nj—l + nj+l ajnj (jeZZ )
Let Dec’ = {{0}, R,n,, R.n, +1R_|_nj (jeZz )}

+ j-1

{{o}, ]R+n§, IR_'_n;”.‘_1 +IR+n3.‘ (jeZ.)}.

Dec

Then evidently pec’ and Dec are cone decompositions of
R xR, and R, XIR_ respectively. By the general theory
of torus embeddings we can construct complex algebraic
varieties locally of finite type Temb(Dec+) and Temb
(Dec” ). The groups U+(M) and V act upon both of them
freely and properly discontinuousiy. - The quoﬁient sur-
faces Temb(Deci)/V are naturally minimal reeolutions of

(Y,p) and (Y,q) where Y = Y(M,V) ([9]). By THEOREM 1

(or by definition in the general case) index(Y,p) = (a;
; j=l,+°+,s) (= the representatives of a‘:‘jf mod V) and
index(Y,q) = (a.: j=1,+++,t) (= the representatives of

J
aj mod V) if s > 3 or t > 3 respectively.

§6 FOURIER-JACOBI SERIES

Let X'(M,V) be the natural image of HxH in X(M,V),
X0 (M,V) the union of X'(M,V) and the bunique cusp of X(M,
V). Clearly XO (M,V) is an open neighborhoed of the cusp
©, For a totally positive m in M* we can define a con-

vergent power series Fm(zl,zz) on X0 (M,V) by

- i 3 ] L}
F (z1,2)) = ) exp(27i(vmz +v'm'z,)) .
. veV

- 13 -
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Let ng (j=1,+--,s) be the representatives of 9L (M) nM
mod V. We notice that m=m* mod V implies Fo = Fox-
On the other hand THEOREM 1 says s = Deg((X(M,V),®)).
Let w be a totally positive reduced quadratic irration-
ality (ie. w>1>w'>0), M= Z+ Zw. We define a Z
homomorphism f of K onto K by‘f(x) = (x/(w=w'))'. This
f induces a bijection of M_‘with (M*)+ since M* = M'/
(w=-w'").

THEOREM 8-1 Assume s > 3. Then_(X(M,V),w) is em-

bedded into € by Fe(nyy (3=1,0:0y8).
3

THEOREM 8-2 Assume s = 2. Then (X(M,V),») is em-

bedded into € by

Ff(ng) (3=-1/2,0,1) where n_l/2 ‘ n*

*
+n0.._; o L
THEOREM 8-3 Assume s = 1. Then (X(M,V),») is_em—

bedded into €3

C ey - o . L
by Ff(ng)‘(J 1/4, 1/2( l) where n_l/2

* *
n__l/2 + no.

o' PX1/4

THEOREM 8 was provéd also by Ueno.

The above choices of ng in the cases s = 1 and 2
match the definitions of‘cycle(T) which seem to be rath-
er artificial; Let us check this by the example in §2.

Let w = [[3,41], w* = [[3,2,3]], M= Z+ Zw, N =
Z + Zw*, V=1U (M). Then (X(M,V),o) Ty 4 4 and (X

Temb (Dec’) and Temb (Dec”) are mini-

I

(N,V) ,) T

2,5,6°
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mal resolutions of (X(M,V),~) and (X(n,V),>) respective-

ly. Then the support polygon is as follows.
representatives

Norfy

A B ER N e

Let Nyx-(1/2) -~ Pak-1 * Bpk- Then we have

tRg = h_yspr Boysp My = 4ngengot g, = 5n.

n_y.
RéCail’cyqle(T3i4'4) = (1,4,5) and this was defined by:
blowing up once. By the general theory of torus embed-
eings. any equivariant blowing-up of\Temb(Dec+) corre-
sponds to a subdivision of Dec’
We define a subdivision Dec of Dec’ by

Dec =!{ 10}, Ryngp (12 Bybyr Ryngy 1+ Ronoy (7 /9 "’r

| Rl (1/2)* RaPgr Rylgyt Ryngyyy (3rkez) .
This Dec corresponds to the blowing up of the mini-

mal resolution of T (=T ) that give rise to C! (3 =
3,4,4 J
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1,2,3) in §2.

Let fj = Ff(ng)(j=0’l'2)’ gj=F((w*—l)nj/(w*—w*'))'

(j=-1/2,0,1).

Then we can show that

4, .3, .4

fo+f1+f2—f0flf2 = formal power series of f£.,f.,f

0'"1"72
(terms of higher degree in some sense)

2 5, 6 _ . '
g_l/2+go+gl—g_l/2g0gl = formal power series of g—l/Z'gO'gl

(terms of higher degree in some sense).
We notice that (aa,ai,ag) = (3,2,3), (ao,al) = (3,4) so
the triple defined anew is (1,4,5). Moreover we can show
THEOREM 9 Let (X(M,V),») be a cusp singularity
with Degree 3 and let (p-1,9-1,r-1) be the representa-

tives of a’g mod V (jeZ ) where ag are integers such that

*nk = n* * - = {n* « 3
ain} = n¥_, + ni, for 3I (M)nM {nj ; JeZ }. Let m be
the maximal ideal at «. Then there exist formal Fourier-

. . - 2
Jacobi series FO’Fl and F2 such that Fj = Ff(ng) mod m°,

p q r_ =
Fo + Fl + F2 FOFlFZ 0.
THEOREM 9 implies that (X(M,V),~) is formally iso-

morphic to T . By the theroem that the formal iso-
pP.q,r

morphism of two isolated singularities implies the actual

isomorphism, (X{(M,V),®) is isomorphic to Tp q,r (I31).
- 14 7

The same will hold true for Degree 1 and 2. 1In the
Degree 4 case (X(M,V),®) will be shown in the same way

to be isomorphic to I For the detail see [7].

P:9,r,s’
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