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Rational singularities with C*~action.

'by Kei-ichi WATANABE

(Nagoya Institute of Technology)

Introduction.

Let k be a field of characteristic 0, Y be a normal variety
of finite type over k and %: Y' —— Y be a resolution of Y. Aﬁ
péint y of ¥ is called a rational singularity ([T.E], Chap.I, §3)
if (Rqé*(oy.))y = 0 for q'>‘0. It is known that Rgé*(oy,) is
independent of the resolution ¢ and that the higher direct images

reflect the ring-theoretic properties of the local ring O For

Y,y’
example, if y is an isolated singularity, (chb*(OY.))y is isomOrphic

Y) (0 < g<dimY - 1) and,

is a Cohen~Macaulay ring if and only if (qub*(oy,))y

to the local cohomology modulé Hg+l(0

consequently; OY,y
=0 for 0 <Vq'< dim ¥ - 1. PFrom these facts, we are';ed to consider
therfollowing question; "Is it possible to describe the modulesv
(qu>*(oy,))y by purely ring-theoretic data of OY,y 2" The first aim
of this paper is to show that that is indeed the case if y is an
isolated singularity with C*-action.

If (Y,y) has a C*—action,rwe can attach‘a normal graded ring
R to (Y,y). Hereafter, we will use the lahgauge of graded rings and
graded modules. To get the result, we.consider the space Proj(RY)

- defined in E.G.A. Chap.II,§ 8. As this space is described direqtly‘
from R, we can describe the geometric properties of this space from
the ring-theoretic properties of R.and there is a proper birational
map from Proj(Rh) to Spec(R). If we know that Prbj(Rg) has only

rational singularities, then we canexpress Rqé*(OY,) by the
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cohomology groups of Proj(Rh) and hence by the local cohomology
‘groups of R. This idea was carried out by Pinkham [P] when dim R = 2
and by the author [Wl] in some special cases. The essential part

of the proof is to show Proj(Rh) has onlyirational singularities

under the assumption that Spec(0, ) - {y} has only rational

Y,y
singularities.

It was shown by Demazure [D] that the normal graded ring R
is characterized by X = Proj(R) and a "rational coéfficient Weil
divisor" D on X (we will write R = R(X,D)‘in this case). This
expreséion is very helpful to construct examples of graded rings.
In §3, we will givé a condition for R(X,D) to be a canonical
singularity in terms of (X,D);

By our theorem, R(X,D) is a rational singularity if and only

if 89(x,np) = 0 for g >0andn 0, once we know that Spec(R) - {y}

v

has only rational singularities. But the condition "Spec(R) - {y}
has only rational singularities" is a rather delicate one if the
fracticnal part of D has singular points even if X is smooth. We

will give some partial answers to this problem in §4.



§ 1. Notations and preliminaries.

In this paper, we will use the following notations.

(1L.1) Notation. k is a field of characteristic 0.

R = n@0 Rn.ls a Noetherian normalvgraded'rlng with Ro = k.

E:R .-:n

4+ @0 Rn’ thg unique graded maximal ideal of R.

If M= n?z M is a graded R-module or S = n?z Sn is a graded

ring, we put Mlt = @ M or S!O = ﬁ@o s,- Note that S]O is again

a graded ring.

Y

Spec(R) and y = {m}eY.

u=yY - {y}.

®: Y' ——Y is a resolution of the singularities of Y. (In
this paper, we don't treat y' itself. We only treat the higher

direct images RP@*(Oy,) (p>0), which are independent of the resolutior

_‘chosen.)
X = Proj(R), Ox(n) = K(n).
Note that X is a normal projective variety over k, since R is a
normal graded ring finitely generated over k. |
Hq(R) is the g-th local cohomology group of R w1th respect to
m. Note that Hq(R) has the natural structure of a graded R-module.

KR = (H (R))* (4 = dim(R)) is the canonical module of R. (See

[G.W], p.184, for the definition of the functor (.)*.)

a(R) = max{n[(Hm(R))n # 0} = - mln{nI(KR . 7 0}
Proposition (1.2) ([H.R],85). There is a canonical isomorphism
of graded R-modules ‘

Hg(R) v 9, m4 L (x, 0y (n)) (a2 2).
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As is shown in [D], the graded ring R is determined by X and
a rational coefficiént Weil divisor D. Namely,

Theorem (l 3) ([p}, 3. 5) IfT is a homogeneous element of
degree 1 in the quotient fleld of R (we may assume the existence
of T#0 by adjusting the grading of R, if nécessary), then there
exists unique divisor DeDiv(X,Q) = Div(X) = Q, such that ND is an
ampie Cartier divisor for some positivebinteger N and

| R = 10 (x, ox(nb)).Tn |
'fdr every n>0. (For the definition of Ox(nD), see [D], §1 or [Wl].)

We will fix this D and we will write R = R(X,D) if we want to |
specify D. If R = R(X,b), then OX(n) g.Ox(nD) for every infeger
n (W1, (2.1)). | -

(1.4) We have the following commutative diagram of morphisms;

/ 1 . WL{WY,}

X %——-C C (X,D) v Prog(R ) — Y
C = C(X,D) - - U
+ .
where C (X,D) = Specx(ng0 Ox(n)), c(x,D) = Specx(ngZ Ox(n)) is an
’ + + + i i
open subset of C (X,D) and S = C - C. The morphism ¥ is a

projective morphism, W(S+) ={y} and the restriction of ¥ on C is an

isomorphism. The graded rihg R is defined in E.G.A. Chap. II, §8.

(It is easy to see that c' is naturally isomorphic to Proj(RF).)
The morphism 7 is the structure morphism and, so, is an affine
morphism. The restriction of 7 to S+ is an isomorphism. Watching

this diagram, we have the isomorphisms

)
ct c

Ry, (0

e

#I(c’, 0 ) 2 e Bx, opm)) v HEF @ |-
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§ 2. A criterion for rational singularities.

In this section, we will give a necessary and sufficient
condition for R to be a rational singularity. |

Definition (2.1). Let Z be a normal scheme essentially of
finite type over k and let f: Z2' —— Z be a resolution of
éingularities of Z.. We say Z has rational singularities if

le*(o = 0 for i>0. Note'that, in our terminology, Z has rational

zt)
sigularities if Z is smooth.

We say a ring A is a rational singularity if Spec(A) has
rational singularities.

Theorem (2.2). R is a rational singularity if and only if
the following conditions hold; (i) U = Spec(R) - {m} has rational
singularities. (ii) R is a Cohen-Macaulay ring. (iii) a(R) < 0.

(Proof) Let VY: C+ — Y be as in (1.4). The conditions (ii)

and (iii) implies that RqW*(O +)
C

-that the resolution ¢ factors through ¥. Put & = Qo¥. If C+ has

= 0 for g>0. Now, we may assume

rational singularities, then by Leray spectral sequence, we have

RQQ*(Oy,) o RqW*(O +) for every q and R is a rational singularity,
. c

Conversely, if R is a rational sihgularity, it is khown that
R is Cohen-Macaulay and the condition (i) is trivial. The
condition (iii) follows from (1l.4) and the above argument if we can
prove that C+ has rational singularities{' So, it suffices to prove
Lemma (2.3). If U has rational singularities, so does C+. .
To prove this lemma, we need the following
Theofem (2.4) (Boutot). Let B be a k—-algebra essentially of

finite type over k and let A be a subalgebra of B which is a direct -
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summand of B as en A-module. If B is a rational singularity, so is A.
(The author heard the proof of this theotem orally from M. Hochster
and does not know where the proof is to be publiéhed.)

(Proof of (2.35) As the condition is local;-it suffices to
prove that ﬂ-l(W) hae retionelwsinguiarities for every affine

(n)),

) . . _ 4
open set W of X. As C = Specy nQO X(n)) and U & C = Spec (@ 12,04

it suffices to prove'the following

Lemma (2.5). If S = ngz Sh is a graded k-algebra essentially

of finite type over k and ifbs has rational siﬁgularities, then

o and S|, = ngo~sn.
(Proof) As S; is a direct summand of S és'anrs0 5
has rational singularities by (2.4).v If we take a variable T over

so does S

-module, S

S and if webput deg(T) = -1 in the graded ring S[T}, it is easy to
see that SI0 is isOmorphic to’(S[T])0 as‘graded k-algebras and. the
lattet has rational'singularities since so does S[T]. This concludes
the pteof of Theorem (2.2). |

Corollary (2.6). If U has rational singularities, then A

r3s, (O m-(H%*l(R))lo for g21.

yr) %
(Proof) 1If U has rational singularities, so does ct by (2.3)

‘and we have Rqé (0 " rY v, (0 :On-the‘other hand, we have

)o
C+ .
seen’in (1.4) that the 1atter is 1somorph1c to (Hq+l(R))]0 for q>1

Remark If U has rational 51ngular1t1es, then Hq(R) (q<d) has
£finite length and "q(R\qu l@ (Oy,) by the duaTlty theorem and Grauert-

Rlemenschnelder vanishing theorem. As Hq(R)m Hq l(X U (nD)), we have

neZ

“If X is a no—mal projectlve varlety over k and if D is a

rational! coefficient Weil divisor satisfying the conditions (a) ND

is an ample Cartier divisor for some positive integer N (b) C(X,D)
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has rational singularities, then Hq(x,ox(nD)) = 0 for g < dim X
and n<0 v o

Deflnltlon (2 7) If U has rational singulafitiea} we define

Py (R) = dlmde l@ (O V)

and we will call it the geometrlc genus of R. Note that if U has
rational 51ngular1t1es, R is a ratlonal 51ngular1ty if and only if
R is Cohen-Macaulay and pg(R) =0. |

Corollary (2.8). If R is a Gorenstein ring and if U has

ratlonal 31ngular1t1es, then p (R) = Xa(R) dimkRn.
Hd’R)lv n R¥(-a(R)) |, by
m\ S0 = ) . 0 :

e

(Proof) 1In this case, Rd Q*(OY.)

(2.6) and [GtW]' (3.1.4).

Remark (2.9), If s = Sn is a Cohen Macaulay craded rlno

4n20

with SO = k and 1f xeS is an S- regular element then a(S)

= a(s/xS) - m. So the 1nvar1ant a(S) can be computed from that of

an Artinian ring and if S is Artinian a(S) = max{n[S #O} Also,

if R = k[X;,...,%X4) is a polynomlal ring, then a(R) = ng=1 deg (X;)

([G.W], (2.2.8) and»(2.2.10)).

Corollary (2.10). Let R = k[Xl,...,X ]/(fl,...,f ) be a

d+s

complete intersection and assume that U has ratlonal singularities.

Then, R is a rational singularity if and only if z; deg (£ ‘<z deg(x ).

(The geometrie genus of R is computed in [wz] if R is a
hypersurface with isolated singularity.) |

Remark (2.11). If U has rational‘singularities, then so
does X by (2.5). But U may have non-rational singularities even
if X is smooth. We Qill treat this problem in §4.

Remark (2.12). Té prove that R is a rational singularity, it

suffices to show that'Rm is a rational singularity, since "rational

-
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singularity” is an open condition and Y has a k*-action.

§ 3. A criterion for canonical Singulafities.>

In this section, we put R = R(X,D), where Df=thv/qveDiv(x)xQ;
(We assume that Py and qv are relatlvely prlme 1ntegers for every v,
dy >0 and ND is an ample Cartler divisor for some p031t1ve 1nteger
N. We will flx pV, qV and N for this meanlng throughout thls paper )

For a normal varlety Z, we denote by m' the duallzlng sheaf

o Z ,
of 2 deflned by Wy .f 1*( QReg(Z))’ where i Reg(Z) _ Z is the .
1nclu51on map and n = dlm Z. As wz 1s a lelsorlal O -Module, we
can wrlte wz = 0 (K ) for some X lev(Z) We w1ll call K the‘w
. I . [r] _ n. : (;
canonical lelsor‘of Z. ‘Also, we put wzb‘ 1 0(8 eg(z)) ) gEQZ(rKZ)i

Definition (3.1) (M.Reid) . (Y,y)disialcanqnicaloSlngulatity if

it satisfies the following conditlone: o

(i) wér] is an 1nvert1ble 0 -module for soﬁe‘integer r.:
Y . [ yi - Y,y - o . ,
Sy, r
¢
(11) (wY.) - 0%,y

Recently, R. Elklk proved that a canonlcal 51ngular1ty is a}ﬁ’
ratlonal 51ngular1ty ([E ]) and a ratlonal Gorensteln 51ngular1ty
is a canonlcal 51ngular1ty by deflnltlon.A A R

‘Proposition (3.2). 'If R = R(X,D) is a canonical singularity,
then r(Kx+D‘);£ a'D for some positive integer rand an integef~a*

with a' < -r, where we put D' = Z(qv-l)/qV
| (Ptoof) As ® (wy.)(:W (wc[r])c:w[r], it sufflces’to prove
the following two lemmas. -
Lemma (3.3). wér] is invertible if and only if r(KX{D'}‘ie

linearly equivalent~toga'ulforﬁsome\integer.a'
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(Proof) This follows from the calculation of Cl(R) and

cl(wR). (cf. (1.6) and (2.9) of {Wl}.)

4 1 []
Lerma (3._). (1) mC+ Y nQO OX(KX+D +nD). In other words,
K, = —stemr (x_+D").
c AR

I

(ii) - 1f r'(KX+D')'d a'D, then T*(wérl) ~0 +(r.w*(Kx+D')+a'§+}
) ! : C
= +(‘(a'+r)s+), .

C :

(Proof) (i) If D is a Cartier divisor, then C+ is an Al—bundle
over X and this formula is well known. In general, if we put CtN).
= | | . | , o

= Specx( ngﬂ Ox(nND)), then C(N) is an A" -bundle over X, since ND

is a Cartier divisor by the assumption and we can get w _ by

- C
w Y Hom’o + (o pr © ).
C C C C
- M ey, W (el gt ]
“(ii)  As wp is equal to w ;" on. B =C - S ,'?*(wR )
C ’ .

=0Tl ps*) 20
C . C o
other hand, the restriction of Y*(wér]) to S+ is trivial,'since S+

+(r.ﬂ*(Kx+D')+(b—r')S+) for some integer b. On the

contracts to a point by ¥. As S+ is linearly equivalent to -m*(D)

([p1,2.9), and as r.(K+D') = a'D, we get W*(mér])

v 0 +((b—a'4r)S+) v O t*((a'+r-b)D). This implies b = a'+r.

- C C .
(In fact, since ?*(mérl) is invertible, (a'+r-b)D is an integral

N

divisor and if nD is an integral divisor, OX(nD) 2 Oy implies
n=0, since ND is ample.)
- Corollary (3.5). (i) VY, (w +) = wg if and only if a(R) < 0.
’ C .
(ii) 1If r.(KX+D') = a'D for some integer a', then W*(w[il)
C

= wér} if and only if a'< -r.

: . : . o 0,..
(Proof) (i) . By [Wll, (2.8), W = ngz 3 (X, OX(KX+D'+nD)) .
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‘and w*(mc+) 28 H (x, ox(Kx+»D'+ nD)) % lel by (3.4). Thus -

y,(w ,) = wy if and only if a(R)<0 by the definition of a(R).
ct ' | .

(ii) If r.(Kx+ D') = a'p, ;hen mér] v R(a') as graded R-modules

and w*(wéf]) v 8, HO(X, Oy (r (KD D))y @ HO(X, Og((a’+n)D) .

Thus W*(wéf}) = ér] 0.

w if and only if a'+r

A

Corollary (3.6). 1If C+(X,D) haé canonical siqgularities and
and if r.(Kx+D') = a'D for some positive integer r and for some
integer a' with a' < -r, then R = R(X,D) is a canonical singularity.

Corollary (3.7). If X and D satisfies one of the following

"conditions and if r.(K,+D') = a'D for some positive integer r and

X
an integer a' < -r, then R = R(X,D) is a canonical singularity.

(i) X has canonical singularities and D is an ample Cartier
divisor (in this case, D' = 0).

(ii) U has rational singularitiés, X is a factorial variety
and Py =1 (mod. qv) for every V. _ _

"(Proof) By (3.6), it suffices to prove that C+(X,D) has canonical
singularities in both cases.  In case (i), C+‘is an Al—bundle over
X.- In case (ii), C+ has ratidnal singularities by (2;3) and

C 1is a Gorenstein variety since w , is invertible by our conditions

C
and by (3.4). So, in both cases, C+ has canonical singularities.

Remark. The conditions of (3.2) are not the sufficient
condition for R to be a canonical singularity, even if we assume

1

that U has canonical singularities.' For example, if X = P~ and if

D = 3/4.P for some point PePl, Kx = -2P and we have 3(KX+D')"=E -5D.
In this case, U is smooth and (X,D) satisfies the conditions of (3.2).

But R(X,D) is not a canonical singularity since R(X,D) is not a

- 10 -
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Gorenstein ring and two-dimensional canonical singularities are

Gorenstein rings {(cf. [R]).
§ 4. Some criteria for U to have rational singularities.

If we want to construct rational singularitiés with C*-action,
it is:important to know the condition for U = C(X,D) to have rational
éingula:ities‘by (2.2). So we consider the problem;,"Fiﬁdvthe' |
conditions on (X,D) fdr C(X,D) to have rational singularities (or
to be smooth). Although we cannot giﬁe the complete answer, we can
solve the problem in some useful cases.

(4.1) ([Wl], (3.1)). If (X,D) satisfies the following
conditions, then C(X,D) has rational singularities. -

(1) X has rational singularities.

(ii)  If xeX is a singular point of X, D is a'Cartier divisor
on some neighborhood of x.

(1ii) If xeX is a smooth point of X, Supp( D - Dji) is normal
crossing at x. |

Proposition (4.2). Take a point xeX and put A = O If

X,x"°
D is linearly equivalentvto %.v, where V is a Cartier divisor near
x defined by feA (we assume p and g are relatively prime and 0<p<qg),
there is an étale covering from Spec(A[Z]/(Zq-f){T,T-l}) onto
C(X,D)xXSpec(A). (Where Z and T are variables over A.)

(Proof) Put C(X,D)xXSpec(A) = Spec(B), where B = ngz OX(nD)X
= A[faTnI qa#np;O]. If we take p' (0<p'<g) so that pp'+bg=1l for
some integer b, it is easy to see that B = A[bep',prq,(prq)-ll

-~ ) .
. & Afu,v,v 1]/(uq-fvp ). If we define the A-homomorphism

- 11 -
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4: B — arz,t,T 11/9-£) by putting ¢ (u) = zTP and ¢(v) = 19,
¢ is an etaie homomofphism:and we get the desired result.

Corollary (4.3).. Under the aSsumptions of (4.2),

(1) ‘C(X,D)xXSpec(A)‘has ;ational singularities if and only
if'Spec(A[Z]/(Zq-f)) has rational singularities.

(ii) C(X,D)xXSpe?(A)'is smooth if and only if X and V are
smooth at x or X is smooth at x and g=1. ' ‘ '

Corollary (4.4). Let us assume that k is:algebraiCally
closed and (X,D) satisfies the conditions.of‘(4.2) at x. If
X is smooth at x, dim X = 2, q51 and if V is singular at x, then
C(X,D)xiSpec(A) haé rational singularities if and only if the
singularity 6f V at x is analytically isomorphic to one of: the
following ones. '

(i) If g>6, =xy=0.

(ii) If g=5,4, xy=0 or x2=y3;

(iii) If g=3, x>=y" (n=2,3,4,5).

(iv) If q=2, x2=y" (n22), x(y>-x™=0 (n>2), x°=y"(n=3,4,5),
or Y(yz-x3)=0.

(Pxroof) sStraightforward from (4.3) and the classification

of rational Gorenstein surface singularities. (cf.[A])
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