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On two-dimensional normal singularities
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3
of}uype *An’ *Dn and P

Shigeki Ohyanagi

ABSTRACT, Let G be the weighted dual graph associated with
a contractible curve A:UAi. There are many combinations of the
weights AfAi which make the gfaph‘to be contractible. If G is a
graph which is the weighted dual gfaph for a rational singularity

with any cowmbination of the weights, then G is either *An’ *Dn

1. Introduction. Let A=UAi, where Ai are its irreducible
components, lie on a nonsingular complex surfacefi. The curve A
is said to be contractible (exceptional) if there exists a holo=-
morophic mapping n:iiéx of the surface'i’into a complex space X
that maps the wnole curve A4 into one point x€X and is biholomorphic
on‘iLA. In[ﬁ], it was proved that a curve A4 is contractiple if and
only if the intersection matrix (AiAj) is negative-definite.
The poirt x in X is an isolated singular point, in-general, and
the mapping nﬁf—ex is a resolution of this singularity.
The topological nature of tne embedding of A in i,is described by
the weignted dual graph G (see[ﬁ]). The vertices of G correspond

to the A,. The edges of G connecting the vertices corresponding

L

to Ai and Aj,i¥j, correspond to the points quAﬁ. Finally, associated

L3
to each Ai is its genus as a Riemann surface, its singularities,
and its weight, AfAi’ the topological self-intersection number,

The G will denote the gravh, along with the genera, the singula-

ations (13970). Primary 32C45.
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S
The zeometric genus of (X,x) which is obtained from (X,A) by

blowing down T:X—X, is defined by pg(x,x)=dimm(f{1m@g)x. The

geometric genus is in fact a finite integer.

Let G(al,...,an) denote the weighted duzl graph associated
with a contractible curve A=UAi, where a; represents the weight
of the correspaomding cbmponent Ai. There are many other combinations
of the weizhts (ai,f..,ag) which make the graph G(ai,...,aﬁ) to
be contractible. We shall denote by pg(al,;..,an) the geometric
genus of the (X,x) obtained from a contractible graph G(al,,..,an).

Then, we want to prove that there will’be an integer m such
that pg(al,...,ankgm, for any (alf""an)‘ Let 4 be the smallest
one among such integers. In this paper, we decide all those -graphs
which have M=0, Namely, we enumerate all the graphs which are the
weighted dual graphs for rational singularities,‘with any compi-
nation of the we’ghts.

}—"Preliminaries and pMain Theorems? In{Q], Artin has studied
the raticnal double points. hHe haé shown tnat if x is =2 raﬁional
ﬁouﬁle point, then th2 weighted. dual graph\associated to (X,x) is

one of the grarvhs A_,n2l1; Dn,n;4; EG; E7‘ Es\as follows.

n

Tet a,,n2l be - O0—0—----0 , (n-vertices),

D_,n24 be C}:j:}*{:%—"——-F() (n-vertices)
n’ ) O . -

and ,n=6,7 and 8 be

@
&
n

‘——_C> (h-vertices).
where each vertex represents a nonsingular rational curve with
self-intersection number -2.

The auotient singularitiesbare well-knownvexamples of rational
singularitiss, which are defined as follows. For a two-dimensional
normal singularity (X,x), there is a finite subgroup of GI(2,L)

. . 2 C . .
such that the quotient space of €~ by this group with a singular



point 2t the origin is analytically isomorphic to {X,x).

‘In[3j, Brieskorn has enumerated the weighted dual graphs for
quotient singularities. There are seventeen types of grapns, and
each of them has the same type as the rational double points up
to the weights;‘ R

. In"section 2, we consider those grapns each of .which has the
same type as the rational double points up %o the weights. Our
graphs ‘consist of only nonsingular rational curves. Ve may assume
that -each weight -of 'our ‘graphs is less tnan,,cr;equal to'—2,_
since we may ESSume‘thaf'u:ELeX is_the~minimal resclution of (X,x).
We ‘can say that our?graphs are‘those ones-which-are generalized..
‘fréomiithe quotient singularitieé’ graphs.

“ < “Qrie- canveasily check that our graphs are always,contractible.
VHenéeJWe need - not.feel.concern for,dontractibilitg,of,pur;graphg,

Ve shall denote thenm oy *An’ #Dps #bgs 55y and yEge . -

O
‘For these gradhs, The fOlLOWlna Theorem is proved.. . -
- Theorem 4, Hach oI the graphs;*An;ngl; *Dn,ngi;.*En,n=6{7

‘and 8 is ‘the weighted dual  graph for-a rational singularity,

In sections 3 and 4, we recall the method in determinating

_m

D E_. If G is the weighted cual graph for a rational

W]

the graphs Ay D, E

double po -ht thcn each vertex of G corresponds to a nonsingular

rational curve with self-intersection number -2, Since each of the
o~ ~S .

graphs K;, Dn’ En (described as follows) is not contractible, &

cannot have them as its proper subgraphs. And taen, % is either

=l

D or =2 .

An’ n n

"o,
Figures"

~S .
A ,nzl @ (n+1)-vertices,

¢
3
ity
-

—-— (n+l1)-vertices
. 1 4
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where eacn vertex corresnonds to a non31n5ular ratlonal curve with
self 1qtersectlon nuﬂber -2 o
We con81der tnose graphs, contracﬁ'“le, ‘each of which has the

same tvoe as the branns An; D )

E_"up to the welghts. We ﬁéy*assume

tnat each welgnu is less tnan, or equal tO'-Z.'buch anh however,

1s not alwajs contractlble. Buu one can eas11j cneck tnat such

¥ %

graph is contractlble 1f and only if there is at 1east one vertex

whose welcht 1s 1ess tnan,'or equal to -3, “e denot@ tnese “contra-

Ctlblo Jranhs bv *Ap,nzl' D n24, ng,n—o 7 ana 8.

There is a CuaI'SC'C“I'lzablO"l O_ tnese

(H3]

-

graphs as follows. Let &

D, .B_. Suppose that any

be a grapn waich is not of type ”An’ #Dpe x5y,

x®

connected proper subgzrapn of G is one of the graphs 4 _, . n?
: . B i
Then G is one of the graphs An, 2Dy ZD e

La

raf

+1

nr these graphs, the *ollow1u\ theorem is nrovea.

Theor=sm B, For each of the graphs *Dn,n;A: *En,n=6,7 and 8,
the associated two-dimensional normal singularity is as follows.
(1) if all of vertices () in the gra have the weights -2,
then it is a minimally elliptic singularity (see [ﬁ]),
(2) otherwise, it is a rational singularity.
s ' I ~ v . < s 5
Remark. The grash of type #xb, 18 the weighted dual graph of a

cusp sinsularity, for auny combination of the weights, and this is
always minimally elliptic,

In section 9, we decide all thcse graphs with #=0.

-4 -
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Ry

Theoren C. Thev are of types A ,n

NV
td

pes A ,n2l; ,D

Remark, The graph of tyne »A, 18 the weighted dual grapn of
I : 1 I
a cyclic quotient singularity, for any combination of the weights,.
I wish to thank the referee Professor X X X for pointing

out the relationship between my work and that of Dolgachev,

2. Geometric ;enerarof *Dps xBg» *E7 gnd #Bge |

For .D,, *EG”*Bf and ,Bg, we can use the following Theoren,
proved by VYa tanabek[16, Theorem 2.21], to calculate the geometric
genera of these normal singularitiés,’éincé the& are star-shaped.

Let AO be the center of the star-shaped weighted duéi graph.
The odranches of the grani afe iﬁdexad Ey i, lgi;m..The éurvesrof

the i-th branche.are denoted by Aij’ lgjgri, where Ail intersects

,A ,andkiii ntersects A Let =b= AO 9 and -b,.=4. 4. ..

i,j+1° i
Finally, set «, /p [b l’or9""'61r] coatinued fraction; with
I
ui>ﬂi, anad yi and @i are relasively prime integers.

For =2ny %20, let D be the divisor on A, :

D(k)= XD - E [(L(ﬂ +O( —ll/’J( j i

o

where D is any divisor such that @, (D) is the conormal sheaf of

'AO’ D Agn Liq and for any aeR, [a] is-the sreatest in tﬁ&vr less
than, or equal to a.
Theorem 2.1, The geometric genus of such singularity is
k)
L, aingTiag,0, (&, -0y,
k20 o A
where KA is. the canonical line andle of AO.
. ..o - N
As for *Dn’ *E6"*ET and '38 any vertex correspon s to a

nonsingular rational curve, so we have the following by the

Riemann-Roch Theoren,

~

RN C'S NN i
dimg, «uo,wgo(iAo D)) = (C(h)+l+|c(£)+1!)/4 ,



where c(k) denotes the first Chern class of X, - D'"/,i.e.,
.LO

c(k )=-2-bk+ LJ L(ka +c{ -1 )/o/ ] ,
i=1 :

and for any aeR, la| is the absolute value of a.
We say (&,“) is rational if p (“,x/ 0.
Theorem 2.2.. Let (X,x) be a two—dimensional normal singu-

larity whose minimal resolution is of type either D, E., *37'
or  Es. Then (X,x) is rational. | |

Proof. In order to prove this, it is sufficient to prove #hat
c(k)s-1 for all k20. Each graph has three branches

X+ (1 ] 1 3 o .
(i )=—2-tk+ iéitxxpi+ui-1)/uij=1-ba+ ggi{(kﬁi~1)/ 1
since [(kffj+=1)/o1=[1+ (kP -1)/o, J=1s (k3 ~1) /o], 1;1;3,

The foliowing Iemma is trivial.

22, 1lgi<», be integers. Then the continued

=

Lemm2 2.3, - Let p

fraction {?1'92""?pr]a2’2i3:"2]= {r+1)/T .
v r-times

By this Lemma, we can see as follows,
(i)qur %Dy c(k)s 1- 25+2[\£ 1)/21+ [{x(n-3)- 7)/\&—2)]
g l—2k+< 1+t(g“—3) l)/\u—2)=—( +l\/(ﬂ-2)<<)
éince nxd, Thué c(k);—l Tor all KZO o
)€ 12k [(e-1)/2 o2 [(2k-1)/3T
< 1-2k ’“-1)/2+(4K 2)/2 (k+1)/6< 0.
rpqus c(k)<-1 Jor all KZO _ | -
(11i) For ,E-, c(k); 1- 2<+L(k 1)/2I+[(2x-1)/3]+[(3k-1)/41
| < 1-2%+ (k=1)/2+ (2k=1)/5+ (3k-1)/a==(k+1)/12 < O.
Thus c(k)$-1 for all k20 _ |
(iv) For .8y, o(k) < 1-2ks[(x-1)/2 [(24-1)/30s [(4x-1)/5]
< 1-2k+(k—1)/2+gzh-l)/3+{4k-1)/5:-(k+1)/30?:o.

Thus c(k)s-1 for all k20,



146

-~ —~ ~ —~

3., .4, n2l; .D nxd; *E6; o7

~
)
H ) i}

#5ge Reczl1ll that if an

-

weighted duzl graph G consists of only such vertices that corres-

nond to non51n sular rational curves with self-intersection numter

~S A
-2, then G does not contain proper subgraphs of type A Dps Eg»
~S ~/
5 OT H.,. Ar en G T ithar 2
7 OT g nd then G Is either Ay D

(&

n’
r - ™ ”‘b' .
n? Eb, .Eu" or 2g. inls l_S
proved by the contractibility for weighted dual.graphs.
In this-sesction, we-tonside¥ those' contractivle graphs which are
o~ ~ ~ A —~ i ~ ~
o - o s ) 1 P Py F . A .
of type An, Dn, Eg» Eq and By We-shall denote them by.*gn, *Dn’
R - - v s L~y
xZgs xBq and 4Ez. One can easily check that A, ~(*D;,ﬁ*E6,-*u7 and
%D too) is contractible if and onlv if there.is‘at least. one-
vertex whos@ﬁweight is less ¢han,»or'equal,to}-3. These. graphs
have thv followins pronert1°s.
Let & be a connected graph. Suppose that any connected proper

subgraph of G is of type either A , (D, xEg, w3 OF. 4 Fg.

“?Theorém“S;l.v:*We assurme that+G is neither *Aa,_*Dn,f*Es, *37

» ™ Y E) 3 saard ) N +Yva A n - b8 w anA
nor ,Eg. Then G is necezsarily one of the #Aps P %85, xBg a0
~/

:_"l
*=g , S . .

Proof. (T) has a cycllc cbaln *An as its subgraph,

then- & cannot have other verbex.vBecause if there ex xists other
vertex, then the cyclic chain is 2 proper subgraph of G. Thus in

~7
this cases, G is a cyclic chaln i.e., G is of tvpe *An

(II) vhen G contains no cyclic chain, G‘lS tree- shannd. If there
are more than two Branching vertices then‘there is a nroper sud-
gravh with two tranching vertices, whiéh is a cohtradiction.
Thus there are at mostltwo bpranching vertibes, If there is no
branching vertex then G is *An’ a contradiction. Thus there is
2t least one branching vertex,

n the czse of two branching vertices, there is *3; as a sub-
~S

-

graph of G. Similarly to (I), G is #Dp
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(ii) In the case of one dbranching vertex, if there are more than

. NS .
4 branches in G then there is 4D, as a subgraph of G. Hence G is

~ .
xDys in this case. If there are at most two branches then G is ,a .

So we nave tnat there are 3 branches 1n G In each branch, if

N /\/
there are more than two ‘vertices then there is »Bg as a proper

subyraph of G. Hence there is at Teast one branch wnlch has less

than 3 vortlces Let (nl,.z,m ) aenote the numbers of vertices in

the 3 brancnes. We may- assume that lgm m3.

If m =2, m2.2_3, then G;*E.?,

1
if ml=m2=2, m3;3, then u‘D*m6

If mlf:'l’ m2 2 m3_6 then G;*L

Therefore , (ml,m2,13) = (l 3,3) . *37,*
‘ (1,2,5) oo 42g,

STy e -(2;2,2) Sei ;36,i¥ L - RE.D.
%)

Remark- - kml,"!2 ,IH3) (...,b, ) *.48, : (*1,2,_ ; e w e *E'T’ H (1,2,2) s ee

and (1,1,m) ... *Dm+1 (m21). -

.
# 3

-
b]

~ ~

4; Geomntrlc genera of *D ’ ;:;, *Ji éna *38' ’

Let G oe a cycllc cqaln‘*A Such ﬂraph 1s the welghtea dual
*ranh for a.cusp 81ngu1ar1+y, see [7] [8] and [11] Pusp 51n‘u19—
riti s are elllvtlc (thove for which pg 1), -urthe”more tneJ are
mlnlmallv elllptlc, see [12]

L o
In this sectlon, we 1nv=st15ate those graphs of type *Dn’ nz4;

~J \ )

%»3,, n=6,7 and 8.

“ . e ol
Notations and definitions

Let ,D,, n2t, be




Let 4By be

A3

A A A
22 21
02020

0

BIACjA32 <3333‘<>As4 (),A35

A
O
Wy o~
4,1, For *Dﬁ,

Lemma 4.1,1, (Wagreich [15]) If a, 3=, 2_an 1=2,=2, then

the followings are proved,

the associated singulerity is rational.
Lemma 4.1.2, If ao=al=---_a _4=2> then the associated
singularity is minimally elliptic.

Proof. Let ay= =S n__—2 Then we can simply calculate

.;\

the funaampntal cvcle 7 over‘the grapn DV using a computation

sequence; see [10] It is Z= 2A +2nl+---+4A +A -3 An o+ -1+An'

Then p(2)=1+(Z% +2:X)/2 =1, since ZZ= i (AJ“_+2)~-£ .
©32mE3

Any coanect d proper subgraph of D is of type A _ or

~
.
s

So by Theorem 2.2, the associated singularity is minimally elliptic.

(i) (ao,al,...,aw 4)¥(2,2,...,2) and

(ii) (an~3’“n—2’aﬂ—1’3n}¥(2’2’2’2)'

~
Let G denote a weighted dual graph of tyne D with (i) and
s . o . ~ .
(ii). Then we cefine another weignted dual grapn of type ., D _ such
that AfPA]=4 h , Tor Qgi¢n-4 and A.47=-2, for n-3sidn.
iTiTTiTi i



We shall denote this graph by G°. Since G’ succeeds the condition

(i), 6° is contractible. We know that the associated singularity

with G° is rational by Lemma 4.1.1.

n .
et Z= ). % A be the fundamental cycle over G (the existence
=0 1 _

and unicusness are certified). Then there is a positive cycle 2

n
over G', defined by Z::ziAi; Now, by the definition of G°, we have
i=0 ~ '

that ql-z ;2 and .&fK:—Af.iie2=-Ai'-A _{-—2=AJ.':K,' for Ogign-4, where K
(¥ resp.) is the canonical line bundle of G (G° resp.).
On the other hand, for n—nggn,‘
Aj-(a+K)=ziA.A; + 24 (or zn_é) -AjAj—Z .
By the hypothesis (ii), there is AJ at least one, such that
| o | 0
A,rA, <=3, Set &, -A, =-2-of , then o 21.
do <0 90 <9 Jo Jo
A, (Z+4X)= 2z, (or =z ) =23, -(z. -l)y
o 0 n-4 o o "o
b or z =2z, = A -(Z°+K") ince . =1)x. 20,
o ( neg) 3" Mgl °), since (ZJO 1 3
‘_ n-4 n
So p(Z2)=1+( ) z.a.-(Z+K) + D z_.A. (£+“,)/2
=1+( X 240 (274K7) + o _zgAs(TeK))/2.
i=0 . j=n=3
(S 2 A7(B3K7) + P 2 A1-(274K7))/2
i=0 - j:,_—3 ¢ 9
=p(Z7).

Az 37 is the weighted dual graph for a rational singularity,
o(D)s 0 for any positive cycle D on G°.

Hencs p(Z)é:p(L ) <0, and then (2 )=O. Namelyvthe associated
Singularify with G ié rationzal,.

5

Therefore, we have proved the following Theorem.
Yl .
Theorem 4,.1,3. For *Dr’ ny4d,
(1) 2g=sy=cee=n, =2 F——> (¥,x) is minimally ellintic,
(2) ntrerwise _ (X,x) is rational.



o~
Corolliary 4.1.4. LD, 1s a weighted dual graph for a
3 £ + o £ nA \ i Ff o = —e 6 0= _
nynersurface isolated sizngularity if and only if ag=2q==s"* _aﬁ_4_2
A 0 . a . 17
and 2 £ an_r:—)-r?.n_:-l‘an—]*?«r < il
Proof. A hwpersurface isolated singularity is a Gorenstein

singularity. A Corenstein rational singularity is a rational double

point, Thus if *Dy is a nypersurface isolated singularity then
ao=a1=..-=aq_i=2. By Laufer [la] a minimally elliptic sinzgularity
is hypersurface isolated singularity if d only if 27 is restricted
by -3% 7Z2< -1. Now, we have ZZ=8 - a_. Hence the
22 ZLs v © HemET a8 3T 27" n-1""%n :
Corollary is proved. Q.5.D.
- ~ . L -
4.2. For L E., we can apply Theorsnm 2.1 since it is star-
, e ST P S < a3
shaped. So n*(*36)= 7 (e k)+1+!c(k)+ll)/2, where c(k)——Z—bk+ )
e k20 o 0 ‘ : ‘ i=1
[(xp, L, L=/ ]=1-bke s (kB -1)/%. T 5 see the proof of Theorem
i=1" .
2-2o < -
~/
Theorem 4.2.1. For ,Bg, -
(1) b=by =byy= byy=2 ——> (X,x) is minimally ellipiic,
(2) otherwise FE/=—> (X,x) is rational,

Proof. Suppose that b2 3, By‘Lémma 4.1:.2, 0&/” 2[2,2]=3/2
for 1<i<%, so we have c(k)< 1-bk+3-[(2k-1)/3]<-bk+2k=(2-b)k.
One can easily check thau c(0)==2 and c(k )<:O for all k21.
Hence in this case, pg(*EG)zO.
When ©=2,
c(k)..

Hence we nave that

Therefore we rust de

The next Lewma is very useful to prove our Tneorems,

1)

We recall the lexicographical order for n-ple integers.
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Definition 4.2,.2. Let Dy Uy be integers which ars greater
3

than, or egual to 2, 1<i,j<n. Then (pl,...,pn) < (g ,...,qn)

]
lex -
if there is an i i i < n that (i) p.=0. T 1 i
ev an index iy, lglo_n, such zThat (i) p; qlblor all i<iys
and (ii) p; <a; .
0" to , -
Lemf’la 4'2'.30 If .?<pl’.'.,p11> < (ql’.'.,qn)" then th

2
. ‘ lex ;
associazted contlnqed fractions hold [?l""’pﬁ]<[§l"‘°’qn]’

Proof. By the definition, it is sufficient to prove that
1f picay  then [pg,eee,pplefogsensay ] ‘.

) = B -1 3 (-

As [pl’ o ve ,Pn]- Pl- [pz’ c s s ,pn:] ‘ ana [pz’ .?._‘._pn“l__z_n/(n 1) > 1
by ‘Lemma 2.3, we haVa;pl—1< [pi,...,pﬁlgpl@‘Similarly, ql-l

<[p1,...;qﬁY§ ql.“vNowﬁpigéql—lp Thus we have the Lemma. :

Accordingftofthe contractivility, we:cannotQHaNEEXl/ﬁltPEA?Z
=D%/ﬁ3=E2,2]=3/2.%Sngé may assume .that &;/3,212,3]1=5/3. since

there is at least one branch (b.,,b.,) = (2,2).
: STi1rtie Tex =

1f k=3{+2, {31, then
[(xpy-1)/2] < [(3%-1)/5]= [(83+5)/5]= 1+ [S4/5] < 2]+2= [(2x-1)/3] .
So the equality @ does not hold.

Set k=2. We have following lexicograpnical order

(2,3) < --- << (é,m)"<i e < (3,2) < e

lex lex lex lex ‘ lex

If (by5,b95,) % (3,2),i.e., (1/3,2[3,2]=5/2, then

[(2p,-1)/2 1= [(2-2-1)/5]-0< 1= [(2-2-1)/3] .
Thus the equality does not hold.

If (bll;b12)=(2,m),i,e.,c{l/ﬁ1=(2m—l)/m, m>3, then

[(2p,-1)/xy]=[(2m-1)/(20-1)] =1= [(2-2—1)/3] .
Therefore the equalities @ and @ 1nold at the same time

if and only if k=b11=b21=b31=2. And then, we have the Theorem.

W

.- 1l2 -



—~
ne can easily chscik tnat vEé with p_ =1 iz minimnally ellirzic
5
b Theoran 2.2.
~
Corollary 4.2.4, *36 is the weighted dual graph for a

w

4.3.
—
Theorem 4.3.1. For B4,
: \ b= =1 F mi "‘ r o inti
(1) b_bll..ozl b22—b~l—u32 > (X,x) is minimally elliptic,
(2} ntherwise t:::> (X,x) is rational

Proof.  Suppose that b23. Since o,/B,, %/B:2[2,2, 2)=4/3
and dl/Pl=b1122’_we have that c(k)< ~b<+[f«—1)/2]+2 EB{—l)/A]
£ 1-bk+ (k-1)/2+(3k-1)/2=(2-b)k. So c{x)<(2-b)x <O for k2l and

Let b=2. Then c{k) 1-2%+ [{x-1)/2]+2- Bz‘-l)/él
1-2k+(k~1)/2+(3k-1)/2=0 holds

Similarly to the proof of Theorem 4.2.1, we should find when

the equalities @ and @ are simultaneously satisfied
The ecuality (@ hold when 3k=l(mod.4),i.e., k=4%+3%, 20,

If ve suppose that b,,23 then [({(40+3)- 1)/b 1 [4ﬂ+2)/3]
A -

at least one intezger which 1s greater than, or equal to-3 amongzg

{‘ .}. We may assume that (b 22, 3);é\._,2,2) without loss of

o}
e
]

b
ot
-
‘_J
(]
[6]
<t
-
=3
[
(@]
O
o
9]
|, ]
[N
[}
B
ek
[
[©)
(o)
o]
[
W
-
|~
1-+
4
<
b,
o]
H
b
]
NEN
=t
+
\\)‘l
=
I\
o]
.

Then we have that

[exp,-12/% )< [

On the oth2r hand, [(31 /4 ] [(12178)/“]

©-13/7)=[(200+12) //]<'( ol+14)/7 < 3l42.

U

- 13 -
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So the equality (@ does not hold in this case. Let k=3. If ué/F%
2[2,3,2]=0/5, when [(38, ~1)/ o] = [(3-5-1)/8]=1< 2= [(3-3-1)/4].

So the eQuality @ does not held. Let XZ/P =12,2 ,m| with m23,
i.e.,-12402=(3m—1)/(2m—1). Then we have the equality @ since
[KEﬁZ—l)/32]=[ﬁ6m-4)/(3m—2)]=2. Therefore we have the equalities
@ -and @ if and only if k=3 and b=by=b

| 21’=‘t>22-_-’031=b32=2, and
then complete the proof of Theorem, by Theorem 2.2,

Q.E.D.
- N ) . )
Coroliary 4.3%.2. x5, 1is the weighted dual graph for a
hypersurface isolated singularity if and only if b= b 117 b2l 00 31
=b32=2 and 5 <b,x+by, <7.

237733
4.4, Tinally we ccnsider the grapzr of tyrpe ;Sé.
Theorem 4.4.l. For ;Eﬁ,
(l) _ 11 b21—b22=.‘031=b32=b33=b34=2

e— (X,x) is minimally ellintic,
(2) otherwise ‘;::j> (X,x) is rational.
Proof.  Suppose b23. Since o(l/(3’1=b11_z_’2, o,y /3,2[2,2]=3/2
and o5/p52[2,2,2,2,2]=6/5, we have that
c(x) £ 1-vk+ [(k-1)/2]+ [(2x-1)/3] + [(5k-1)/6]
< 1-bk+(k-1)/2+(2k-1)/3+(5k-1)/6= (2-b)k.
J< O for all k21 and c(0)=-2. Hence ~v(*“8) 0.

1-2cs [(k-1)/2]+ [(26-1) /3] [(5%-1)76)

1-2%+ (k- 1)/2+L2{-L)/3+(5 k-1)/6=0,

~

So cf

ILet b=2. Then c{k)

I A

The eqﬁality @ hold when k satisfies that 2k=1(mo0d.3)
and 5k=1(m0d.6),i.e., k=68+5, §20.
If we suppose that b 2.3 then we have the following
egualities and 1nequa~1ties
[(py =20/ T=[(k-1) /051 ] < [(x-2)/3]= [(6h+4)/3]< 20 +2
< 3]+2= [6 +Z=,)/2 .



154

Thus we have ©by,=2 in order to hold the equality D .
If we supnose that (b2i,b22)¢(2,2) then
[epy-1)/72] = [(3x-1)/5]=[(181+14)/5] < (180+14)/5
< 4]+3=[(2-(61+5)-1)/3].
So we get b21=b22=2 for the equalizvy G),
Then the contractibility implies

(v $)4(2,2,2,2,2) .

| 31103210333 D54 03
By TLemma 4_2.3’0(3'/(332[2,2,2,2,3]=11/9. Then [(kPB—l)/dz}g‘:@k—l)/llj
(541+44)/11]< 58+4=[(5k-1)/6].

If |21, then [(540+44)/11]< 50+4. Hénce we need to consider only
h

=y

2 ‘Case 0 k:s- And 'Chen, for 0(3/.(332[2!2:2:3,2]‘314/11,
-1 ( 54 = -
[(5p5-1)/a5)[54/14]=3 < 4
Let 0<5-/'f33=[2,2,2,21m—_\=(5.’ﬂ—¢)/(4m-3), mz}. in T.hls case, we have
[(SPB—I)/23]=[(20m-16)/(5m—4)]=4, and the equality‘holds.

1

Therefore we can complete the proof of Theorem by Theorem 2.2.

Corollérj 4.4.2; #Bg 1s the weié;ﬁed dual graph for a
hypersurface isolate@ 51ngulafify 1fvfn& onlzy 1f’b=bll=b21=b22
=b31=b22=b33=534=2 and b35 is restrictgd as follous;”3§;b35;;5.

5. Proof oi Theorem C.  In this section, we consider

those contractible zraphs G(----) with i1=0, where ¥ is defined in
section 1. 3Since G associates to a rational singularity, it

consists of only nonsingular rationzl curves and has onliy normal

crossinzs.

- = 7 T A ! 3 1 IR, a o’ -

Lemma 5.1, Let G{-~--) be such a graph, and ¢ (----) be 2
connected nroper subgrzpnr of G{----). Then G“(~---) is 2lso such
a graph.

This is an application of the folliowing.

Thenrem [15, Theorsm 2.8], Let A be a2 contractivle curve,

Tet 47 be a2 connected proper subvariety of 4. Then for the asso-
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(X%ex") < p_(%,r) hnolds.,
from this Lemma and Theorem B, we have the followinzg Lemma.

Lemma 5.2, Let G be such a graph. Then it cannot contain

«D jB,,-*E7 or ykg. Theresfore,

by Theorsm A, we complete the proof of Theorenm C.

Remark. Theorem B gives examples of the graphs with M=1.
6. Bimodular singularities. ~.In this section, we shall note

the relationship ?etween our results and that df Doigachev E4].

In Corolléry:4.2.4,_4.3,2 and 4.4.2, we describe 14‘distin-
guished dual graphs of normal‘surface Singulafities with embedding
dimension 3§>These are.exactly the graphs of the 14 exceptional
bimodular singula:ities consfructeﬁ.by Dolgachév; |

elation is described by the following
I

~~

More precisely the r
list, where the symbols %2y and bij are those of used in section 4

and others are those of Arnold [1].

&t ‘ Pt £
*"’6 *“7 -)E-"’8
P12|P22 P52 °23 |33 P35
2 2 E18 2 3 319 3 EZO'
2 2 4 217 2 4 le 4 219
21205 | e [ 2|5 | Q70 ] Qs
2153 3 wl7 3 3 lwlé
2 3 4 16 3 4 817
3 3 3 U16
The 5 graphs of type ;5; described in Corollary 4.1.4 also
correspond to an interesting group of 6 bimodal singvlarities in

For zrapns ,D,, n»4 the quadriples (2,2,%,3%) and (2,2,3,4)

give two types Tor each guadriples.

- 16 -
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In this way, one gets the following 8 series of singularities,

where the notations with double indexes are described in ElBJ.

*fl\);v: *’\Ti+4’ 11

2|2, |25]ay 2541 2iv2| Bie3| 2iva
2 1212 |3 A 2 2 2 3 I3 4
2 12 |2 |4 | 2.5 |2 2 2 4 Zy 3
2 |2 |2 |5 Q. |2 2 2 5 % 3
2 |2 |3 3 | g 2 |2 3 3 Wi g
212314 |s, |2 |3 |2 I3 wf’i
213 13 |3 | Uy, 2 2 3 4 5.3
| 2 13 |2 |a si’i
2 |3 |3 |3 Uy g
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