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Introduction. In this paper we intfoduce an algebraic tool,
called conjugation scheme . Definitions are given and some

results are stéted ;'proof5‘precise'references‘and.SOmé other |
results will appear in a forthcoming paper. A preliminary version
with detailed proofs of part of this work is published in preprint
form by Istituto Matematico Universit4d di Pisa, Italy

"Sistemi di Coniugl e secondo gruppo di omotopia", in Italian,

1. Lilroth~Clebsch condition.

K ‘conjugation system is a 'couple (G,T)"where G is a group

and T € G is ‘invariant under inner automorphisms :

ngTlf: T,-Vée7G.’* For nelN and 1l<i<n-1 we define ci:Tn+Tn by:

4+ g = a Y v - y . '= e pe e 1
oi(tl,..,tn) (tl,..tn) where j tj for j#i, i+l and

,t = £

R B R
By=tity T st an T By

1%1%¥1°%
" This gives an actioh on T of the braid group B(n) "in n_
* strings. Associate withAan~é1ement t =“(tl;..th) € T

the- féilowing B

1) The element v(t) = til.l;th“e'G

211) The ‘subgroup G in G, geherated'byl'tl,}.:%ﬁ';
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An element te ™ will be said complete iff t,,..,t are
conjugated to each other in the group Gt‘
Definition: The couple (G,t) satisfies the Lﬂroth-Clébgch condition

if the following is true:

(L-C) Let ¢t

ty, t

o € ™ bpe complete. Then they are equivalent

under = braid action iff G, = G. and v(tl) = v(t2),

. ty t5 L z
Let W be a group generated by reflections in R™ endowed  with
some bilinear form, and let T < W denote the set of reflections.

One can prove the following:

Theorem. 1 (W,T)satisfies L-C if W 1is a Coxeter group of
type Ay, Dy, or Eg, i=6,7,8.

In all other cases we are unable to decide whether the L-C
conditién holds (especially when W is any other Coxeter group
or the local monodromy group of an isolated singularity of hyper-
surface, the Milnor fibre of which has not a difinite positive
intersection form).

One may try to construct "obstructions" to the validity of
L-C. One way is to stabilizérthe problem in the following way:
suppose that T is closed‘under inversion on G (if not, add to
T the set {t™1|teT}); for seT, teT" defiﬁe s.t as the
element in Tn+m obtained by writing the sequente t on the right
of the sequenee s , so that S'(T) =éé0Tn has the structure of
a semigroup; the product being compatible with braid actions,
one gets a semigroup S"(T) = S'(T)/braids. Finally define S(T)
as the semigroup S8"(T) divided by the semigroup generated by
{(t,t‘l)i teT} . The map wv: ™ 5 G defined above, induces an
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~ homomorphism. S(T) »: G that will be denoted again by wv..

One can prove the following:.

Theorem 2
M,i),S(T); is a gfouphk
ii) The,Kernel of v:S(T) + G is an abelian group; it will be
~denoted by  ((T). ;
iii) If L-C holds for (G,T), then U(T) =0

Theorem 3 ©(T) vanishes in the following cases

i) G a Coxeter group and T the set of conjugated elements to
generatqrs.
ii) G the monodromy group of an isolated singularity of hyper-
surface type and T the associated set of Picard-Lefschetz
transformations (obtained by turning around simple points

of the discriminant of a versal deformation).

2. Conjugation schemes

One may generalise the notion of conjugation system as follows.
Let G be a group; it acts on itself by inner automorphisms.

A Conjugation scheme over G 1is a triple (y,v,- ) where

V:GxT » T is an action of G on a set T, v:T + G 1is a
G-equivariant map and -:t >t is an involution on T satisfying

for all te€ T:Q(E) = \)(’c)—l and v(t).-(t) = t. As before, one
has braid actions on the Tn, and the semigroups S'(T), S"(T), S(T)

may be defined as well as an homomorphism v:S(T) = G 3 again one
can prove that S(T) 4is a group and that (9(T) = Ker ( S(T) ¥ a)
is an abelian group. » |
Morphisms between conjugation schemes are defined‘in the obvious

way éhd the construction above gives a functor with values in the
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category of ‘exact sequences o + (J(T) + S(T) + G with ~O(T)

abelian . Call a conjugation scheme reduced if the map T + G

is injective so that reduced conjugation schemes coincide (essen-

tially) with conjugations systems. 7
Denote a conjugation system simply by T or by (G,T); let

T denote the image of T in G; the conjugation system (G,i)'will

be called the reduced system of (G,T). This gives a functor from
{conjugation schemes} + {conjugation systems} with the property

that S(T) - S(%) is surjective (hence O(T) » O(T) is surjective
too). In some occasions, it will be proved that O(T) - is not zero

by ‘showing that (T) is not zero.

3. "Second homotopy groups.

‘TLet X be a ¢ manifold, Yc X a closed submanifold of codimen-

sion two. Let x,&X-Y and define

= {(0,e)|0:[0,1] » X is differentiable,

g(0) = T

Xgs Y) = 1, o 4is transversal to Y and

¢ 1s an orientation of the normal pléne*to Y - at
o(1)}

.consider on R some standard topology (for example the C1 topology)
“and denote by T the set of connected components of R There is
'an actlon of wl(X—Y;QJ) on T (induced by comp051t10n of arcs:
gemy (X Y; XO) and (t,e)e T then g(t) (t*g ,e)), a map

’v T > My (X—Y x ) (defined by a55001at1ng to (t e)e T the loop that
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follows t ~until near t(1), then turns around Y accopding.to_

€ and then come back to x, along t—l) and an involution

(t,e) = (t,-€).. One has the following:

Theorem 4 ‘
i) (ﬂl(X—Y;XO), T)_;s conjugation schemer
ii) The associated map S(T),2 ﬂl(X—Y;xo) is canonically
~isomorphic with the natural map ﬂz(X,X—Y,xo) - vl(X_Y’XO)’,
fIn-particulaf O(T) is canonically isomorphic with the cokernel

of WZ(X—Y;XO) > WZ(X;xO),

i, The complement of hypersurfaces

Let A Dbe an analytic hypersurfacé in T x mnAs.th. the pro-
jection ¢. on t? induces a proper branched covering,map of
degree d. Let us re-examine the Van Kampen Zariski procedure

to find a presentation of the fundamental group of T X ch- A.
Let PC,En be the set of critical vélues of ¢ : A~ mn,

T =C xT. For zel" denote T x {z} by L,. In what follows
base points are choosen as zoé En— I' ~and for the other spaces as
(m,z,) where |m| is large. Tﬁere is a fibration T x - (AU r) -
t’- I' induced by ¥ and whose fibre is € - {d points} . |

One deduces a diagram :

(+) 1> m (L, -A) > nl(mn”l- (AuT)) T m (EP- T) » 1
0 Y
Jo

where the horizontal:line is. exact (homotopy»sequence of a fibration)

- and' Y. comes from“arsection.of the fibration.  The classical.method

n+1

of computing nl(m - A) .comes from the fact that a-j is
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surjective and its kernel is generated (as a normal subgroﬁp)'by
elements of the form x 1. b(x) where xe~w1(LZ0— A) and
be wl(mn— '), the action of “ b on x being defined throﬁgh the
semiproduct structure of fhe horizontal'line in the diagram (+).
In fact. this acﬁion comes from a natural homomorphism:
.wl(mn— Ir) - B(d)= braid group in d strings, Which'operates ca-
nonically on the free group in d ietters ﬁl(LZO— A).

Now let X =€ x T FAnA, Y=4A-T and let T be the
associated conjugation scheme (as in §3). Such a T may be pre-

sented, as a conjugation scheme, by a similar Van Kampen-Zariski

procedure that we are going to describe.

5. Presentation of conjugation schemes.

Let'(G,T) be a conjugation scheme , and j : X = T a map where

X 1is a set. We shall say that (G,T) is free on X (better : on j)

iff for all (G',T') and maps 1 : £ - T', there exists one and

only one homomorphism (G,T) -+ (G',T') compatible with 1, J.

Theorem 5 (G,T) is free on X iff:

i) X<¢T (i.e. j is injective)
ii) TcG (i.e. T is reduced)
iii) G is the free group on X
iv) Tis the set of elements of G that are conjugated to elements
of X or of X L. |
Now suppése (G,T) is the free cohjugation scheme over a set X.
Let be given a set of "relations" of the following type
x; = Py yinl , where x,, y, ¢ XLJX"; s PiﬁjG , 1e€T
We say that t and t'€ T are equivalent if they can be interchanged

by successive steps of the following types:
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. -1 -1 -1 o
- 1nterch§nge EPitiPi p = with PtiP 7, where P,t,P

= !
i t

i i
is one of the given relations.

- interchange QtQ ™" with PtP Y, where P = Q mod. the

normal subgroup generatéd in G by the givén rélations.

~

G/

]

This will give a conjugation scheme ‘f on the group G
given relationé, that satifies an obvious uni?ersal property,
that characterizes (&,T) as an "universal" object. In this

way we can obtain all the conjugation schemes (G,T) where T
generates G. In a similar way one can deal also with conju-
gation schemes whefe T does not generate G. We want to
emphasize here that the "given relationsﬁ cannot be changed

in the same way as for presentation of groups. For example

let X = {x,y} and let be given the relation x = yxy_l; the
corresponding conjugation scheme is not reduced; in fact

é = Z2 is generated by x,y and for T there are the followig

distinct representatives: x, x~1 ang xNyx R, xn'y_l-x_n for né€z.

n
Now add the relation y = xyx_lg then G 1is again 22 but
the conjugation scheme we get is reduced and it is given by

- -1
{X,X l,y,y } » this example can be described geometrically in
the following way:

.13

let L = {(0,0,z)eR3|z€¢R} and S = {(x,y,0)€R> |x°+y
The conjugation scheme obtained as in §3 by considering
X =IB3.,Y = LUS is not reduced and it coincides with that

defined above by the relation x = yxy_l. Add one point « to

E3 and define X = 83 and Y = L v{«}uS; the resulting

conjugation scheme is now reduced and it coincides with the one
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-1 -1. .
given by the relations  x = yXy ~, ¥ = XyX ‘o 'The situation. .
of the Zariski-van Kampen presentation is-analogous:“‘one~hasu
braid relations of ‘the type

; -1 -1
“b: (X‘l, Seey Xn) ¢T Xo(l) l 5 e T Xg(n) n )

where o 1is a permutation of {1, ..., n} and Ix, = HT X 771 ;
11 1 0(1) i
one knows that the last relétion x =TXx T-l is always
~"n "n"0o(n)'n v

lnessential to give a preséntatknlfqrvthe fundamental group,
since it is a "consequence" of the oﬁhers. This will not be
true for presentatibns of conjugation schemes, as one can see
by modifying the example above: leﬁ b be the braid induced

by a generic double point in Ez, i.e. b: (x,y) » (y_lxy, y—lx_lyxy);

if one consider only the first relation x = y_ Xy Wwe have seen
that the associated conjugation scheme is not reduced; on the
other hand it 1is easy to verify that‘byvadding’thebsecond rela-
tion one gets a reduced scheme.

We do not know any example of not reducedness of the Zarlskl—
Van Kampen presentation. One verifies that it is reduced in the
case of the cusp by an argument that seems to apply to the case
of the discriminant of the singularity x' for all n. I would
hope thatvin fac? this is always true_for any énalytic hypersurface
A in € x En as in 84. In fact one could made the follo&ing

stronger conjucture that we state for A = {(x,y)€ E | v ‘-x3}

let D={z€D|z <1} and let o0,:D~+T° bea C  map,
transversal to A with only positive intersections,"i‘#‘l,2;

suppose that is free homotopic to OZ'BD in O7-A ;

o1l

- 8 -



221

thenmzci .can be deformed to 04 “through SOmeA<ot' that-
" remains. transversal to A.. Aétually one could extend this
. conjecture to the case that- A “is either the discriminant or-

the bifurcation . set forJsimple&singularities.

6. ﬂa:»of.complement-of hypersurfaces.

'Consider again the situation of 84, The homotopy sequence

~of the given fibration contains: an isomorphism

n+l

mo (BT~ (A r)) ;;ﬂ2(mn -T)

(it is injective since ﬂé(L - A) = 0 ‘and surjective since
the fibration has a section). Since the map. e —I‘»-»-(]IIH-L:L -A

+ ~ n+
P (auT)) sy 2 )
is the zero(honpmorphism. This implies, by theorem 4, that

né(m?+1 - 4) coincides with () (T) where T 1is the conjugation

+ = S
scheme over ni(mn 1 - (AVTl)) made with arcs from the base -

' is null homotopic, it follows that ™ (T

-~

point to _F. »From this, one deduces the following.

Thedrem 6 . The diagram (+) of 84 determines ‘n2(m“+l -A).

Hefe "determines" means one has a "way to compute"; but obviously
this computability is only theoretical: this can be understood
easily by thinking of the difficulties one gets by?trying to
combute actually in the case of the presentation of the fundamental
group by the Zariski-Van Kampen procedure. What we want to

show now is some algebraic procedure to "extimate" somehow :thé
secohd_homotopy group. . This can be applied in concrete situations

to show the non vanishing of the second homotopy group.
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First of,all_we‘reduce;the.conjugation scheme- by taking
its image in. W = ml(mnfl - (AvUT)). This group~is,the'semi-
direct product of G = nl(mn -T) with the free group H =‘nl(L-A)
through the natural homomorphism'anl(mn‘el’) » B(4) = braid
group in d strings. Consider the conjugation system S in G,

made of loops around simple points of F;:so'the’elements of -

S are the ones one considers to find relations for“‘wl(mn+l

Through the section of the fibration, S ~ can be embedded in W;

- A).

Now T 4is Just the set of conjugated elements in W to elements
of S. By identifying W as a set to H x G, we find that
T = {(x_l'S(x),S)Is €S, xXeH}; i.e. the elements in T are

"fundamental relations" for ‘nl(mn+l

- A)(the first entry x_l~s(x))
but keeping also where this relation comes from (the second |
entry s).

Let us consider an explicit example. Consider
A= KW,Z)G'E2| w2 = 22 - 1}. Here T consists of two points
1, -1'in & so that G = free group in two letters say a,b.
Also H = free group in two letters say x,y and the homomorphism
G - B(2)= braid group in two strings is given by the map that
sends both a and b to the generator of B(2). The associated
conjugation system can be shown to be reduced. Consider the
element q induced in (@ (T) by the sequence

((X_ly,a),(1,3—1),(1313),(X-ly,b—l)) € Tu- One- can prove the

following.

Theorem 7 (0 (T) 1is a free module of rank 1 on the group ring

,Z[ﬁl(mn+l- A)] = z[ 2] and as such is generated by g. The
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proof is a topological one: choose;e pointxbpé- ih"m2  near

the origin. then €2 - A can be described by studing 01"‘,he levels

" of the distant function from Py (this‘is "félati&e" Morse‘theor;
and one di§COvers that mz.iA is homotopicaliy'eenstructed”v

by adding to a point two cells of dimension 1 and 2; the attaching
map of the 2-dimensional cell being homotopically trival, ~E2 - A
has the hometopy type of the one poiﬁt union ofk Slr,and 82.

A carefull (but elementary) analysis, show that q is identified
with the 2-cell. It ﬁould be hard, I believe, to find this
reeult by algebraic computations on the conjugation scheme.
But if one is interested only in- the result that ﬂz(m2 - A)
is not vanishing, one can use the following procedure that we
describe first in a general frame: let be given a semidirect
product 1 - H i W % G > 1 and let SC‘G be a conjugation«f"
system. Ae before one can consider the conjugation system T
generated in W by B(S); namely V = {(x—l-s(x),s)lxé?H, s €& St.
‘Let X: G > Aut (H) be the homomorphism defining the semidirect

preduct and let H'c¢ H and G'"cC G be normal subgroups s. th.

i) g(H')CH' for all geG
i1) x—l-g'(x)GI{' for all x€H and g'eG'.
then X induces a homomorphism Y: G/_ > Auti(H/ ), s0
. . G' Hl
that one gets another semiproduct 1-+H, - Wz G, > 1
| H' '
which is .a "homomorphic image" of the original one. Also one

gets a - homomorphism (9(T) > (¥T), where T is the image of

T in W.
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Roughly speakingg this procedure can be applied to the
semidirect product (+) by considering "permutétionsﬂ instead of
"braids"j more precisely one may choose for H' the commutator

d

subgroup [H,H], so that ﬁ/ = Zz -and for G', the normal

H'

subgroup generated by {52'|s.es}; Or eveén one may reduce the .

free group H  to be"(Z/zz)d and to enlarge G' by introdﬁcing

some commutatiVity*relation between the genefétors of YG

(namely between the s €¢8). Cbmputatibné are4great1y simplified
and the "obstructions" one gets are still strdhg ih many cases.
For example one canveasily show that for | |

| 2 w? = (22-1)%7*1}, thne group m,(E% - A)

A= {(w,z)eC"|w

is non zero, and in fact, fdr examﬁle fof n =‘Q, thatkthe

element q described before is noﬁ zefo in (@ (T).— Also it is

easy to show that for A a set‘éf n iines in géneral position

in m2, ﬂg(m2 -A) is non Zéro for n > 3. Thé‘reason of ﬁhese
non vanishing is’aiways the non injectivity of nl(mn -T) » B(d);
now there 1s some reason to believe that if r ’is the bifurcation
set assoclated with the sémiunivérsai deformation of an isélated
singularity of hypersurface type, then ﬂl(mn -T) » B(d) is

not injective if the singulapity is not é simple one. This

seems to suggést that the K(mw,1) conjecturélfof non simple

singularities may be not true, due probably to the non vanishing

of the second homotopy group.

S 1o -



225

7. Some comment,

The situation described above, would be greatly simplified if

one would know a Lﬁroth-Clebsché type condition to be true for

the braid group, nameiy the conjecture noted in §5. In any case,

as it has been juét remarked, one could get only threoretical -

results, computations in concrete cases being too difficult; so

one can think of this theory as one that can give only "negative

results", i.e. it can beé applied in some occasion to show the non

vanishing of the second homotopy group - Typical elements in (9(T)

are as theqg describeb in §6 : one starts with 81> S, € S and

x eH, s.th. sl(x) = sg(x) ; consider in Tu the element

((X_l-sl(x),sl),(l,szl),(1,52)(x—1-s£l(x),52)) : then one may try

to show that this is net zero by reducing the semiproduct as in §6.
On the other hand, conjugation schemes seems to be a very natural

object ; as we have seen; in many occaslon, one may use topology to

get algebraic results about them. For example let TOU . L)Fn

be a link in S5 ; consider G = ﬂl(S3—(PO .. Tn)) and let T be

the conjugation system in G, given by simple loops around FO .

If one knows that w2(53—(P0L/.. UFn)) = 0, one may deduce that

O(T) = 0. By choosing n=1 and T, to be a fibre of the slonormal

1

bundle of T in 83, by asphericity of knots one gets a statement

0
about the group of a knot
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