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ON THE BOUNDING GENUS OF

HOMOLOGY 3-SPHERES

preliminary report

by Yukio Matsumoto

éo. Introduction.

By a homology 3-sphere is meant a ¢” closed oriented 3-

manifold ZZ with H*(ZZ; %) <2 H*(S3; Z). Two homology 3-spheres

2:1, 2?2 are said to be homology-cobordant iff there exists a

C™® compact oriented 4-manifold w with ow! = ZlU -Z’z

such that the inclusion induces an isomorphism H*(Z:i; z) —>
H*(W4;4Z) for each i = i,2. This relationship (denoted by
Eflfv Z:z) is an equivalehce relation. }{3 denotes the totality
of the equivalence classes of homology 3-spheres. The connected
sum operation makes }(3 an abelian group.

){3 plays an important roie in geometric topology, but
nothing is known about its group structure excepﬁ for the exist-
encevofban onto homomorphism f?: 9{3 —> %/2 called the Rochlin
homomorphism. In fact, even the following very optimistic

conjecture (VOC) remains unsettled:

(voc) ' f) is an isomorphism.

- Though we have little information about }(3, we certainly
have millions of homology 3-spheres. Thus, following the phi-
losophy in [N-R], it seems worthwhile to compile many empirical
data about homology 3-spheres and 4-manifolds with homology

sphere boundaries. In this note, we shall propose a genus-like
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invariant which seems useful for this purpose and estimate its

values for certain Brieskorn homology 3-spheres.

§l. The bounding genus.

Let 2., be a homology 3-sphere. We will define the bounding
genus of ZZ: (denoted by ]EZ[) as follows: If the Rochlin
invariant of 27, @ (Z.), is non-zero, then define \Zf,\ to
be +oo. IFf ~(9(EZ) = 0, then J_. bounds a C° compact spin
4-manifold W® whose signature satisfies 6‘(W4) =0 (l6).

4

By surgery we may assume that W4 is connected and Hl(W ; 2)

= {0}, in other words, that W4 is homologically l-connected.

By taking a connected sum of W4 and some copies of the

(possibly oppositely oriented) K3 surface, we may assume

6”0W4) = 0. Now the intersection form of W4 is an orthogonal
sum of certain number, say n, of "hyperbolic planes" [g é .
We can say briefly that if (37) = 0, then 2" "bounds" the
form n{g % The bounding genus [2:[ is defined to be the

minimum of such n.
Easy properties of ‘z:l.

(1) 1f 22,~3,, then 122 ,] = \Zzl. Thus the bounding

genus (sometimes abbreviated as the © -genus) gives a function
e — {0,1,2,3,.'..,+°o}. | |
2) |2 |=0 ief T =0 in PC.

@ |- -2

(4) |Z, + Zz\ < izl\ +|Z, |, where 20, + 27, denotes the

connected sum.

By these properties, the b -genus of the difference
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‘ZZ:I:_ Z:;\ ‘ @;li{ll +(-Zi2)\)‘, serves as a distance function. .
and gives a "metric" to }f? (but admitting--infinitely distant-

points).

§2. The main result.

At the present stage of knowledge, we cannot find any
homology 3-sphere 7. with )21‘ # 0, +oo.r/To find such an
example is equivalent to disprove (VOC). Nevertheless, we can
estimate b-genera for many homology 3-spheres, and these
estimates constitute our main result.

Letr_2:(p,q,r) be a Brieskorn homology 3-sphere with pair-
wise coprime integers p,g,r=1l. It has a natural orientation. Let -
‘p,‘q,m,ﬁ be integers 21 with gcd(p,q) =.1. The main result

is the following : | L%

Theorem 2.1. |
(1) |Z (s @ pam £ | £1 if m is even. |
(ii) If m is odd and p(Z.p, @, pam £ 1)) = 0, then
|Z2(p, a, pam £ 1)} £ (p - 1) (g - 1)/2.
(iii) |Z(p, q, pam - 1) + Fp, q, pad + D)L 1 if
n=J nod 2
(iv) |=(p, @, pam - 1) - Z(p, @, pad + V| L - Dig-1 +1
for m, g/ odd. |

(v) \Z(p, g, pam - 1) - 2°(p, 49, pgm + l)] L (p-1(g-=-1).

Comment on (ii). If m is odd, we have.

P(ZZ(p, g, pam + 1)) = P(Z(g, p, pgm £ 1))
{'(l - qz)/s (mod 2), if p 1is even and q is odd,

0, if both p and g are odd.
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For other estimates, see §5.
To what extent are these estimates satisfactory? To content

the questioner partly, we shall introduce the following concept:

Definition. An estimate |> |<n is said to be hard-to-
improve if an improved estimate \Zl € k< n would lead to the
existence of a €™ closed, homologically l-connected, spin 4-

4

manifold M* with b,m?) < (11/8) | st |.

Note that such a 4-manifold has been long sought after,
but the existence is still unknown. As an example, put p = 2,
qg=3, m=2 1in Theorem 2.1 (i) and take "—" sign. Then
we have 2:(2,3,ll)l§; 1. This is hard—to—improve. To see
this, note that 2°(2,3,11) bounds a compact Milnor fiber which

is a l-connected spin 4-manifold with b, = 20, ¢ = -16. Thus

2
if 27(2,3,11) = 0 in }{3, in other words,’if 2:(2,3,11)
bounds an acyclic 4-manifold W4, then by pasting W4 and the
Milnor fiber along their boundaries, we would obtain a "sought
after"” 4-manifold.

Kirby and Akbulut conjecture that 2:(2,3,11) % 0 [Kil,
p-54]. 1In our terminology, their conjecture is interpreted as
| =231 = 1.

Now we will pick up some hard-to-improve estimates from

Theorem 2.1.

=2, 7,191 £3 (=2, 9=7, m=1, -sign in (ii).)
ct. [K, p.49].
|>2.3.: + Z2,3, 0|21 (p=2,qg=3,m=/ =1
in (iii).)

\iﬁﬂ2,3,5>-— 22(2,3,1) £ 2
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From last two estimates follows
|2>(2,3, 5L 3. (hard-to-improve)
Also we can prove (by surgery)
|2>7(2,3, 1) € 1. (hard-to-improve)

|227(2,3,5) - 32(2,3,11)| £ 2.  (hard-to-improve)

§ 3. Our method.

Our main tool is the Dehn-Kirby calculus [Ro] [Kil].
* 3
Let L = (“J K, be a smooth link in S7, each component K,
i=1

being labelled with a "surgery coefficient"” r; € 0 U {e=].

Such a labelled link (L, {ri}) is called a Dehn-Kirby diagram

(briefly, a DK-diagram). Via Dehn surgery, a DK-diagram repre-
sents a € closed connected oriented 3-manifold. (A DK-

presentation of a 3-manifold.) Conversely every C closed

connected oriented 3-manifold has a DK-presentation, [Lil].

The Dehn-Kirby calculus consists of those operations through
which a DK-diagram is altered into another without changing the
degree (+1l)-diffeomorphism class of the corresponding 3-manifold.

The following is our key lemma.

Lemma 3.1. Let K be components of a DK-diagram.

Z€t  Rgr

K

1

Suppose KO spans a meridian disk of Ky whose interior does

not meet other components than K Suppose the coefficient

1°

is an integer, say n. Then we can alter a part

rp °f K

of the diagram without changing the degree (+1)-diffeomorphism

type of the corresponding 3-manifold as the following picture
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indicates:

n n-(1/r)

This is the process of "blowing down" the ro—labelled
component KO. Iterative application of the inverse "blowing
up" process allows one to convert all the rational coefficients
into the integral ones (corresponding to the continued fraction).
Several authors suggest that Rolfsen has known such a process
(cf. [Kil, Remark 6] for example).

The above lemma and Seifert's argument [S] yield the

following DK-presentation of the Brieskorn homology 3-spheres

>(p, a9, pam + 1):

Theorem 3.2.
0

>(p, g, pam + 1) &= K(pz:gz:::::::::zégD "

0

Z(Pr g, pgm - 1) = - [K(p, -9) ‘ Yo m

N~

Here K(p, Q) (or K(p, -9g)) denotes the (p, g)-torus knot

(or its mirror image).

A DK-diagram with integral coefficients represents not

only a 3-manifold but also a 4-manifold obtained by attaching
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2-handles to a 4-ball along the diagram (= a framed link). TIts
boundary is the corresponding 3-manifold. Thus, according to

Theorem 3.2, ZZ(p, g, pgqm + 1) bounds a l-connected 4-manifold

01
i1ml°®

} . This proves Theorem

whose intersection form is given by the matrix ( If m

01
10

2.1 (i). Other estimates in the theorem are also based on

is even, [g ;] is congruent to [

Theorem 3.2, but their proofs require some additional surgery

arguments.

§4. Proof of Lemma 3.1.

We use the same notation as in Lemma 3.1.

Case 1. K, and K, are unknotted. L consists of the

two components KO’ Kl.

Let E be the exterior of an open tubular neighbourﬁbod
of L. Then E is identified with Sl X Sl X [0, 1]1. The
circle Sl is parametrized by a real number mod 1. We give

1 X [0, 11 (where

a coordinate (@, ¢, t) to SlX S
6, Y€ RrR/Z, O LSt =<___1\) so that the point (@, 0, 0) (or the
point (O, 97, 0)) traverses once the longitude .[0 of Ko
(or the meridian m, of KO) as £ (or Q?) changés from
0 to 1, and so that the point (9, 0, 1) (or the point

(o, 9’, 1)) traverses once the meridian ml of K1 (or the

0 Kl are oriented so

longitude ‘Ql)’ Here we assume that ’K
that the linking number is equal to 1.
Define a diffeomorphism f: Sl'X,Sl‘x (o, 11 —

s'x st x 10,11 by £(8, P, t) = (6 -ng, -, 1-1t).

(Recall n is the coefficient of Kl.) f preserves the
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. . . 1 1
orientation of E and interchanges S X ST X {0} and
1 1 ’
st x sTX{1}.
The induced homomorphism on the first homology

Hl(Sl X_Sl‘x {i}; 2), i =0,1, is given as follows:

£.00,] = my], £,0mgl = =141 - nim]

£,04,0 = -0l L)1 - Imgl, £,0m1 = [ L]

Recall that the surgery coefficient p/g attached to KO
indicates the Dehn surgery performed along a smooth simple closed
curve on sl-x sl X'{O} whose homology class is p[mO] + q[,ﬁo].
Since f*(p[m0]+q[,Q0]) = (—pnfq)[ml]+(—p)[,ﬁl], the curve
"po/g" on Sl>( Sl X {0} is mapped to the curve " (-pn+q)/(-p)"
(= n-(a/p)) on stx st x {_l}. Similarly, the curve "n" on
Sl X Sl,X {l} is mapped to the curve "owo" on Sl,x Sl X {0}.
Thus £ gives a degree (+1)-diffeomorphism between the DK-

diagrams:
<I>p/q ~ > o

n n-(q/p)

Since one can always get rid of a component with coefficient
o© [Ro, p.261], the proof is done in Case 1.

Before proceeding to the general case, we note that the
unknotted simple closed curve C = {(9 , 0, l/2)l0 <6 g l}
in E 1is a component of the fixed point set of £. Let N(C)
be a tubular neighbourhood of C. Then f is isotopic to the
identity on N(C). ©Now assume that £f|N(C) = idN(C)' Let

T = S3 - Int(N(C)). T 1is a solid torus containing KO’ Kl in
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its interior. Since the curve C spans a meridian disk of Kl’

the component K is the longitudinal central circle of T.

1
Let fT = f£f|T. Then fT is a degree (+1)-diffeomorphism
between the "DK—diagtams in the solid torus T" such that

fT\aT = id, :

Case 2. The general case. (The component K is unknotted,

0
but Kl may not be. L may have other components than Kyr Kl.)

Ko
only the component K

spans a meridian disk of Kl whose interior intersects

Hence we may assume that KOCZ Int N(K

1 1)

where N(Kl) denotes a tubular neighbourhood of Kl'
assume N(Kl)f\ L = K, L)Kl. Let V = S3 - Int N(Kl). Now

We may

identifying the solid torus T in the preceding remark with
N(K;), we have the pasted diffeomorphism fT(“}idV: TUV —>TUV
which is a degree (+1)-diffeomorphism between the DK-diagrams

in question. This completes the proof of Lemma 3.1.

§5. Some other estimates.

Let p,q,k be integers with k odd >1, 0 p<d, P, 4

even =22 and pg ='k2 - 1. Then we have

(5.1) | =, k2 p, gz 0] = 1.
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This follows from the following DK-presentation:

(The same reasoning that appeared at the end of § 3 is valid.)

S5 (k, k+p, k+q) -k

> (k, k-p, g-k) L=

Here k Stands for k full twists.

T , : .
It should be noted that the family of homology 3-spheres

in (5.1) precisely coincides with the family which Casson gives.

in a different form ([Ki Problem 1.37, Remarks]) . Thus one may

2’
attribute the series (5.1) to him. Put k = 2n + 1, p = 2n,

g =2n + 2 and take + sign in (5.1), then we have a one

parameter sub-series:
(5.2) |Z(2n + 1, 4n + 1, 4n + | < 1.

Recently, Noriko Maruyama obtained the following series

of estimates:

(5.3) |X(2n + 1, 2n + 3, 4n® + 1on + 5)| £ 1.

This series is interesting because it starts with 2.(3,5,19)

which is shown to be 0 in }(3 by Fintushel-Stern [F-S].

- 10 -
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§6. Problems and conjectures.

(6.1) Suppose we can show IZZ.lggn for some homology 3-sphere
2., then is it possiblé'to find a l-connected (rather than

homologically l-connected) spin 4-manifold W4 with Z>W4 = 2.

01
10

whose intersection form is n[ ?

(6.2) Are there any non-trivial relations among Brieskorn homo-
logy 3-spheres in ?f3 ? For example, can we prove 22.(2,3,5)

=32°(2,3,11) or 2.(2,3,5) + 2.(2,3,7) 2. (2,3,11) 2

{(Both suspicious.)

(6.3) Conjecture: \Z(z, 8n + 7, 16n + 13)| £ 3(n + 1), n = 0.

Note that

>7(2,8n+7,16n+13) = Q{742 -2 -2 Z2 ), cf. [N-R].
I T6n+12

By Theorem 2.1 (ii), we can show

|22, 8n + 7, 16n + 13)\ £ 4n + 3.

(6.4) Conjecture: (improving Theorem 2.1 (ii)) If m is odd

and p(Z2(p, 9, Pgm + 1)) = 0, then
| =P, a, pam + | £ (p - (g - 1)/2 - 1.

(6.5) It is shown by Theorem 2.1 (iii) (v) that
|227(p, g, pam - 1)| £ (p - 1)(g - 1) + 1. 1Is it possible to
prove \222(p, g, pgm + Dl £ (p-1(g-1) -12? (True for

p=2,g9g=3,m=1.)

- 11 -
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