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Equivariant homotopy groups, Power operations

and the equivariant Kahn-Priddy Theorem

Osaka City Univ., Shoro Araki

1. Introduction. Let G be a finite group and V a finite

dimensional real G-module with an invariant metric. SV_ amd BV

will denote the unit sphere and ball in V, and ZV = BV/SV. Let
X be a finite G~complex with base point (e;XG). The stable

" :
G-cohomotopy group (UG(X) is usually defined for ,J « RO(G) by

the formula

4 .
wix) = co%im [ UeWy 5 U8V, G
where o =V - W and U runs through finite dimensional
G-modules. But we are interested here in multiplicative

structure with respect to smath products, so we restrict
ourselves to (R(G)+Z)-graded theory SN i.c.,
Q)é(X) is defined only for o ¢ R(G)+Z by the same formula
as above restricting all G-modules U, V and W to complex
ones up to oiiented reél trivial summands. Then the multipli-
cation is always commutative in graded sense.

In equivariant homotopy theory there are two types of

natural homomorphisms for H < G:



V- Yt
Yy = ¥yt We(X) — wy™ (X)
called the forgetful (or restriction) morphism, and

G 4 L o
Py = Pyt wgX —> Wy X))

[}

called the fixed-point morphism, where, for o = V-W ¢ R(G)+Z,

I G, .
%Hd = resgV - res;W & R(H)+Z,
Pt &V - W€ RW(H))+Z, W(H)

N (H) /H.
These are multiplicative as is easily seen.
In‘case G = %Z/2, there are exact sequences involving the

forgetful and fixed-point morphisms (after Landweber), which

S

played important roles in our previous work to compute 71p q
14

'
p+tg € 13 (jointly with K. Ifiye). We observed also that
the combination of these two exact sequences and squaring
operation gives the Kahn-Priddy theorem for 2/2.

Here we observe how these machines for G = Z/2 can be

generalized for more general gfoups, which implies the equi-

variant Kahn-Priddy theorem at least for p = 2.

Let G > H, and X be a finite H-complex. There holds

the canonical isomorphism
& .yHO(
c : ouG(G+/\HX) ~ wH

- When X is a G-complex, G+/\HX e (G/H)+,\X and the map

G/H — pt induces the forgetful morphism
d _ VH&
My P WX 2w (X).



Thus the G-cofibration (G/H)+—% C(G/H)+-;>§:(G/H) (where C
and ¥ denote unreduced cone and suspension) induces an exact

sequence involving the forgetful morphism, which may be called

might be generally not simple to discuss).

As to the fixed-point morphism

Fqd

ol i H
7$H : (AJG(X) — wW(H) (x7),

first we remark that it can be decomposed as

¢ - N (H) . G
H H ° ¥wm) *
so we would like to be satisfied if we get exact sequences

N (H)

H separately. Thus we consider

. . G
involving YN(H) and 95
only the case of a normal subgroup.

Let V and W be finite dimensional complex G-modules,

and X Dbe a pointed finite G-complex. The G~cofibration

vV v AV
S ~;_B+-)Z

+ induces the exact sequence

- S o« X

AN w"é”’ LV ax) Y we, (X) \LwéJ’V(X) ﬁl’; w"(‘;J’V(sZ,\X)—-)...,
L+V
G

iV :§f><: zlv. ’XV = Xél € u]g is called the Euler class

where ﬁfv : Q)é(X)-é w X) is induced by the inclusion

of V (after tom Dieck). When v© # §0}, then j{v = 0.

So we observe only the case that V contains no trivial

G-modules. The commutative diagram of G-cofibrations
Vew ; Vow . A\
S " —> B, —_— 3

\ s l
SVOW (Vo pW s VBW V. W 5 VeW

U N /Zv‘iw)

V W VoW
SIS —> T (B

3.



4

induces the following commutative diagram of exact seguences:
§ X |

ol4+W-1 W N oL W
e S We (B AX) — We(X) —>w

(2.1) i,?w o s i L X

A+V+E=1 v&sw VAW X+ VAW
- —> Wg (s x)—f—>w(x)—-_>wG

) .

X

xXxy— ... .

Let G [N, a normal subgfoup. Put Irr (G) = the set
of all isomorphism classes of comples irreducible G=modules.
Decompose

Irr (G)4= AN_LLBN
by "V € AN ) resgv is non-trivial" (& v = QOQ as N

is normal). Then V & By ) VN = V. Put

Kﬁ = gfinite sums of elements of AN},
By = éfinite sums of elements of BN\J{Rtriv}} .
Define
)\G g(X) = colim { W WV ax, by g o VW eKNf.
VERy ’

Taking the colimit of the diagram (2.1) with respect to V & Kﬁ

we get the exact sequence

§
& N
(2.2) ... DA px) —> Wy (x) — colim Sw i), X {1 ... .

VC.AN

Now we get

Proposition 2.3. colim gw‘é"'v(X), XW} ~ G/N(X ).
VQ:AN
Thus we get the desired exact sequence
| Sy ty 4y
(2.4) ~>)\G N = Wi — w5 L,



which we call the fixed-point exact seqguence.

3. Transfer-type morphisms.

Here we observe transfer-type morphisms for “fﬁ and iﬁH
Let G > H. First we consider the transfer to ’yﬁ. There
exists a finite dimensional complex G-module V and a G-embedding

i: G/H V. Let V(i) be the G-~tubular neighborhood of

i(G/H). Then \V(i)th G XHBV. Collapsing the outside of

V(i) we get a G-map
v ‘ \'4 R V4 v
S (G X 4B )/ (G XyS )f::G G+/\HL,

which induces a G-map

v, . v LV
X S (AL )AX =g “G+/\H(2 AX))
for any pointed G~complex X. Now we get the transfer to ’Vﬁi
G ke

(3.1) tr = tr_ Wy

o o d
H (X) — LGG(X)

as the composition of the following:

Yol ¥ (V) c :
Wyt (X) & wy "0 = WiV, AgVx)
s LAV, Vo, . 4
> wEEX) x W),
We have
Proposition 3.2. trgcvyg = [G/H],

the multiplication with [G/H] & A(G).

trg can be decomposed as the following composition. We

may assume i{H} ¢ sV, Decompose resg V=W®R, R > ifHj.

5.



Then W = resg (V - R) € R(H) + Z, Tis_HI’SV =W and i(G/H) C
sV, As the Gysin homomorphism for this inclusion we get

Yol +V-1,.V
(3.3) iyt w0 = WtV Ax).

Also, as the connecting morphism for the G-cofibration SZ —

\" v
B+—52 we get

' +V- o
(3.4) S, WiVl A o wim.
—Fhen we get
. i G _ .
Proposition 3.5. try gvﬁjv .

Let G & N, a normal subgroup. We define the transfer-
type morphism for ¢N‘ Remark that BN corresponds bijectively
with Irr G/N. Thus we have the natural inclusion R(G/N) + Z
C: R(G) + Z. Any G/N-complex is naturally a G~complex. Thus

we get a natural homomorphism

o
G w 2 (x) — w5 (X)

6 = Gc;/N P ¥e/N

for oL ¢ R(G/N) + Z C R(G) + Z and G/N-complex X.

Proposition 3.6. ¢3q°@g/N = id.

In particular, the fixed-point exact sequence splits

for o ¢ R(G/N) + Z, i.e.,

Corollary 3.7. Let G PN, A ¢ R(G/N) + 2 and X

be a G/N-complex. Then

o N e
G(x) ~ /\G’N(X) ) 'G/N(x).

w



We obtain also

Proposition 3.8. Let G = K.L, semi-direct product,

such that G I N. Then
. "\G — .
Yk Og/n = 14

for deg o ¢ R(K) + Z.

Let G = K.N, semi-direct product, as above. There
exist V & Kﬁ and a G-embedding G/H C_SV. Let

d+v-1, .V

(3.9) W wg ' (S AX) = j\élN(xx

be the canonical map. Let X be a K-complex and o &
R(K) + Z. By composing (3.3) and (3.9) we get a natural
homomorphism

(3.10) k =)oy s w‘é(x)» - )\‘é,N(x).

" Proposition 3.11. Under this situation

o d
Vg &k = [6/Klp ¢ WL (X) = wp(X),

the multiplication with [G/K]K = i*[G/K], where i : K C G.

4,  Power operations.

Let G > H, a subgroup, and V an H-module. Remark that
. .G _
indgy v = [7(6 x,V —> G/H),
the module of sections of the bundle G XHV~+>G/H. Let X
be a pointed H-complex. In a parallel way we define

indj x = [" (G xx = e/m),

7.



the module of sections of the bundle G X X —> G/H. indg X
le/ul

is a G-complex which is topologically " xX G-actions

on indg X preserves axises \UJX x ..X X"x$pt}‘xx X +..¥X X,
Thus, passing to quotients we: get

~ T

indg-x = (indg X)/{axises}{,

which is topologically XAJG/H}

Let x € Qfé(x), represented by an H-map £ :EZU@WX —>

EZUQV. Take
gnIG/EL ina® "% — {nas "),
which is a G-map because the corresponding map of bundles
. A
is a G-map. We see that f'lG/H! represents
_ indgd ~.G
(4.1) Poxt (¥) € g (indj X),
called the external power of x. Gsext is not linear in
general. However, let fG H be the permutation representation
’ ) :
of G/H. Put '
o
(4.2) PG’H = FG'H @ 1.
Then
ol indgo(+f ~ G

H(X)‘~-~> Q)G (indH X)

8 : Y ~ O - 3
Proposition 4.3. ’Xf @)ext : W

is a linear homomorphism,

Let V Dbe a G-module. Then

. .G G ~
1ndHaresH vV = PG,H®V'
Similarly, if X is a G-complex, then

G XX ~, G/H X X,



which induces ‘a G-homeomorphism

ind’ x x4 xAlG/HI
where G acts on the right hand side by the simultaneous

actions of diagonal ones and permutations of factors by

leffjactions on G/H. In particular, the diagonal map
Alesul
ZXX : X —35 X
is a G-map. Thus we get the 'internal power operation

. . .G
& ind d
P = Apoflee = wp® = @B

for a pointed G-complex X.

‘Proposition 4.4. Let G B N, normal, and x €& QJN(X)

for a pointed G-complex Xé - Then -
, [G/N) g.
'\/*N°(P(x)' =TT x °,
i=1
g.

“where G = llgiN and X > X 1 jg induced by conjugatidn

with respect to gi.'

Proposition 4.5. "Leﬁl'G-N, a’semiAdirect'prbduct'sﬁch
that G » N. Let X  Dbe a pointed K-~-complex (regarded as
a G-complex through G ~» G/N = K). ~Let o € R(K) + 2.

Then the following diagram'is commutative:

. . . G
w%x) @y ink

K - S
iy

&)G/N(X)'

(X)
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Under the same situation as above, let V' be a finite
dimensional complex K-module and V = V' @)Rk, k > 1. Then
W= indg V - V contain a real F; kg s a summand . Remark

, ’
that WY = {0} and ?N<)Xh = ¢N' We get two splittings of

the fixed-point exact sequences for J = - V :

Sy -V Py .

0 e)\;‘,’N(x) s wfm s el oo

Proposition 4.6. Under this situation \ﬁK<wa 067 = 0.

Then the difference Qg/N - Xy°P 9gives a homomorphism

(4.7) O + Wy (0 —> X\ gy X)

such that §No O = (}g/N —XWOG), g © {No(;"‘K = id.

Theorem 4.8. Under the above situation

Yo by ¢ A;‘I'N(x) —> Wy (X)

riddy Theorem.

In Theorem 4.8 we put N = Z2/2 and G = KXZ/2. Using
Clifforg C(W)-module (where W is a K-module) and equivariant

S-duality we can prove the isomorphism

f

-v K e
(5.1) Ag.z/2® & Wy(X; RB

. . . Go .
which is natural with respect to X, where RP P is the
real projective space in ®W-regular representation of K,

regarded as a K-complex.

10.
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A combination of Prop.3.11, Theorem 4.8 and (5. 1)

inplies
Theorem 5.2. There holds an epimorphism
IR ¢ - Ne
u)V(RP )(2) — (Cuv) (2)

at 2-primary components, where V =V' ® Rk, k21, and V'

is a finite dimensional complex G-module.

The above theorem is the equivariant version of the

Kahn-Priddy theorem for p = 2.

11.



