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Abstruct: Tn this paper, we propose an algorithm for the
identification of near optimal feedback arc sets of a directed
graph. Several authors have proposed heuristic algorithms but
no algorithm guaranteed a solution in running time proportional
to a constant power of size of a graph. To simplifying the de-
'sign of algorithms we have used a depth-first search algorithm
as the basic search. Exploiting properties of depth-first
search, we have constructed an algorithm with the time complexi-
ty of 0(n?m4) and the space complexity of O(n-.m), where n and m
are the number of vertices and arcs of a graph, respectively. It
is also shown that the algorithm has beén successfully applied
to test graphs,_so called directed star polygons;

1. Introduction

One of the interesting problem about a digraph is that of
finding a minimum set of arcs whose removal leaves the remaining
graph free of directed circuits( cycles ). This problem was
originally suggested by Runnyon in connection with the analysis
of sequential switching circuits with feedback paths[il, Recent-
ly, much effort has been devoted to solving systems of linear

equations where the matrix of coefficients is sparse. Finding
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minimum feedback vertex and arc sets of a digraph associated with
the matrix has been shown quite useful in providing tearing
methods for the solution of such large systems[2“5].

An earliest graph-theoretic approach for fhe minimum feed-
- back arc set problem is that of Youngef who has established a
relationship between the problem andva sequential ordering of
the vertices, and has proposed a branch and bound algorithm[s].
The best known and frequently used algorithms are due to Lempel
and Cederbaum[7], and Divieti and Grasellil8], Their techﬁiques
are basically composed of three steps; the first step is the
generation of all cycles, the second step is to form a covering
table on which simplification techniques are applied, and the
last step is to use reduction rules and column branching tech-
nique to obtain the solution. To reduce the amount of compu-
tational work, Guardabassi has proposed a compléetely topolOgical
branch and bound algorithm using topological reduction rules (9],
Smith and Walford have described an algorithm based on a 2-
subgraph partition implied by an arbitrary set of vertices[10],

In practice, an exact optimal solution may not always be
requiréd. Suboptimal solutions for the problem may sufficel5],
The alogorithms mentioned so far yield suboptimal solutions[2V5],
However these methods, involvin§ a systematic but exhaustive
search, seem to be quite inefficient in terms of execution time.
An algorithm guaranteeing a suboptimal solution in running time
proportional to a constant power of the size of digraph is
desirable, but no algorithm has been discovered.

This paper describes an approximate algorithm for the mini-
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mum feedback arc set problem using entirely different approach.
To design an efficient algorithm, we must avoid the use of ex-
haustive searches. The approach presented in this paper is
mainly based on a familiar depth-first search due to Tarjan(1l]
so that the estimation of run-time is possible.

In section 2, we describe a depth-first search modified
with respect to the selection of an arc to traverse during aDFS.
In sections 3 and 4, we present algorithms for finding subopti-
mal feedback arc sets. Section 5 devotes the description of
directed star polygons for which the ‘algorithm is run to test
the efficiency. Experimental results are demonstrated in
Section 6.

2. Modified Depth-first Search

The depth-first search( DFS ) on a directed graph G=(V,E)
explores the graph as follows. When we are visiting a vertex
V:EV, always choose an arc (v,w), orientéd away from v to w. If
the vertex w has been previously visited( this arc is refered as
a link ), we rétﬁrn to v and choose another arc. If the vertex
w has not been previously visited, we visit it and gpply the
précess “fecﬁrsively w, this chosen arc contributes a épanning
tree on the resulting graph g. If all the outgoing arcs from v
have been examined, we éo back along the arc (u,v) thétlledrto v,
This step is called backtracking, and continue exploring the
arcs incident on u.

During a DFS, we assign a vertex, say v, two.serial numbers
M(v) and N(v), so that M(v)=i if v was the i-th vertex to be

visited and N(v)=j if v was the j-th vertex to be backtracked
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during the traversal. The links of & are classified into three
types, called backward links( b- llnks for short ), forward llnks
(f—links), and cross links( c-links ) whlch say (v w) s, are
identified from the relations N(v)<:N(w), M(v)<:M(w), and N(v)>
N(w) and M(V):>M(w), respectlvely We denote the sets of tree-
: b’ f’ and Q or re-
spectively;‘ ‘Let F(e) be the fundamental cutset w1th respect to

arcs, b-links, f-links, and c- llnks by Q

£ andilet Fb(e) and F (e) be proper subsets of F(e) con-

sisting of b=-links, and c- and f—llnks, respectlvely. cf(e), a

eef

subset of F f(e), denotes the set of arcs whose dlrectlons are
coincide with that of e( see Flg 2(a)) o

As is wellknown, DFS is extremely useful in 51mp11fy1ng
many graph—theoretlc algorithms. Advantages exp101t1ng a DFS in
connection with the design of heuristic algollthms for therr

problem are

(1) A set . is a minimal feedback arc set( FAS ),

b

(2) The graph under test is partltloned 1nto max1ma1 strongly
connected components, and then one can con51der only one
component at a time, o | - | |

(3) A depth-first search is a naturalrapbroach;to use:ingene—

o rating fundamental'cutsets, and o CoT

(4) It is possible to improve thehsize of a particular minimal
feedback arcoset Qb by use of selection-rules on vertices
during DFS and by use of interchange-rules between Fb(e)
and F:f(e)kj{e} mentioned later.

In what follows we explain selection-rules and illustrate

an example to show the effectiveness of a modified depth-first
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unlabeled vertices

search( MDFS ). Fig. 1 shows an

intermediate state during a DFS on ) )
adgacent vertices

a graph in which V4 is a set of

. current vertex
vertices that have not yet been
labeled vertices

visited and vy is a set of vertices root

that have been visited. Let G[Vk]

Fig.l. An intermediate
be a section graph defined by VkCV. state during DFS.
When we are visiting viE:Vl, we may select any of the adjacent
vertices le’vjz""’vjre: Vo. In this process, if we select a
vertex having less incomming arcs on'G[VO], the resulting graph
g may have Qb of smaller size than that obtained by an ordinary

DFS. Let d;(j) and da(j) be the out-degree and the in-degree of

vj on G[VO], respectively.

Definition 1. Selection-rules: A vertex vj to be visited
during a DFS is selected under the following rules:
(1) The vertex v, has the minimum in-degree da(j) among the
adjacent vertices vjkfs such that (vi,vjk)e:E, and
(2) 1If there are two or more candidates, vj has the maximum
- out-degree d;(j).

Fig.2(a) illustrates G obtained by an ordinary DFS in which

e=(2,3)
fp(e)=((4,6),(5,2).(5,6))

Feele)=1(8,5))

—_> 8

> Rt

---a 0y
positive Y
direction ( 2}

Fig.2. Graphs obtained by DFS and MDFS.
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the size of Qb’ the number of dotted arcs, is found to be five.
The vertices VirVarVay and Vo have fhe minimum in-degree on G[V],
8 have the maximum ocut-degree. Then we can

select either vertex, say Vyr as the root. The adjacent vertices

among which vy and v

of v, are found to be Vg and Ve among which Vg has the minimum
in-degree on G[V—{v4}]. Consequently, we can select vy as the

second vertex to be visited.
procedure MDFS{graph G=(V,E))

Applying the selection-rules begin
integer array N(|V|),M(}V])
arc set “T’QB'QCF’EB
integer value C1,C2
1 procedure BACKTRACK(vertex set Vo,vertex vi,

to G of Fig.2(a), we get

another graph G as shown in

vertex "k)
: . . - . . begin
Fig (b) It should be noted 2 if there exists a vertex v.eV, for which
. the selecting rule of definition 1 holds
that the resulting graph has “ine
then begin
. 3 M{v.):=Cl:=C1+1 ;
Q, of smaller size than that J
b 4 VO:-VO-(VJ.} H
5 nT:=ﬂTU(<vi,v.>} H
b
of G. 6 BACKTRACK(Vg,¥,.v;) &
7 Eg(vs):=Eg(v,)UER(v.) 3
: o~ — B B*Yi/VB'j
Fig.3 shows a descrip 8 N(v):=c2:=C241
end ;
tion of the MDFS algorithm ‘ else begin v
] ] 9 for each vertex vj&vo,<vi.vj>eE do
in which Eb(-) appeared on begin _
] _ 10 if N(v;)=0 then begin
lines 7,12, and 15 will be 1 agi=gUl<v v} 5
12 Eo(v,):=Eg(v,)Ulev,,v.>}
BYUi BY'i i
stated later. end ; !
‘ 13 else if <v,1,vj>1:n-T then begin
14 “CF:=‘2CFU{<"1’V5>} B
15 EB(vi):=EB(vi)UEB(Vj)
end
end
end
end BACKTRACK ;
16 Vo:=V H

17 while there exists a vertex vV, for which the
selecting rule of definition 1 holds do begin
18 M{v;):=Cl:=C141 ;
19 Vo:=Vgp-{vil s
20 BACKTRACK(VO,vi,Dmmy)
end
end MDFS ;

Fig.3. Procedure MDFS.
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Lemma 1. Procedure MDFS requires O (n+m+m?2) operations and

O(n.m) memory spaces.

Proof: As compared with a DFS, entirely different parts are
selecting operations appeared on lines 2 and 17, and computations:
of Eb(-) appeared on lines 7,12, and 15.

The first part will requires O(n+m) operations since when
we are visiting v, as shown in Fig.l, we need to d+(i) compari-
sons in addition to the searching of the adjacency list. For
the second part, it is clear that we need to prepare n-IQbI
memory spaces for storing Eb(-) and that the union operations
are executed at most d+(i) times for each v, Since the total

number of union operations during a MDFS is equated as m, this

part requires O(m2) operations. Q.E.D.

3. Minimaization Technique of Qb
Given a graph &, if there exists e e Q,_ such that |Fb(e)| >
]F:f(e)|+l, Q is not an optimal one because we can find fewer
feedback arcs which form (Qb—Fb(e))L/sz(e)L/{e}. In this sec-
tion we consider an improvement in terms of fundamental cutsets.
Before introduce effective cf-links, we illustrate the
following example. Fig.4(a) shows a subgraph of & obtained by a

DFS in which the labeled number corresponds to DFS number M(.).

Fig.4. Introductory example for an effective cf-link.
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It is easily seen that ]QbI=}FZf(e)|+l=3. Now deleting e=(5,6)
€ Qt and (11,9) eF:f(e), and then applying a DFS we may get an
acyclic graph shown in Fig.4(b). This implies the set of arcs

(5,6) and (11,9) is optimal one than that of Q_ of Fig.4(a).

b
This observation leads the following definition.’

Definition 2. Effective cf-link: For an arc eiE:F:f(e), if

there exists a cycle containing e and exactly one b-link which
belongs to Fb(e), e, is called an effective cf-link with respect
to e, and the set of such links is denoted by Fcf,eff(e)°
Definition 3. The first traversed b-link: Let Pv be the

directed paph from a specified vertex v of &. The b-link of P
whose initial vertex has the minimum distance from v,‘if exists,
is called the first traversed b-link with respect to b,- The
set of such links with respect to all Pv's is denoted‘by Eb(v).
The set Eb(-) is easily identified during MDFS'as shown in
Fig.3. The conditions that an arc e;e F+f(e) is to be the ef-
fective cf-llnk with respect to e are as follows.
(1) There is a b-link which belongs to F (e)f\E (the termlnal
vetex of ei), and
(2) The initial verté;léi*is a decendant of the terminal
vertex of the b-link.
In oidér‘to oétiﬁize Qb’ we need to compute k=value, written
k(e), for every arc ee:Qt of &. We define k-value as
k(e)=|Fy(e) |- |F e eele) |- 1 | (1)

Definition 4. Reference tree-arc: For a given E, let El and

E., be El={ee Qt|k(e)> 0} and E2={eE:Qt|k(e)s O,Fb(e)#¢},respect—

2

ively. An arc e, whose k-value is maximum, if El#¢, and minimum
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,1if El=¢ and E2#¢ , is called the reference tree-arc with res-

pect to an optimization.
Now we can show in Fig.5 how to optimize Qb by interchang-
ing Fb(e)w1thFcf,eff(e)L}{e}, When the reference tree-arc is
0 + ' - . . .
found in G', either Fb(er) or Fcf,eff(er)k/{er} is refered as a
candidate set of feedback arcs, and then these arcs are deleted

from &'. This process is repeated for the resulting graph and

terminates when Qb of the graph is empty.

procedure LEASTFAS(graph G=(V,E)) proceduré APFAS#1{graph G=(V,E))
begin begin
arc set MFAS,Q integer array N(|V|),M(]v])
integer array k(|V|) arc set MFAS,MFAS’ .
1 procedure REFTREE(graph G'=(V,E')) 1 procedure DFS(graph G"=(V,E"),vertex v,,
begin vertex v, )
2 MDFS(G*) ; begin B}
if QB#Q then 2 for each vertex V-,<v1-.vj>cE" do begin
compute k(e) for each eenr 3 if M(v;)=0 then begin
and identify RT-edge e, ; 4 Mlvy)i=l 5
4 if k(e,)>0 then 5 DFS(6",v,v4) 5
MFAS:<MFAS U Fop occle ) U e} ; 6 Nlv):=1
€lse MFAS:=MFAS U Fy(e ) ; ; end ;
6 E*:=E'-MFAS ; 7 else if N(v.)=0 then
7 REFTREE(G') 8 M(+):=0; N(-):=0; go to 13;
end REFTREE ; comment at this point
8  MFAS:=¢ ; a cycle is found
9  REFTREE(G) ' end
end LEASTFAS ; end DFS ;

9  LEASTFAS(G) ;
Fig.5. Procedure LEASTFAS. .o MAS'swis ;
11 MFAS:=¢ ;
12 delete every edge ecMFAS® from a given
graph G and let the resultant graph be G' ;
13 while MFAS'$s do begin

14 select and delete any edge en from MFAS* ;
15 MFAS:=MFAS U {egd &
16 E":=E' U {em] H
17 while any vertex v, ,M(v;)=0 do begin
18 M(vi):=1 5 )
19 DFS(G",vi,Dun'my) H
end

20 MFAS:=MFAS-{em}.: E':=E'U{em)

end

end APFASH1 ;

Fig.6. Procedure APFAS#1.
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Although a feedback arc set that results from procedure LEASTFAS
seems to be optimal than that obtained from a MDFS, its minimal-
ity is not quaranteed. To ensure this property, procedure
LEASTFAS may be followed by a minimality check routine. Pro-
cedure APFAS#1, shown in Fig.6, has a check routine based on a
DFS. | |

Lemma 2. Procedure LEASTFAS has the time complexity of

0(n2m2) .

Proof: To identify the reference tree-arc for a particular
MDFS, we must form fundamental cutsets with respect to Qt. This
formulation requires O(m) operations for each tree-arc using M
and N numbers. In addition to the generation of cutsets, the
identification of effective cf-links must be executed. To do
this, O(IQbI-[FCf(e)l) comparisons are required for each cutsets,
Then procedure REFINE requires O(n+m+m2+n.m2) operations; Since
the number of calls of REFINE is at most (n-1) times, the number
of tree-arcs, this algorithm has the time complexity of 0(nZm2).
From Lemmas 1 and 2, we can get the following lemma. Q.E.D.
Lemma 3. Procedure APFAS#1l has the time complexity of 0(n2m2)
and space complexity of O(n-m).

4., An Approximate Algorithm

Algorithms stated above are themselves heuristic ones for
the problem. However it is possible to refine the solution so
as to be more and more optimal one by recursive calls of pro-
cedure APFAS#1l. Fig.7 shows such an algorithm in which pro-
cedure REFINE is executed on the graph G' obtained from G by the

deletion of a feedback arc, one by one, and then the number of
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procedure APFAS#2(graph G=(V,E))

calls of APFAS#1 is equal to begin
arc set MFAS,MFAS'
|MFAS| ( the size of FAS ) for ~ integer value K
1 procedure REFINE(graph G=(V,E))
each call of REFINE. ' begin
2 MFAS':=MFAS ;
As a simple example, 3 while MFAS'ts do begin .
4 select and delete any edge e from
consider a graph with 10 verti- - MFAS', delete e from a given graph

G and let the resultant graph be G' ;
APFAS#1(G') ;

ces and 22 arcs as shown in i
if K>{MFAS[+1 then begin

W N O

Fig.8. During LEASTFAS, the K:=[MFAS|+1
REFINE(G)

resulting graphs of MDFS in the mdﬂﬂ

| end EF—INE ;

first, second, and third passes 9 APFASHI(E) ;

i . 10 K:=[MFAS| ;
]
of REFINE are shown in Fig.'s 11 REFINE(G)

-end APFAS#2 ;
Fig.7. Procedure APFAS#2.

ively. 1In Fig.8(a), we can identify the reference tree-arc as

8(a), 8(b), and 8(c), respect-

- (8,3) whose k-value is 2-1=1, then Gy is obtained from G,y by

deleting this arc, for which the second MDFS is executed. El has

all effective df-links with frespect to er=(4;6)\for'which o

non-effective

open
X 6(V,E-{(2,3)})

(2,3),(3,9),(5,1)}

all non-effective

Fig.8. An illustrative exaﬁple.
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the k-value is minimum as shown in Fig.8(b). Deleting arcs
(5,1) and (2,3) we get G2 and 52 as shown in Fig.8(c). Finally
arc (9,1) is deleted. A set of these deleted arcs {(8,3),(5,1),
(2,3),(9,1)} is found to be minimal in the check routine of
APFAS#1l. Fig.8(d) shows an intermediate stage of APFAS#1l at
line 5 of Fig.7 for G[V,E-{(2,3)}], from which we can identify
the reference tree-arc as (3,9) with k-value 3, and then (3,9)
is deleted. After the completion of APFAS#1l, we can get a FAS

1

{(3,9),(5,1)} of G] which leads an optimal FAS {(2,3),(3,9),

(5,1)} of G-
To estimate the time complexity, we need to know the number
of calls of REFINE. For a complete graph, an output of APFAS#1
at line 9 is a minimum FAS, so only once a call is occured.
Hence we need O(n2m3) operations for the completion of APFAS#2.
In general case, it is difficult to estimate the exact number,
but the following statement is true. Let the size of FAS at
line 10 be k, and suppose that the refinement is always occured
at the last trial arc of the pertinent FAS and the decrement is
one. The number of calls of APFAS#]l is estimated és k+(k-1)+(k
-2)+++++, which is smaller than k2.
"From Lemma 3 and discussions above, we get Theorem 1.
Theorem 1. Procedure APFAS#2 has the time complexity of
O(n2m4) and the space complexity of O(n-m).

5. Test Graphs

Usually, to test the efficiency of such a heuristic algori-
thm, its behaviours on random graphs are analyzed, where a

problem occurs as to how sample graphs are constructed. On the
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other hand, associated with evaluation of heuristic algorithms
for the minimum feedback arc set problem, a certain type of
graphs, called directed star polygons( DSP's ), satisfy the
following conditions.
(1) There exists a simple algorithm for graph generation, and
(2) A minimum feedback arc set can be easily identified.
Several properties of DSP's have been investigated, and
the procedure for finding minimum feedback arc set has been dis-
cussed[12,13], In this section, we shall state the results in
short.

Definition 5. Directed star polygon: A graph G=(V,E) is a

directed star polygon if vertices v, are labeled in such a way

that (Vi’vj) e E if and only if (v, ) eE, k=1,2,--.,n-1,

i+k’Vi+k
where each of subscripts is expressed as one of the numbers 1,2,
*++,n modulo n.

Definition 6. Symbol of DSP: Let G=(V,E) be a DSP. Let J=

{j] 2<j<n, (vl,vj) e E} and S={s|s=j-1, jeJ}. Then a DSP is
uniquely specified by n and symbol S, henceforce denoted by
G(n,Ss).

Fig.9 shows a simple example of
DSP. It is seen that J={3,4} and
then s={2,3}.

Let £(G) be the size of minimum

feedback arc sets. We have the
Fig.9. A DSP G(8,{2,3}).

following theorems.
Theorem 2. G{(n,S) is a connected graph if and only if (n,S)=1

where (n,S) denotes the greatest common measure of n and all seS.
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Theorem 3. Two DSP's G(n,S) and G(n,S') are isomorphic if and
only if there exists an integer p such that (n,p)=1 and S'=p-Sé
{sp (mod n)|s e S}.

Theorem 4. Any DSP of degree 4 has a minimum feedback arc set
whose size £(G) is equal to the maximum number of arc disjoint
cycles.

Theorem 5. A minimum feedback arc set of any DSP G{(n,S) of
degree 4 is identified from S& which belongs to a set {s'|s'=
p*s, 1<p<n-1} and has a minimumrsum of elements.

Theorem 6. Let {1,s2,s3,~--,sm} be a symbol of G(n,S). Define

- m
ki—Ln/siJ and r,=n siki‘for i>2. 1If iizr.si;?n then
-m
f(G)=1 + I s.. (2)
i=2 1
m
Theorem 7. For a given G(n,S), if I s;=n then
i=1
f(G)=n (3)

where m=|s]|.

6. Experimental Results

The algorithm has been implemented on a FACOM M-200 and has

been applied to several types of DSP's. In this experiments,
the algorithm was many times run for a particular DSP and its
modified graph which is generated from the DSP by deletion of
arcs that form one of £(G) arc disjoint cycles of the original
graph, it should be noted_that the size of minimum FAS of the
resulting graph becomes f{(G)=-l. Furthermore, to get meaningful
trials we used the following random permutations for the label-
ing . of vertices[14],
Random permutations perform a series of n-1 transformations.

Starting any‘permutation H={ﬂ1,ﬂ2,---,nn}, the element ﬂn is
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interchanged with one of ﬂl,ﬂ2,°--,ﬂn, choosen randomly. Then

, choosen

-1 18 interchanged with one of ﬂl,ﬂzl--°rﬂn_l

randomly, and so on. This formation yields that each of n! per-
mutations is equaly probable. Table 1. Experimental results

for G(15,8),|s|=3.
Table 1 shows the results

s fla) | s £(6) | S £(6)

for G(15,8), |S]=3. There are 1.2.3 6 11.3.7 T [1.5,10 | 16
1,2.4 7 P3e | s n

49 different connected DSP's 1,2,5 8 {13,n |1 504 | 20
1,2,6 9 30216 1600 | N

among which f(G)'s of 42 graphs 1,2,7 10 he3a3 |12 phem 9
1,2,9 9 |34 |18 Nsaz |2

were known a priori. The 2,00 | pas e |,es s
L, f iz e Lz puee oo

algorithm has been applied 12,02 [ 15 1,400 | 15 |1,10,12) 12
1,213 {16 paan e pnazfon

twice to each of these graphs. 1,3,4 8 (56 |1 [3,56 [ 14
: ' 1,3,5 9 h.,57 | 13 3,510 | 18

Table 1 is a list of 39 symbols 1,3,6 1 [1,5,9 | 15 {3,512 | 20

for which both trials have been
in successful, that is , £(G)=£f*(G) where f£*(G) denotes the
solution. For the remaining three symbols {1,5,12},{1,2,14}, and
{1,6,9}, we have got f*(G)-f(G)g 21151

Tables 2(a) and 2(b) show the results for G(n,{1,4,7}),
which satisfys Theorem 6, and its modified graph with Various n,
respectively, for each of which ten trials have been executed.

Table 2. Experimental results for G(n,{1,4,7}) and
its modified graph.

(a) DSP (b) Modified graph
n | r(6)+o| f(e)+1 | £(6)+2 C’(’gs:';'e No. ot n | fe)+0 | fle)+ | F(e)+2 c'(’:s:é';" "gé;_’
30 1o - - 2078 2.4 0] 8 2 B 2689 2.6
8| 9 1 - ne 2.0 | 3 - 3154 2.7
0| o9 - 1 3387 2.6 0| 9 1 - | na 1.7
sl 10 - - 3921 1.8 5] 9 - 1 4315 2.1
0} 10 - - 5617 2.2 0] 6 3 10| e3s7 2.8
s5{ 10 - . 5729 1.6 ss| 10 - - 4029 1.7
60| 10 - - 5645 2.4 0| 9 1 - 6847 2.8
700 10 - - 6362 1.6 | 0] 7 2 1| neer 2.4
so| 10 - - 8941 1.4 80 2 - | noss 3.1
9| 10 - - | 10327 1.2 90| 10 . . 9683 1.6
wol| 10 - - | ez 1.5 00| 8 1 21| 26072 2.7
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The number on a column labeled f£(G)+i,i=0,1,2, represents the
number of trials which gave us the solution being £(G)+i. The

last column represents the average number of calls of REFINE

during the search. Table 3. Experimental results

for other DSP's which satisfy

Table 3 shows the results Theorem 6. ‘
for G(n,S)'s, S#{1,4,7} which . s Jfe)+0 | f(6)H
. 30] 1,34 9 1
satisfy Theorem 6. The frequency al 1,25 | 10 .
‘o . 0] 1,3,6 | 10 -
giving f(G)+0 is decreased com- so| 1.5,7 3 7
51| 1,5.7 1 9

pared with the preceding results,
but it shoula be noted that £*(G)-£(G) < 1.

Tables 4(a) and 4(b) show the results for G(n,S)'s which
satisfy Theorem 7. The appearance of the results is similar
with that of Tabie 1. |

Table 4. Experimental results for G(n,S),]|s|=3,
which satisfys Theorem.7.

(a) DSP (b) Modified graph
n [ s Jrese]ren ] YR ’f;"gé;‘ n s [f(e)+0 [ f(g)+1] f(6)+2[No.of REF.
30 | 1,2,27 10 - 20734 2.1 30 | 1,2,27 10 - - ] 1.6
35 | 1,10,24| 10 - 17997 2.0 35 1 1,10,24} 7 3 - 2.2
40 | 1,3,36 | 10 - 36830 1.3 40 11,3,36 | 10 - - 1.5
45 [ 1,7,37 | 10 - 44744 1.4 45 11,7,37 7 3 - 3.0
50 | 1,14,351 10 - | ss849 2.1 50 | 1,14,35) 3 6 1 3.2
55 | 1,15,39{ 10 - 85019 2,6 55°11,15,39] 7 2 1 3.5

Furthermore, to check the effecfiveness of applications”of
selection~rules and interchange-rules, we have examined two
algorithms; one is the algorithms without use of selectioh-rules
called APFAS#3, and the another is the algorithm which is ob-
tained by replaciﬁg Fcf,eff(e) Withszf(e) in Eq, (1) and LEAST-
FAS, called APFAS#4. The results of APFAS#3 on G(n,{1,4,7})with
n=30,40,50,60, have been shown that the fréquéncy giving £(G)=

f*(G) was 21/40. The algorithm APFAS#4 have been applied to
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G(30,{1,3,4}). The solutions were nearly.equal to lﬂb{ obtained
during the first pass in procedure LEASTFAS. '

' These results demonstrate that procedure APFAS#2 generates
efficiently good solutions.

7. Conclusions

In this paper, polynomial-time algorithms for generating
suboptimal feedback arc sets have been considered. In particu- .
lar, introductions of a modified depth-first search with vertex-
selection-rules and of interchange-rules acting on links of a
graph, have been shown to be important to improve the size of a
feedback arc set. Basing on these rules, we have constructed an
efficient algorithm with time complexity 0(n2m4) and space com-
plexity O(n.m). Finally, the algorithm has been applied to
difected star polygons and their modified graphs with various n
to test the efficiency. Experimental results demonstrate that
the proposed algorithm, procedure APFAS#2, generates almost
optimal feedback arc sets.

We feel that this behavior onrtest graphs would be hold
for general graphs, but fufther work would be neceséary to veri-
fy the fact.
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