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Abstract. Using the planar separator theorem of Lipton and

Tarjan, we give approximation algorithms with time complexity

.0(nlogn) and asymptotic- worst-case ratio tending to 1 for the

following problems on planar graphs: the maximum induced
subgraph problems with respect to ceartain graph properties;

the maximum matching problem; and the minimum vertex cover

.problem.

1. Introduction

Lipton and Tarjan have given a planar separator theorem
which provides a basis for exploiting the divide-and-conquer
paradigm [6]. As an application of the separator theorem,’they
have presented an approximation algorithm for the maximum
independent set problem with time complexity O©O(nlogn) and
worst-case ratio 1-0(1AJT3§T3§3) asymptotically tending to 1 as
n-=00[7]. In this paper n déﬁotes the number of verticeslof-ak
graph, and the worst-case ratio is defined to be the smallest

ratio of the size of an approximate-solution- to the size of a
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maximum solution taken over all problem instances.

We wish to study the general conditions under which the
Lipton and Tarjan's approach is useful for combinatorial
problems on planar graphs. A number of combinatorial problems,
including the maximum independent set problem, are formulated
as a "maximum . induced subgraph problem" with respect to some
graph property Q. PFurthermore it has been shown in a unified
way that the maximum induced subgraph problem tdgether with the
approximation problem is NP-complete for general graphs if Q
satisfies some <conditions ([5]([11]. In this paper we first
observe the requirements for their approach to yield an
efficient approximation algorithm for the maximum induced
subgraph problem on planar graphs. It immediately follows that
there exist efficient approximation algorithms for a broad
class of the maximum induced subgraph problems. We next give an
approximation algorithm with time complexity O(nlogn) for the
maximum matching problem on planar graphs, which is
polynomial-time solvable (the best known exact algorithm has
time complexity O(nl's) for planar graphs [7][8]). We finally
present an O(nlogn) time approximation algorithm for the
minimum vertex cover problem, which is NP-complete even for
planar graphs. In the latter two algorithms, we reduce the
problems on general planar graphs to those on planar graphs
with minimum degree 3 so that the Lipton and Tarjan's approach
is successful. Our terminology on algorithms and graphs is

standard; all undefined terms should be refered to [1] or [4].
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2. The maximum induced subgraph problem

In this section we show in a unified manner that there
exist efficient approximation algorithms for a broad class of
combinatorial problems: the maximum induced subgaph problems
with respect to various graph properties Q.

Lipton and Tarjan have given an approximation algorithm
for the maximum independent set problem, using the following

form of their separator theorem.

THEOREM 1. (Lipton and Tarjan[7]) Every planar graph of n

vertices contains a set C of O(,Jn/e¢) vertices whose removal

leaves no connected component with more than =n vertices, where

0¢(=z(1l. Furthermore the set C can be found in O(nlogn) time.

A number of problems on a graph G=(V,E) are formulated as

a maximum induced subgraph problem P with some graph property

Q; the problem asks for a maximum set S of V that induces a
subgraph satisfying Q. For example, the maximum independent set
problem is a maximum induced subgraph problem P with property
"independent (i.e. pairwise nonadjacent)". From Lipton and
Tarjan's approximation algorithm for the maximum independent
set problem, we naturally have the following "algorithm" MISP

for the maximum induced subgraph problem P with Q.
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Algorithm MISP(<).

Comment 0¢(z¢1.

Step 1. Applying Theorem 1 to a given graph G=(V,E), find
a set of vertices C of size Of n/<), such that
each connected component of G-C (i.e. the graph
obtained from G by deleting the vertices in C)
contains at most «n vertices.

Step 2. In each connected component G;=(V;,Ej) of
G-C, find a maximum set S; inducing a subgraph
with property Q by checking every subset of Vj,

Step 3. Form S as a union of maximum sets, bne from each

component, that is, 5=IS;.

One can easily observe that the conditions given in Lemma

1 below are sufficient for the success of the algorithm MISP.

LEMMA 1. The approximation algorithm MISP(¢) has time
complexity O(max{nlogn;nZEn}) and worst-case ratio 1-0(1/,/en)

if the following conditions are satisfied:

(Cl) The subgraph of G induced by S satisfies property
Q.
(C2) The error |S*|-|S| 1is bounded by the number of

vertices of C, that is, |s*|{-|8|=0(|C|), where S*

is a maximum vertex set inducing a subgraph of G

with Q.
(C3) {S*| is a positive fraction of n.
(C4) Property Q is recognizable in linear time (, that

is, one can determine in' linear time whether a
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graph satisfies Q or not ).
Proof. Similar to the proof of Lipton and Tarjan's algorithm in

(71. Q.E.D,

A graph property Q is hereditary if every subgraph of G

satisfies Q whenever G satisfies Q. Q is determined by the

components if a graph G satisfies Q whenever every connected
component of G satisfies Q. For example, the property "planar"
is hereditary and determined by the components since every
subgraph of a planar graph is planar and a graph is planar if
and only if every connected component is planar. It has been
known that a number of graph properties are hereditary and
determined by the components [l1ll]. In order to avoid a trivial
case, we now assume that at least one nonempty graph satisfies
Q.

We have the following theorem from Lemma 1.

THEOREM 2. If P is a maximum induced subgraph problem with
respect to property Q which is

(a) hereditary;

(b) determined by the components; and

(c) recognizable in linear time,
then there exists an approximation algorithm for P on planar
graphs with time complexity O{(nlogn) and worst-case ratio
1-0(1/4/Toglogn).
Proof. We claim that the conditions (Cl)-(C4) in Lemma 1 are
all satisfied. If so, we immediately have the theorem from

Lemma 1 by setting <=(loglogn)/n.
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Since Q 1is determined by components, Q holds for the
uni«on S of the solutions S5; of the components of G-C.
Therefore the condition (Cl) is satisfied.

Next consider a maximum set S* inducing a subgraph with Q
in G. Since Q 1is hereditary, S'=S*-C induces a subgraph
satisfying Q in G, and furthermore each S;'=S*nV; induces a
subgraph  of  G;=(V;,Ej) satisfying Q. Thus we  have
[S;1 » Isi'l since Si is a maximum set of Vj inducing a
subgraph with Q in G;. Therefore we have

ISl =2ZIs;1 » zIs;'l = Is'| > Is*|-IcCl,
so the condition (C2) is satisfied.

Since at least one nonempty graph satisfies the

hereditary property Q, K; (the single vertex graph) satisfies

Q. Since Q is determined by the components, a maximum

independent set I* of the planar graph G satisfies Q. Therefore
Is*| > II*| » n/4. |

The last inequality follows from the four color theorem. Thus

the condition (C3) is satisfied. The condition (C4) is

identical to (c). Q.E.D.

If Q is recognizable in polynomial-time instead of linear

time, there exists a polynomial-time approximation algorithm
with the same worst-case ratio although the time complexity is
no 1longer O(nlogn). The following corollary is an immediate

consequence of Theorem 2.

COROLLARY. For n-vertex planar graphs, there exist

approximation algorithms with time complexity O(nlogn) and
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worst-case ratioc 1-0(l/,/loglogn) for the maximum induced
subgraph problems with respect' to the following properties
among others:

(1) independent;

(2) bipartite;

(3) forest; and

(4) outerplanar.
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3. The maximum matching problem

The maximum matching problem asks for a maximum number of

pairwise nonadjacent edges in a graph. Although there exists an
O(nl’s) exact algorithm for the maximum matching problem on
planar graphs [71[8], the efficient yapproximation algorithm
would be useful if the available computation time is limited
and an approximate maximum matching is sufficient -for some
practical purpose. In this section, using Algorithm MISP, we
give an O(nlogn) approximation algorithm for this problem.

The problem is an instance of the maximum subgraph

problem with property Q, which is defined similarly as the

maximum induced subgraph problem in the preceding section. (The
assertion on the maximum subgraph problem similar to Theorem 2 -
does not always hold true.) One can easily see that the
conditions (Cl)-(C4) are also sufficient for the success of
Algorithm MISP to the maximum matching problem, where S and S*
should be subsets of the edge set E (instead of V) of a given
graph G=(V,E). Clearly the conditions (Cl) and (C4) are
satisfied, and (C2) is also satisfied as will be shown later.
However (C3) is not satisfied since a planar graph does not
always contain a maximum matching of linear size as Ky,n-1 or
Ky,n-2 indicate [9]. Thus a direct application of MISP cannot
gurantee the worst-case ratio 1-0(1l//loglogn). However 1if the
problem on a general planar dgraph can be reduced to the same
problem on a particular. planar graph having a matching of
linear size, for example a planar graph with minimum degree 3v

[91, then a modified MISP may guarantee the desired worst-case
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ratio.

The following is the approximation algorithm MATCHING for

the maximum matching problem on planar graphs, which is based

on the

idea above. The algorithm finds a matching S(G) of a

given graph G. We denote by deg(v) the degree of a vertex v,

and by S*(G) a maximum matching of graph G.

procedure MATCHING;
procedure REDUCE(G,S(G));

begin

let G contain N vertices, and let v be a vertex of minimum
degree of G;

if N «

loglogn

“then find a maximum matching S*(G) of G by applying any

else

reasonable (polynomial or exponential time) exact
algorithm and let S(G) :=S*(G)
if deg(v) ¢ 3
then if deg(v)=0
then
begin
G':=G-v;
REDUCE (G',S(G'));
S(G) :=S(G")
end
else if deg(v)=l
then
begin
let u be the vertex adjacent to v;
G':=G-{u,v};
REDUCE(G',S(G")) ;
S(G) :=S(G')u{ (v,u)}
end
else comment deg(v)=2
begin
let u,w be the vertices adjacent to v;
let G' be the graph obtained from G by
identifying the three vertices v,u and

w;
REDUCE(G',S(G'));
if S(G') contains no edge which was

adjacent to u in G
then S(G) :=S(G')u{ (v,u)}
else S(G) :=S(G")u{ (v,w)};
end
else comment deg(v) ) 3 and N ) loglogn;
apply Algorithm MISP with <=(loglogn)/N to G to
obtain a matching S(G)

end REDUCE;
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begin | :
let G be a given planar graph of n vertices;
REDUCE (G, S5(G))

end.
THEOREM 3. The approximation algorithm MATCHING for the maximum
matching problem on planar graphs has worst-case ‘ratio
l-O(l/Jloglogn) and time complexity O(nlogn).

Proof. (a) Correctness and worst-case ratio.

The algorithm MATCHING reduces a graph G to a smaller one
G' whenever G contains more than nlogn vertices including a
vertex of degree 2 or 1less. So one eventually arrives at a
graph Gy of N (¢ loglogn) vertices or of minimum degree ) 3.

We first show that MATCHING correctly finds a matching of
the graph Gy within the desired worst-case ratio. If
N ¢ loglogn, then MATCHING finds a maximum matching of Gjy by .
applying an exact algorithm, so [S(Gg)|/I18*(Gp) |=1. (Note
that we set [S(G)|/IS*(G)| to 1 if |S*(G)|=0.) Otherwise (that
is, if N loélogn and Gy is of minimum degree )»3) MATCHING
applies Algorithm MISP with e=(loglogn)/N to find a matching
5(Gy). We shall show that the conditions (Cl)-(C4) of Lemma 1
are all satisfied in this case. Since Gg is a planar graph
with minimum degree ) 3, we have IS*(Gg) | » N/3 [9], so the
condition (C3) of Lemma 1 is satisfied. Clearly the conditions
(Cl) and (C4) are satisfied. Finally (C2) is satisfied: all the
edges of S*(G;) not contained in components of Gg-C are
adjacent to vertices of C; furthermore each vertex of C is
adjacent to at most + one edge in ’é*(GO); therefore
IS*(Gy) I-18(Gg) | ¢ ICl. Thus in this case Algorithm MISP

with <=(loglogn)/N correctly finds a matching S(Gg) within
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the worst-case ratio 1-0(1//loglogn).

We shall next show that MATCHING correctly forms an
approximate matching S(G) of G from a matching S(G') of a
smaller graph G' with preserving the desired worst-case ratio,
that is, IS(G) I /18*(G) | > IS(G'")I/IS*(G")|. Consider the
following three cases according to the employed reductions.

Case 1l: G contains an isolated vertex v, i,e, a vertex of

degree 0.
If S(G') is a matching of G'=G-v, then S(G)=S(G') is a
matching of G. Furthermore [S(G)I/IS*(G)| = |S(G")|/IS*(G")]|.

Case 2: G contains a vertex v of degree 1.

Let u be the vertex adjacent to v in G, and let
G'=G-{u,v}. If 8(G') 1is a matching of G', then clearly
S(G)=S(G')U{(u,v)} is also a matching of G. Thus
IS(G)| = |S(G')|+1. Since a maximum matching S*(G) of G
contains exactly one edge adjacent to u, we have
IS*(G) | ¢ IS*(G') |+1. Therefore we have
IS(G) I/18*(G) | > IS(G")I/IS*(G") .

Case 3: G contains a vertex of degree 2.

Let u,w be the vertices adjacent to v, and let G' be the
graph obtained from G by identifying u,v, and w into a single
vertex. Let S(G)=S(G')u{(v,u)} 1if a matching S(G') of G
contains no edge which was adjacent to u in G, and otherwise
let S(G)=S(G')u{(v,w)}. Clearly S(G) is a matching of G if
S(G') is so in G'. Thus we have |[S(G)] = |S(G")I|+1. If a
maximum matching S*(G) of G contains either (v,u) or (v,w), say
{v,u), then S*(G)-(v,u) is a matching of G'. Otherwise, S*(G)

contains
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an edge (u,x) with x#v, and then S*(G)-(u,x) 'is a matching of
G'. Thus we have |[S*(G)| ¢ |S*(G")|+1l. These two equations
imply |S(G)I/18*(G)| > Is(G")|/I8*(G")].

Thus we have verified the correctness and the worst-case

ratio.

(b) Time complexity.

- First consider the computation time required to the graph
Gg. Let Gy contain N vertices. If N ¢ loglogn, MATCHING
applies to Gy an exact algorithm. Even if the exact algorithm
has time complexity O(N2N), it requires at most O(nlogn)
time. If N ) loglogn and Gy is of minimum degree ) 3, then
the algorithm MISP with <=(loglogn)/N applied to Gg requires
at most O(max{NlogN, N2¢N}) = O(Nldgn) ¢ O(nlogn) time.

Next consider the time required for -reducing a given
graph G to the graph Gj,. The exhaustive operations are
vertex-deletions and vertex-identifications appeared in the
reductions. Since one can execute a single vertex-deletion of: a
vertex v in O(deg(v)) time using the adjacency 1lists of a
graph, and every vertex appears in at most one Vettex—déieﬁion,
all the vertex-deletions involved in the execution of MATCHiNG
requires at most O(n) time. On the other hand, any sequence of
vertex-identifications can be executed in O(nlogn) time by
using one of the following devises: adjacency lists together
with an adjacency matrix [2]; or AVL trees together with an
efficient list merging algorithm [10].

Finally it is clear' that the time required for forming
S(G) from S(G') is, in total, as much as the time required for
the reductioné. Thué we can implement the élgorithm MATCHING to

‘run in at most O(nlogn) time. ~ Q.E.D.
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4., The minimum vertex cover problem

The minimum vertex cover problem asks for a minimum

number of vertices such that every edge of a graph is incident
to at least one of the vertices. In this section we give an
approximation algorithm for this problem.

The minimum vertex <cover problem and the maximum
independent set problem are quite closely related. For a graph
G=(V,E), a vertex set V'cV is a (maximum) independent set of G
if and only if the complementary set V-V' is a (minimum) vertex
cover set of G. However one can easily see that this
transformation does not preserve the worst-case ratio [3,
p. 134]. So we must design an approximation algorithm for each
problem. We will show that the reduction given in Section 3 is
useful also for the minimum vertex cover problem. The following
is the algorithm for the minimum vertex cover problem on planaf
graphs.
procedure COVER;

procedure REDUCE(G,C(G));
begin
let G be contain N vertices, and let v be a vertex of
minimum degree of G;
if N ( loglogn

“then obtain a minimum vertex cover set C*(G) of G by
cheking every subset of vertices and let C(G) :=C*(G)

else if deg(v) ¢ 3

then
if deg(v)=0
then
begin
G':=G-v;

REDUCE (G',C(G'));
C(G) :=C(G")

end

else

if deg(v)=1
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then
begin
let u be the vertex adjacent to v;
G':=G-{u,v};
REDUCE(G',C(G")) ;
C(G) :=C(G")+u
end
else comment deg(v)=2
begin
let u,w be the vertices adjacent to v;
let G' be the graph obtained from G by
identifying the three vertices v,u and w into
a new vertex X;
REDUCE (G',C(G")) ;
if xeC(G')
then C(G) :=C(G')-x+{u,w}
else C(G) :=C(G')+v;
end
else comment deg(v) ) 3 and N > loglogn
begin .
apply the Lipton and Tarjan's algorithm with
e=loglogn/N to find an approximate independent set

I(G) of G;
C(G) :=V-I(G)
end;
end REDUCE;

begin

let G be a given planar graph with n vertices;

REDUCE (G,C(G))

end.

THEOREM 4. The approximation algorithm COVER for the minimum
vertex cover problem has worst-case ratio 1+0(l1//loglogn) and
time complexity O(nlogn).
Proof. Clearly the algorithm has time complexity O(nlogn),
which is same as MATCHING. As similar to the proof of Theorem
3, one can verify the correctness and the worst-case ratio of
the algorithm. Consider only the case when Gy is of
N ) loglogn vertices and with minimum degree 3 or more. In this
case a maximum matching of Gy contains at least N/3 edges
[9]. Therefore a minimum vertex cover C*(Gg) of Gy contains

at least N/3 vertices. Hence
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IC(Gy) 1/1c* (Gg) |

(N-1I(Gg) |)/(N-1I*(Go)|)

l+(|I*(Go)I-II(Go)I)/(N-II*(GO)l)
1+0(1/4/1oglogn).

I/\

The last inequality follows from IC*(Gg) | = N-|I*(Gg) |
> N/3 and II*(GO)l-lI(GO)I ¢ |CI=0(N//loglogn), which is
ensured by Lipton and Tarjan's algorithm with e<=loglogn/N. Thus
in this case the algorithm COVER»correctly finds a vertex cover
within the desired worst-case ratio. Furthermore each reduction
clearly preserves the worst-case ratio, that is, |C(G)|/IC*(G) |

cle@n/ie @6y . Q.E.D.
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