Nonlinear equations of the Thomas-Fermi type.

Haim BREZIS

Université de Paris VI

We shall report on various recent works by E. Lieb - B. Simon [7] , Ph. Benilan - H. Brezis [2] , H. Brezis - E. Lieb [5] , H. Brezis - L. Veron [6] , L. Veron [8] , R. Benguria - H. Brezis - E. Lieb [1] related to the Thomas - Fermi equation. For a function $\rho(\mathbf{x}): \mathbb{R}^3 \longrightarrow [0,\infty)$ we define the functional

$$\mathcal{E}(\rho) = \int \rho^{5/3}(x) dx - \int V(x) \rho(x) dx$$

$$+ \frac{1}{2} \int \int \frac{\rho(x) \rho(y)}{|x - y|} dxdy$$

where V(x) is a given measurable function. Let $K = \left\{ \begin{array}{c} \rho \in L^1(\mathbb{R}^3) \ ; \quad \rho \geq 0 \quad \text{a.e. and} \quad \int \rho(x) \, dx = I \end{array} \right\}$ where I>0 is fixed.

The Thomas -Fermi (T.F.) problem is the following:

(1)
$$\underset{\rho \in K}{\text{Min}} \mathcal{E}(\rho)$$

The unknown $\rho(x)$ to be determined represents a probability density of Fermions. Of special interest in quantum mechanics is the particular case where V(x) is a Coulomb potential,

$$V(x) = \sum_{i=1}^{k} \frac{m_i}{|x - a_i|}$$
 $(m_i > 0, a_i \in \mathbb{R}^3)$;

here, the system consists of k positive nuclei of charge m;

placed at the points $\ a_i$ in space and surrounded by a cloud of Fermions with density $\ \rho$.

We first recall an important result due to Lieb - Simon [7]: Theorem 1 Assume

$$V(x) = \sum_{i=1}^{k} \frac{m_i}{|x - a_i|} \quad \text{and set} \quad I_0 = \sum_{i=1}^{k} m_i.$$

Then

- (a) If $0 < I \le I_0$, problem (1) has a unique solution.
- (b) If $I > I_0$, problem (1) has no solution.
- (c) If $I < I_0$, the solution of (1) has compact support.

In what follows we consider Problem (1) with a more general functional ${\mathcal E}$; namely

$$\mathcal{E}(\rho) = \int j(\rho(x)) dx - \int V(x) \rho(x) dx + \frac{1}{2} \iint \frac{\rho(x) \rho(y)}{|x - y|} dxdy$$

where $j(\rho)$ is a C^1 convex function such that j(0) = j'(0)= 0 and V(x) is an arbitrary function—not just a Coulomb potential. The Euler "equation" corresponding to (1) is the following:

[under no restrictions]. Conversely if ρ is a solution of (2) and if

(3) $j*(V-C) \in L^1(\mathbb{R}^3)$ for some constant C, then ρ is a solution of (1). Here $j*(t) = \sup_{s \ge 0} \left\{ ts - j(s) \right\}$ denotes the conjugate convex function of j. Observe that if $j(\rho) = \rho^p$, and V(x) is a Coulomb potential, then (3) holds only when $p > \frac{3}{2}$. In fact when $p \le \frac{3}{2}$, then $\inf_K \mathcal{E} = -\infty$; assumption (3) is imposed essentially in order to guarantee that $\inf_K \mathcal{E} > -\infty$.

Our main results — which extends Theorem 1— is the following. Theorem 2 $\,$ Assume

- (4) $V \in \frac{1}{|x|} * L^1$ (i.e. $\triangle V \in L^1$ and $V(x) \longrightarrow 0$ at infinity in some "weak" sense).
- (5) V > 0 on a set of positive measure.

Then:

- (A) There exists a critical value I_0 , $0 < I_0 < \infty$, depending on j and V such that
 - (a) If $0 < I \le I_0$, Problem (2) has a unique solution.
 - (b) If $I > I_0$, Problem (2) has no solution.
- (B) Assume I < I $_0$, and V(x) \to 0 as $|x| \to \infty$ in the usual sense [or I = I $_0$ and |x| V(x) \to 0 as $|x| \to \infty$] then the solution ρ of (2) has compact support.
- (C) Assume
- (6) $j(\rho) \sim \rho^p$ for $\rho \sim 0$ with $p \ge 4/3$, then $\int_0^+ \Delta v \le I_0 \le \int_0^+ (-\Delta v)^+.$ In particular $I_0 = \int_0^+ -\Delta v = 0.$

(D) Instead of (4), assume now the weaker condition

($\widetilde{4}$) $V \in \frac{1}{|x|} * \mathcal{M}$ ($\mathcal{M} = \text{space of bounded measures on } \mathbb{R}^3$). Suppose also that

(7) $j(\rho) \sim \rho^p$ for $\rho \sim \infty$ with p > 4/3. Then (A),(B),(C) still hold.

Remarks

- 1) Note that if V(x) is a Coulomb potential, then $(\widetilde{4})$ holds, but (4) does not hold.
- 2) As we shall see later if $j(\rho) \sim \rho^p$ for $\rho \sim \infty$ with $p \le 4/3$, and V is a Coulomb potential, then (2) has no solution.

Sketch of the proof of Theorem 2

First, observe that in (2) we must have $\lambda \geq 0$. Indeed we have $j'(\rho) - V_+ B_\rho \geq -\lambda$ on \mathbb{R}^3 ; as $|x| \to \infty$, $\rho \to 0$, $V \to 0$, $B_\rho \to 0$ (in a weak sense) and thus $\lambda \geq 0$. We introduce now as new unknown the function

$$u = v - B\rho$$

so that $-\Delta u = -\Delta V - \beta$ (more precisely $-\Delta B_{\beta} = 4\pi\beta$, but we shall ignore $4\pi!$). Thus (2) becomes

$$j'(\rho) = u - \lambda$$
 on $[\rho > 0]$
 $j'(\rho) \ge u - \lambda$ on $[\rho = 0]$

i.e. $\beta = \gamma(u - \lambda)$ with

$$\Upsilon(t) = \begin{cases} 0 & \text{for } t \leq 0 \\ (j')^{-1}(t) & \text{for } t \geq 0 \end{cases}$$

[(j')⁻¹ denotes the reciprocal function of the function j']. Finally (2) is equivalent to finding a constant $\lambda \ge 0$ and a function u such that

(2)
$$\begin{cases} -\Delta u + \gamma (u - \lambda) = -\Delta V \\ u(x) \to 0 \text{ as } |x| \to \infty \\ \int \gamma (u - \lambda) = I \end{cases}$$

In order to solve (2) we first <u>freeze</u> $\lambda \geq 0$. For any <u>fixed</u> $\lambda \geq 0$ there exists a unique solution u_{λ} of the equation $\begin{cases} -\Delta u_{\lambda} + \gamma(u_{\lambda} - \lambda) = -\Delta v \\ u_{\lambda} (\infty) = 0 \end{cases}$

and such that $\gamma(u_{\lambda} - \chi) \in L^{1}$. This follows from a result of [3]:

<u>Lemma 1</u> (BBC). Assume $f \in L^1(\mathbb{R}^3)$ and $\beta \colon \mathbb{R} \to \mathbb{R}$ is any continuous, nondecreasing function with $\beta(0) = 0$. Then there exists a unique u solution of

$$\begin{cases} -\Delta u + \beta(u) = f \\ u(\infty) = 0 \end{cases}$$
with $\beta(u) \in L^1$.

Next, for every $\lambda \geq 0$ we set $I(\lambda) = \int \mathcal{Y}(u_{\lambda} - \lambda)$. Problem (2) amounts to find a unique $\lambda \geq 0$ such that $I(\lambda) = I$ (I > 0 is given). Therefore we must study the function $\lambda \to I(\lambda)$:

Lemma 2 The function $\lambda \to I(\lambda)$ is continuous nonincreasing on $[0,\infty)$. It is strictly decreasing on the set $\left\{\lambda : I(\lambda) > 0\right\}$. In addition I(0) > 0 and $I(\lambda) \to 0$ as $\lambda \to \infty$. For the proof of Lemma 2 we refer to [2], [4]. It is essentially a consequence of the maximum principle. Note that I(0) > 0 follows from (5). Indeed suppose I(0) = 0, then $\Upsilon(u_0) = 0$ a.e. and $u_0 \le 0$ a.e. Thus $-\Delta u_0 = -\Delta V$, and $u_0 = V$ a.e. —a contradiction with (5). Assertion (A) in Theorem 2 can be obtained from Lemma 2 with $I_0 = I(0)$.

Proof of Assertion (B)

Given $0 < I < I_0$ we have a unique $\lambda > 0$ such that $I(\lambda) = I_0$ and $\rho = \ell(u_\lambda - \lambda)$. Since $\ell \ge 0$ we have $-\Delta u_\lambda \le -\Delta v$ and by the maximum principle $u_\lambda \le v$. Therefore $\rho \le \ell(v - \lambda)$ and ρ has compact support since $v(x) \to 0$ as $|x| \to \infty$. When $I = I_0$, we have $\lambda = 0$ and $\rho = \ell(u_0)$ with $-\Delta u_0 + \ell(u_0) = -\Delta v$. Suppose $\int \ell(u_0) > 0$ (otherwise $\rho = \ell(u_0) \equiv 0$).

$$1_{R}(x) = \begin{cases} 1 & \text{if } |x| < R \\ 0 & \text{if } |x| \ge R \end{cases}.$$

Then $-\Delta u_0 + \Upsilon(u_0) 1_R \le -\Delta V$ and so $u_0 \le V - \frac{1}{|x|} * (\Upsilon(u_0) 1_R)$.

As
$$|x| \to \infty$$
, $\frac{1}{|x|} * \mathcal{V}(u_0) 1_R \sim \frac{C}{|x|}$ where $C = \int_{|x| < R} \mathcal{V}(u_0)$.

Since $\lim_{|x| \to \infty} |x| V(x) = 0$, it follows that $u_0 \le 0$ far out and

thus $\rho = \mathcal{V}(u_0) = 0$ far out.

Proof of Assertion (C).

We have $-\Delta u_0 + \gamma(u_0) = -\Delta v$. It follows from a result of [3] that $\int \gamma(u_0)^+ \leq \int (-\Delta v)^+$ (here no assumption about γ is needed). On the other hand we have $\int -\Delta u_0 + I_0 = \int -\Delta v$ and so we have to show that $\int \Delta u_0 \geq 0$. Suppose by contradiction

that $\int \Delta u_0 < 0$. It follows that (in some weak sense)

$$r(\frac{C}{|x|}) \notin L^1 (|x| > 1)$$
 — a contradiction.

Proof of Assertion (D).

Using the same approach as above we must first solve the equation

$$\begin{cases}
-\triangle u + \mathcal{V}(u - \lambda) = -\triangle V \\
u(\infty) = 0
\end{cases}$$

for fixed λ , with Δ V a measure. This is <u>not</u> always possible and we have to impose some restriction about the behavior of Γ at infinity. The analogue of BBC lemma for <u>measures</u> is the following.

· Lemma 3 Let $\beta: \mathbb{R} \to \mathbb{R}$ be a continuous nondecreasing function with $\beta(0) = 0$ and

$$(8) \qquad \beta(\pm \frac{1}{|x|}) \quad \in \quad L^{1} \quad (|x| < 1)$$

Then for every $\mathcal{M} \in \mathcal{M}$, there exists a unique u solution of

(9)
$$\begin{cases} -\Delta u + \beta(u) = \mu & \text{on } \mathbb{R}^3 \\ u(\infty) = 0 \end{cases}$$

For the proof of Lemma 3, see [2] or [4]. Replacing BBC Lemma by Lemma 3 we may now proceed with the same proof as above. Note that (8) is satisfied when $j(\rho) \sim \rho^p$ as $\rho \to \infty$ with p > 4/3.

Discussion of Lemma 3.

Assumption (8) is, in some sense, necessary for the solvability of (9). We may understand this in two ways:

- (a) Suppose that $\mathcal{M}=\delta=$ Dirac mass at 0 and suppose that
- (9) has a solution. Near x=0, $\beta(u)$ is negligible compared to δ and thus $-\Delta u$ "feels" only δ . Therefore, $u(x) \sim \frac{1}{|x|}$ as $|x| \to 0$. Hense $\beta(u) \sim \beta(\frac{1}{|x|})$ near x=0 and we <u>must</u> have $\beta(\frac{1}{|x|}) \in L^1$ (|x|<1).

(b) Suppose that $\mu = \delta$ and (for simplicity) that $\beta(u) = u^q$. Suppose that (9) has a solution u. Set $\Omega = \left\{ x : |x| < 1 \right\}$. In particular $u \in L^q_{loc}(\Omega \setminus \{0\})$ and satisfies $-\Delta u + u^q = 0.$

in the sense of distributions in D'($\Omega \setminus \{0\}$). Such functions have been studied in [5],[6],[8]. The results are the following:

- (i) If $q \ge 3$, then $u \in C^2(\Omega)$ and satisfies $-\Delta u + u^q = 0$ in Ω . In particular, it is impossible to have in Ω a solution of $-\Delta u + u^q = \delta$. The conclusion can also be expressed in the following way: "every isolated singularity of the equation $-\Delta u + u^q = 0$ is removable."
- (ii) If 1 < q < 3, then u may have a singularity at 0. The nature of the singularity can be completely described:
 - (\propto) <u>either</u> u is C^2 at 0
 - (\beta) or $u(x) \sim \frac{C}{|x|}$ as $|x| \to 0$, where C > 0 is an arbitrary constant

() or
$$u(x) \sim \frac{C_q}{2 \over |x|^{q-1}}$$
 as $|x| \to 0$ where
$$C_q = \left\lceil \left(\frac{2}{q-1}\right) \left(\frac{2q}{q-1} - 3\right) \right\rceil^{\frac{1}{q-1}}.$$

Such results show the importance of the study of singular solutions of nonlinear partial differential equations. A mumber of recent works have been devoted to this subject: Gidas - Spruck (and Caffarelli) for singular solutions of $-\Delta u = u^q$, Uhlenbeck for singular solutions of Yang - Mills equations, Brezis - Friedman for singular solutions of nonlinear heat equations etc...

We conclude by mentioning a modification of the Thomas - Fermi

problem studied in [1]. We consider Problem (1) with

$$\mathcal{E}(\rho) = \int |\nabla \sqrt{\rho}|^2 + \frac{1}{p} \int \rho^p - \int V_\rho + \frac{1}{2} \int \int \frac{\rho(x) \rho(y)}{|x - y|} dxdy.$$
Here $V(x) = \sum_{i=1}^k \frac{m_i}{|x - a_i|}$, $m_i > 0$, $a_i \in \mathbb{R}^3$.

The correction term $\int |\nabla \sqrt{\rho}|^2$ has been proposed by Van Weizsacker; we refer to this problem as Problem TFW. The main result of [1] is the following:

- (a) If $0 < I \le I_{_{\mathbf{C}}}$, there is a unique solution of Problem TFW.
- (b) If $I > I_C$, there is no solution of TFW.
- (c) When $p \ge 4/3$, then $I_c \ge I_0 = \sum_{i=1}^K m_i$.
- (d) When $p \ge 5/3$ and k = 1, then $I_c > I_0$.

Remarks

- 1) A major difference between TF and TFW is that, even for
- I < I $_{\rm C}$ the solution $\, \, \rho \,$ of TFW does $\, \underline{\rm not} \,$ have compact support.
- 2) It would be interesting to determine whether $I_c > I_0$ when $p \ge 5/3$ and $k \ge 2$ (molecular case).

References

- [1] R. Benguria H. Brezis E. Lieb, The Thomas Fermi Von Weizsäcker theory of atoms and molecules, Comm. Math. Physics, to appear.
- [2] P. Benilan H. Brezis, Detailed paper on the Thomas-Fermi equation, to appear.
- [3] P. Benilan H. Brezis M. Crandall, A semilinear equation in L^1 , Ann. Sc. Norm. Sup. Pisa $\underline{2}$ (1975), p.523-555.
- [4] H. Brezis, Some Variational Problems of the Thomas-Fermi type, in <u>Variational Inequalities and Complementarity Problems</u>
 Cottle, Giannessi, Lions ed. Wiley (1980) p.53 73.
- [5] H. Brezis E. Lieb, Long range atomic potentials in Thomas Fermi theory, Comm. Math. Phys. 65 (1979) p.231 246.
- [6] H. Brezis L. Veron, Removable singularities for some nonlinear elliptic equations, Archive Rat. Mech. Anal. 75 (1980) p.1 6.
- [7] E. Lieb B. Simon, The Thomas Fermi theory of atoms, molecules and solids, Adv. Math. 23 (1977) p.22 116.
- [8] L. Veron, Singular solutions of some nonlinear elliptic equations, Nonlinear Analysis $\underline{5}$ (1981) p.225 242 and C. R. Acad. Sc. Paris $\underline{288}$ (1979) p.867 869.

Département de Mathématiques Université Paris 6 4 pl. Jussieu 75230 Paris Cedex 05