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Nonlinear equations of the Thomas-Fermi type.

Haim BREZIS

Université de Paris VI

We shall report on various recent works by E. Lieb -
B. Simon [7] , Ph. Benilan - H. Brezis [2] , H. Brezis -
E. Lieb [5] , H. Brezis - L. Veron [6] , L. Veron [8] ,

R. Benguria - H. Brezis - E. Lieb [1l] related to the Thomas -
3

Fermi equation. For a function ‘ﬂ(x) : RS — [0,00) we
define the functional
Epr= | PP ax - (v px ax

(x) p(y)

Ix - v|

]

where V(x) 1is a given measurable function. Let

K = { pet®) ; pr0 ae. and Sf(x)dx =1 }
where I >0 is fixed.

The Thomas -Fermi (T.F.) problem is the following:

(1) Min (p)
uin E(p

The unknown \P(x) to be determined represents a probability
density of Fermions. Of special interest in guantum mechanics
is the particular case where V(x) is a Coulomb potential,

k m

V(x) = o, —a 3

i=1 |x - a,] (m, >0, a, € R ) ;

here, the syStem consists of k ©positive nuclei of charge M.y
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placed at the innts ai in space and surrounded by a cloud

of Fermions with density ‘f .

We first recall an important result due to Lieb - Simon [7]:
Theorem 1 Assume
k m,

k
V(x) = 5 — and set I, = > m.
i=1 |x - a, i=1 :

Then
(a) If 0<CI XK IO’ problem (1) has a unique solution.

(b) If I>I problem (1) has no solution.

OI
(c) 1If I<I0 , the solution of (1) has compact support.
In what follows we consider Problem (1) with a more general

functional é; ; namely

5(p) = gj(y(x))dx - jv(x)y(x)dx
' (x) P(y)
. 1.5X_J'L___J_°_ dxdy

2

X - v
where j(y ) 1is a C1 convex function such that 3j(0) = 3'(0)
=0 and V(x) 1is an arbitrary function— not just a Coulomb

potential. The Euler "equation" corresponding to (1) is the

following :
f € K,
©(2) j'(j))- V + Bp = =X ontheset[})>0],
j'(\P) - vV + BF > =A on the set [f>= 01,
where ) 1is a constant —— the Lagrange multiplier arising
from the constraint jlf = I — and _BF = TiT *(ﬁ .

Problem (2) consists of finding a constant )\ and a function
f for which (2) holds. In [2] (see also [4]) one shows

that if f is a solution of (1) then \P is a solution of (2)
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[under no restrictions]. Conversely if LP is a solution of (2)

and if

(3) J*(v - C) € Ll(R3) for some constant C,

then ‘P is a solution of (1). Here Jj*(t) = Sup { ts - j(s)}
sz0
denotes the conjugate convex function of j. Observe that if jlp)

= po, and V(x) is a Coulomb potential, then (3) holds only

when p:>%. In fact when pg:%, then Inféf= -00; assumption (3)
K

is imposed essentially in order to guarantee that Infé§;>-oo,
K

Our main results — which extends Theorem 1—=is the following.

Theorem 2 Assume

4) v ¢ T%T * 11 (i.e. Averl anda V(x)—o0

at infinity in some "weak" sense ).
(5) V>0 on a set of positive measure.
Then

(A) There exists a critical value I 0<;IO<<”

0 depending

/

on Jj and V such that

(a) 1If 0<IKTI Problem (2) has a unique solution.

(S
(b) 1If I >IO , Problem (2) has no solution.
(B) Assume I<I0 , and V(x) — 0 as (x| — oo in the usual
sense [ or I =TI, and Ix|]V(x) =& 0 as ([x] — o© ]

then the solution \P of (2) has compact support.
(C) Assume

(6) j(ﬁ)& PP for p~0 with p24/3,

then +
&- av. £ I, < S(—Av) .

In particular

IO= S—Av if -AvV > 0.

(D) Instead of (4))assume now the weaker condition
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~ 1 3
(4) Vv ¢ =1 * (ZQ:= space of bounded measures on R7).
Suppose also that

(1) 3(p) ~ pP for pP~oo  with p>4/3.

Then (A),(B),(C) .still hold.

Remarks

i)J the that if V(x) is a Coulomb potential, then (23 holds,
but (4) does not hold.

"~ 2)  As we shall see later if j(j)) 'v‘fDP for P~ 0

with p < 4/3, and V is a Coulomb potential, then (2) has

no solution.

Sketch of the proof of Theorem 2
First, observe that in (2) we must have )jZO. Indeed we have
j'(y) —V+Bf2—)\ onJR3; as |x| — o0, p—= 0, vV =0,

Bp —> 0 (in a weak sense) and thus X;zo. We introduce now  as

new unknown the function

u=V-By
so that -Au = -Av -f (more precisely -ABp = 47(p ,
but we shall ignore 47!). Thus (2) becomes

Jj'(p) =u- A on [ f > 0]
j'(p) >u=-3} + on [ p=0]
i.e. p =7r(u -A) with

0 for t<0
r(t) = -1
(3') ~ (%) for t>0
[(j')“l denotes the reciprocal function of the function j'].

Finally (2) is equivalent to finding a constant }Jzo and a

function u such that



-Au + f(u—)\) = -AV
(2) u(x) - 0 as [x] = o0
Fu-A) =1
In order to solve (2) we first freeze A Z(j. For any fixed
)\ 2 0 there exists a unique solution u of the equation
~Auy, + Fu -A) = -Av
uy (e0) =0

and such that 7 (uy -A) € Ll. This follows from a result of
[3]

Lemma 1 (BBC). Assume f €'Ll(R3) and /3: R — R is

any continuous, nondecreasing function with /G(O) = 0. Then

there exists a unique u solution of
-Au + /@(u) = f
u(oo) =0

with 4B(u) € Ll.\

Next, for every ‘l >0 we set I(A ) = {Xul —;\). Problem
(2) amounts to find a unigue AZO such that I(;\) =I (I>0

is given). Therefore we must study the function X_—é I()~) :

Lemma 2 The function A-—% I(A ) is continuous nonincreasing

on [0,00). It is strictly decreasing on the set {‘R P I(A) > O}.
In addition I(0) > 0 and I(\) —> 0 as )\ —>oo.

For the proof of Lemma 2 we refer to [2], [4]. It is essentially

a consequence of the maximum principle. Note that I(0) > 0

follows from (5). 1Indeed suppose I(0) = 0, then TYHO) =0
a.e. and u < 0 a.e. Thus —zﬁuo = -AvVv, and u, =V a.e.

-—a contradiction with (5). Assertion (A) in Theorem 2 can
be obtained from Lemma 2 with IO = I(0).

-5 -



Proof of Assertion (B)

Given 0<’I<’I0 we have a unique ) > 0 such that I()) = IO
and = Y(ux - A ). Since /20 we have -Aux < -AV and
by the maximum principle y < V. Therefore p< 7tv - X ) and
JO has compact support since V(x) = 0 as (x|-> 00 . When

I-= IO’ we have A = 0 and f)= (Xuo) with —Lﬁuo + TYUO) =

-AV. Suppose T(uo) > 0 (otherwise p= f(uo) = 0).
Choose R such that
TTuo) >0 and let
[X]<R
1 if |xI<R
lR(x) =
0 if | x| >R .
R
Then -Auy + T(uy)1, < -AvV  and so u,< v St (Mg 1) -
As |x|] — oo, T%T* Kluo)lR ~ TET where C = IYuO).
Ix]<R
Since lim )x] V(x) = 0, it follows that uoé.O far out and
X[ = o0
thus f = JYuO) = 0 far out.
Proof of Assertion (C).
We have —Zluo + TYuO) = -zﬁv. ‘It follows from a result of

[3] that S‘Tlu0)+ < j}—zﬁv)+ (here no assumption about 7~
is needed). On the other hand we have —Zkuo + IO = ‘S—LXV

and so we have to show that Szﬁuo > 0. Suppose by contradictior

that SZ&uO < 0. It follows that (in some weak sense)

uo(x)ferET as [x| —> o0 with cC = - S.Zluo > 0.
C
Hence yxuo)r\,y(TgT) as |x|—> o0 . On the other hand
if J(p) ~ pPF as P-»>0 with p>4/3, then
C 1 s
— 1 — a contradiction.
r(t5) & v x>



Proof of Assertion (D).

Using the same approach as above we must first solve the equation
-Au+ F(u-A) = -Av
u(eo) =0
for fixed A\ , with AV a measure. This is not always
possible and we have to impose some restriction about the behavior
of ¥ at infinity. The analogue of BBC lemma for measures 1is

the following.

-~ Lemma 3 Let B R — R be a continuous nondecreasing functior

with ,6(0) 0 and

(8) /d’(ir_—‘—l— e 1t (xi<1)
Then for every M 677Z , there exists a unique u solution of
-Au + A (u) =//( on R>

u(oo) =0

(9)

For the proof of Lemma 3, see [2] or [4]. Replacing BBC
Lemma by Lemma 3 we may now proceed with the same proof as
above. Note that (8) is satisfied when j(p )/w'f>p as

ﬁ—*;oo with p>4/3.

Discussion of Lemma 3.

Assumption (8) is, in some sense, necessary for the solvability
of (9). We may understand this in two ways :

(a) Suppose that /X= § = Dirac mass at 0 and suppose that
(9) has a solution. Near x = 0, )G(u) is negligible

compared to & and thus -Au "feels" only 5\ .

Therefore, u(x) ~ -,i—‘- as [x] — 0. Hense Bla) ~ /3( lXI
1
near x = 0 and we must have | /3(T§T) € L~ ([x}< 1).
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(b) Suppose that = 8 and ( for simplicity ) that
pla) = ud, Suppose that (9) has a solution u. Set

Q= { X ; Ix|<1 } . In particular u € L%Oc(fz\\{O})

and satisfies
—[&u + uq = 0,

in the sense of distributions in D' ( f],\-{o} ). Such functions

have been studied in [5],[6],[8]. The results are the following:

(1) 1If §_23, then ueECz(fl) and satisfies -Au + u¥ =0
in (). 1In particular, it is impossible to have in 0 a
solution of —Zﬁu + uq = E . The conclusion can also be
expressed in the following way : "every isolated singularity
of the equation -Au +uw? =0 is removable.".

(ii) If 1<g<3, then u may have a singularity at 0. The

nature of the singularity can be completely described
2

(X) either u is C at o0
C
1)

() or u(x)~ = as |x] = 0 , where C>0
is an arbitrary constant
() or ulx)~ 2 as |x|—> 0 where

o[ () (& - 9]

Such results show the importance of the study of singular

solutions of nonlinear partial differential equations. A mumber
of recent works have been devoted to this subject

Gidas ~ Spruck (and Caffarelli) for singular solutions of

- Au = uq, Uhlenbeck for singular solutions of Yang - Mills

equations, Brezis - Friedman for singular solutions of nonlinear

heat equations etc...

We conclude by mentioning a modification of the Thomas - Fermi



problem studied in [1]. We consider Problem (1) with
_ 2 1 P _ 1 (x) pP(y)
k my | 3
Here V(x) = Z:_: -l-}-(-—_-—é-j-l- ’ mi>0, a; € R™ .
i=1 i

The correction term S]v\/ﬂz has been proposed by Van Weizsacker;
we refer to this problem as Problem TFW. The main result of

[1] is the following :

Theorem 3 There is a critical value IC such that
(a) If O {ILI_ , there is a unique solution of Problem TFW.
(b If I >Ic , there is no solution of TFW.

k
(c) When p>4/3, then I >I =2 _m .
c 0 =1 1

- (d) When p>5/3 and k =1, then Ic>IO .

Remarks

1) A major difference between TF an’d TFW 1is that, even for
IL Ic the solution J> of TFW does not have compact support.
2) It would be interesting to determine whether Ic > I0 when

p>5/3 and k>2 (molecular case).
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