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Evolution Equations and Nonlinear Ergodic Theorems .

by Norimichi Hirano

Tokyo Institute of Technology

Let C be a closed convex subset of a real Banach space E.

A mapping T:C-> C is said to be nonexpansive if

fTx - Tyll = §x - v for all x,y € C.

A family S = {S(t) : t =2 0} of mappings on C is said to be a

nonexpansive semigroup on C if which satisfies the following

conditions:

(1) S(s+t)x = S(s)3(t)x for s,t 2 0 and x € C;
(ii) Is(t)x - S(t)y I < jx - yll for t = 0 and x,y € C;
(1ii1) S(0)x = x for X € C;

(iv) %i? s(t)x = S(t,)x ' for t,t; = 0 and i € C.

0

Our purposé is to study the asymptotic behavior of
the trajectory {Tnx : n2 1} of a nonexpansive mapping T. and
the trajectory {S(t)x : t > 0} of a nonexpanisve semigroup S.
From the study of the asymptotic behavior of the trajectories,

we can learn about the asymptotic behavior of the solutions
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of initial value problem:

%Eu(t) + Au(t) D £(t), for t > 0,
(1)

u(0) = Ugs

where A C EXE 1is a m-accretive operator, f € Ll(O,m:E),

and uo € D(A).

In this paper, we consider the weak convergence ,
strong convergence and mean convergence of the trajectories.
we first study the mean convergence of the trajectoriles of

nonexpansive mappings. we define a term we use.

Definition 1. A sequence {xn} E is said to be weakly
almost convergent to a point x in E if
n-1

weak-1lim l( D¢

= ) = x, uniformly in i=0,1,2,-°"
n k=0

k+i

Now we introduce the first nonlinear ergodic theorem proved

by Baillon[1].

Theorem (Baillon). Let C be a closed convex subset of
a real Hilbert space H and T:C-—> C be a nonexpansive mapping
such that F(T) = {z € C: Tz = z} ¥ ¢. . Then for each x € C,
{Tnx: n>= 11 is weakly almost convergent to a fixed point

of T.
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The following corollaries are easy consequences of Baillon's

mean ergodic theorem.

Corollary Al. Let C, H and T be as in Theorem A.
Then for each x € C, {1 n = 1} is weakly convergent
to a fixed point of T if and only if weak-lim (T%"1x - ™x) = o.
n
Corollary AZ2. Let C and H be as in Theorem A. Let

S = {S(t); t =2 0} be a nonexpansive semigroup on C such
that F(S) = {z € C: S(t)z =z for all t > 0} % ¢. Then

for each x € C, there exists y € F(S) and

1 t+T
weak-1im 7 j‘ S(s)x ds =y, uniformly in t 2 O.
T t

Our purpose is to establish the mean ergodic theorem in Banach
spaces. In Banach spaces, it is far difficult to prove
the mean ergodic theorem. But recently, S. Reich proved

the following result[g].

Theorem B(Reich).- Let E be a uniformly convex Banach
space with a Fréchet~differentiable'nérm. Let C be a closed
convex subset of E and T:C—C be a nonexpansive mapping
with F(T) % ¢. Then for each x € C, {Tx: n >1 1} is

weakly almost convergent to a fixed point of T.-
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In [H] we gave a proof of Theorem B which is slightly
different form Reich's. Our proof is based on the following

three lemmas.

Lemma 1. Let C be a closed convex subset of a uniformly
convex Banach space E and T:C—>C be a nonexpansive mapping
with F(T) X% ¢ . Then for each x € C and each positive

integer n,

lim | s 1lx - s ™™gy = o,
i n n
1 0ot
uniformly in k 2 1, where Snz =z r Tz for each z € C.
k=0
Lemma 2. Let E,C and T be as in TheoremB. Then

for each x € C,

GDEB{ ™x :n=% } M F(T)

contains exactly one point.

Lemma A(Browder). Let C be a closed convex subset of
a uniformly convex Banach space E and T:C—E be a nonexpansive
mapping with F(T) % ¢. Let {Xn}CZ E be a bounded sequence
such that l%mllxn - TXn“ = 0. Then any subsequential weak

limit point of {xn} is a fixed point of T.

We give the sketch of the proof of Theorem B.
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Sketch of proof of Theorem B. Let x €:C. By Lemma 1, we can
construct a sequence~{SnTan: nz 1} E such that
.kf Z k for nz 1l and: 1im || TS Tknx -3 Tknkll= 0
n+l® “n Z n n n :
For simplicity we set Xn = SnTknx for each‘ngz 1. Then

11:r‘lel|xn - Txnﬂ = 0. While from Lemma 2, we have

GDEB {xn sy n=k IO F(T) = {y}.

Therefore , by Lemma A, we have that {xn} converges weakly
to a fixed point y of.T. "By a similar argument, -we can

see that for any sequence {hh} of integer such that hnga kn
for n 2> 1, {SnThnx} converges weakly to y. While for n and

m with m= kn,

m-1 . m-1 J-1 n kn
sx =23 ™M =3z ™+ Tz s 004 2 7%%)
m =0 m k=k_+jn k=0 k=0
where m = jn + k + r, r < n. Since {SnTkn+knx} converges

weakly to y, we obtain that Smx converges weakly to y.

By using Lemma 1, we also prove another nonlinear ergodic

theoren.
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Theorem 1. Let C be a closed convex subset of a
uniformly convex Banach space E and T:C-—>C be a nonexpansive
mapping with F(T) % ¢. Let P be the metric projection on

F(T) and suppose that P has the following property (C):

(c) If {xn} converges weakly to a point x in F(T) and

{Pxn} converges strongly to y, then x = Px = v.

Then for each x € C, {T"x} 1is almost convergent to a

fixed point of T.

The property (C) is determined by the structure of Banach
spaces and the shape of the set F(T). For example, we

have the- following corollary.of Theorem 1.

‘Corollary 1. Let E be a uniformly convex Banach
space which satisfies Opial's"conditién. Let C be a
%closed convex subset of E and T:C—>C be a nonexpansive
| maﬁping With F(T) % ¢‘; Thénifor each x € C, {Tnx} is

weakly almost convergent to a fixed point of T.

Now we prove Theorem 1 by using Lemma 1 and Lemma A.

Proof of Theorem 1. From Lemma 1, we can construct
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a sequence {SgnTknx}C: E such that

. k k
kn+l;3 kn for n =1, 1%mllT82nT Ny — S2nT ng || = 0. (%)

- Here we set

T = {{SgnTan} C E: {SgnTﬁ} satisfies (%)}

Then for each {S__T'x} ¢ § and y € F(T), 1lim || S Thng _ y Il
2n ‘ n 2n
exists[h]. Also we can see that for {SgnTknx}, {SgnThnx} €z,

with hn; k for all nz 1,

n
. h

limfl S T Mx -
inf s 10x -y |

< lim| s 1Pnx - oPn~¥ng p¥ny )+ 190 ) tPnkng pkng _ oo
n " - on n on

2
< 1im ||s_r*n*(Pn=kn)y _ phn-kng g ||
n o 2
| hn-knS _T'Nx - y ||
>

+ 1im || T
n
= lm||s 1% -y | for each y € F(T). (#%)
no 2
Now we set for each y €& F(T),
° . kn | . kn al }
r(y) = inf {lim| s T™%8x -y || : {s LT 0x} €1l
n 2 2

r = inf {r(y) : y € F(T) }.
Then we can see that there exists z € F(T) such that r(z) = r

. k
and there exists {S nTknx} € © such that lim||s TMx - z || = r.
2 m 2
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Next we claim that 1%@ Il s rlTknx - PS nTknx | exists and
2 2
k
{PS nT Nx} converges strongly to z. For given e > 0, let

2
ng be a positive integer such that

X K . K X
I S2nOT Ngx - PSznOT Nox || < llmnlnf‘H SgnT nx - PS2nT x|l +esy

and

Kp kn e ok
| s T ox — PS nOT 0x )| < L%mllbznT

k
Ny - PS ™n x| + ¢
2"0 2 o ER

2

Then we have that

lim sup || S T¥nx - b8 T¥Mx || £ 1im ||s TPx - ps _ THnpy ||
n 2 2 n 2 20
<lls T x - Ps TN ox || + e
270 2
Therefore we obtain that 1lim]| S nTknx - PS rlTknxll exists
n 2
and from this fact, we can see that{PS nTknx} converges

2
strongly to z. Hence from the property (C), we have that

{s rlTknx} converges weakly to z € F(T). While from the

2
inequality (¥¥), we obtain that

. h =
liw\\52nT Ny - z||= z,

for all (S nThnx} € I with I%lz,kn for n 2 1. Moreover,
2

we can see that

weak-1im S Thnx = z,
mn 2n

()
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uniformly in {S _T"Px} €1 with h >k for n> 1. Then

2
by the same argument . as in the proof of Theorem B, we
obtain that {Tnx} i1s weakly -almost. convergent to é fixed .

point of T.

From Theorem 1, we can deduce the following corollary.

Corollary 2. Let C be a closed convex subset of
a uniformly convex Banach space E ahd T:C~—>C be‘a mapping

which satisfies the following condition:
Il - Tyll=|r(x - y) + (1-r)(Tx - Ty) ||

for all x,y € C and all r > 0. Suppose that F(T) % ¢ and
the metric projection P on F(T) satisfies the pfoperty (c).
Then for each x € C, {T"x} converges'weakly to a fixed

point of T.

Remark. A mapping T which satisfies the condition
in Corollary 2 is said to be firmly nonexpansive. It is
easy to see that a mapping T is nonexpansive if T is firmly

nonexpansive.

Next we refer to the strong convergent of the

trajectories of nonexpansive mappings.

(7)
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Theorem 2. Let C be a closed convex subset of a
uniformly convex Banach space E and T:C—>C be a nonexpansive
mapping. Suppose that the set F(T) has a interior point.
Then for each x € C, {Tnx} converges strongly to a fixed

point of T.

Proof. Let x € C and z be a interior point of F(T).

Then there exists r > 0 such that
S.(z) ={y €C: |y -zl<r }CF().

Let P be the metric projection on Sr(z). Then we claim

that {PT"x} converges strongly to a point x, in F(T).

0
Since T is nonexpansive, the sequence 1% - pT"x|} is
moﬁotone decreasing. Suppose that there exlists a subsequence
{PT"ix} of {PT"x} such that || PT'ix - PTi+1x | > ¢

for some € > 0. Let r = 1%@[[Tnx - PT"x |. Choose ¢ > 0
so small that r > (r+c)(1;6(e/(r+c)), where § is the modulus

of convexity of the norm of E. Then for each i1 2> 1 such

that || T'ix - PT"1x || £ r+c, we have that
| TMi+1x - prlitix || < || TRE+1x - (PT"ix + PTi41x)/2 ||

< (r+e) (1 - 8(e/(r+c))

{r.

This is a contradiction. Therefore {PT'x} converges strongly

to a fixed point of T.

(10)
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Then we can conclude that {Tnx} converges strongly to a

fixed point of T since PT'x €faz + (1-¢)T'x : 0 < a < 1 }.

-~

From this theorem, we can deduce the following theorem.

Theorem 3. Let C be a closed convex subset of
a uniformly convex Banach space E and S be a nonexpansive
semigroup on C such that F(S) has a interior point. Then
for each x € C, {S(t) : t z 0} converges strongly to

a common fixed point of S.

Remark 2. Theorem 3 is due to Brezis in the~-case

E is a Hilbert space.

Remark 3. The uniformly convexify of the norm
of Banach spaces is essential for our method employed in
the proof of Theorem 1, Theorem 2 and Theorem 3. But
we do not know whether the Fréchet differentiability of
norms or the property (C) of the metric projection is

essential or not.

Remark 4. It is pointed out by Brezis that

proved Theorem 2 under the same condition.
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