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On the spatial decay of’incompressible viscous fluid

motion past objects

Tokyo University Ryﬁichi Mizumachi

1. Introduction
The purpose of this paper is to investigate the decay rate of the
solutions of the Navier-Stokes equations (1.1) w.r.t. space

variables:

|
(@]

(1.1) %t u - vAu+ (uv)u + grad p =

0 in Qq = Aux (0,T)

div u

u(x,t) > U  as X1 = o

We suppose &) is an exterior domain in R3, P94) is sufficiently
smooth, and for convenlence, £Nf contains the origin of the co-
ordinate system. We also suppose ue 1s a constant vector. With an

appropriate change of variables,(1l.1) is tranSformed into

1
(@]

(1.2) ‘J %ﬁ;v -A vV + (VY)V F %&‘v + grad p

1]
(@)

div v in QT

1 v(x,t) —> 0 as Xl > eo

We consider (1.2) under suiltable initial and boundary conditions:

3

(1.3) { v ( ;O) = v,

V{ is smooth.
PN
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On the decay rate of the stationary solutions of (1.2), R.Finn
earned many important results. And K.I.Babenko finally obtained
the conclusion : every stationary solution that has finite

dx }1/2

Dirichlet norm {5|<7v|2 decays satisfying
4.

fvix)}] = Cvixl_l (1 + sX) -1 5 s, = |X] - X

with some constant C' . We apply his method in this paper

As to the non-stationary solutions, G.H.Knightly [ 81[ 9] and J.
Bemelmans [ 2 ] considerd the decay problem and constracted the
solutions that have certain decay properties.

Here we are concerned mainly in the decay rate of every classical
solution that satisfies LQIV’V(X,t)|2 dx £ C ; 02t=T . We

prove the following two theorems.

Theorem 1. Let v be a classical solution of (1.2),(1.3) in QT
( T<e®) such that
(1) vv er0,T; L)) ,
(11)  jvy(x)l= ¢ rxi”” for some A ,C > 0
Then there exists a constant C' depending on T and v such that

-min(2, A)

(1.4) | vix,t)| £ C' x| for all (x,t) € QT

Remark. If we assume the additional condition _g v(x,t)en dax

A1
=0 ( 0St£T ) , then the exponent of x| in (1.4) is improved
as  -min(3, A)
Remark. We can also prove the same decay of "local mean" of
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a weak solution v if v & LS(O,T; LP(JL)) with r> 3, sgeo, 3/r +
2/s< 1 . Spatial regularity and uﬁiqueness theorem are known in

this class of solutions. But "mean decay" can be shown independently.

Theorem 2. Let v be a classical solution of (1.2) , (1.3) in
Qp (TsS+). Assume:
(1) v e L°(0,T; L2(n)) ,
(11) vy =v_ + v 5 VvV 1s a stationary solution of (1.2)
0 S ao S
with finite Dirichlet norm,
5 Vao satisfies
1Vgp(x)1 £ C 1x1 72
In the case T =29 ye further assume:
(i11) v e ﬁ“(O,M;_Lr(dL)) for some r< 3 ,
(iv) t}&pig(x,t)!= 0

Then there exists a constant C' depending on v such that
oy -1 -1 .
[v(x,t)i £ C' x| (1 + SX) for all (x,t) €& Q-
Remark. Both C.and C' are used to express various constants.
Generally we use C for gilven or such constants that are determined
by some norms of v, while C' expresses constants which can't be
explicitly given with such data.

As an application, we show the following

Corollary. The global solution of (1.2),(1.3) which J.Heywood

and K.Masuda constructed converges to the stationary solution like
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- - - +
1 X 1 (1+ sX) 1 t 1712 +¢ for every ¢ »o if the initial data
decays suitablly.
Remark . See Heywood [ 6 1,[ 71 and Masuda [11]. This solution

satisfies the assumptions of Theorem 2, and satisfis

1/4 for all (x,t) € Qe »

(1.6) Wvv( ,6) - Vv ) 2,y S 0t % foranl o<t

(1.5) |v(x,t) - VS(X)I < C t-

!

We depend on these facts.

2. Preliminaries
2.1 Fundamental solution
The fundamental solution tensor E of the linearized system of

equations associated with (1.2) i.e.

(2.1) %V - LV o+ %ﬁlv + grad p = 0 ,
div v = 0 ,
is given by the following definitions:
(2.2)  T1(x,t) = (4wt) /2 exp(-1x-te | °/Ut) , e, =(1,ov,o).
(2.3) By (xe) = & e 1/ aZ»qaxJ SR3T’(x-y,t>|ys‘l ay,

-1/ § () Fy (1/ix1)

To justify this , first we observe
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(Z1- o + PBx) 11 (x,8) =4(x) (%)
But then formal calculus shows

(K= o+ %Bx IBy(x,0) + Bray(x,t)

3 =
/;XéEi,j(X’t) =0

|
(@]
-

( The same index in a term means to take the sum of the terms with

that index 1 to 3. )

2.2 Estimates of E
The construction of the fundamental solution tensor E ,and also
the following lemma 1 , is owing to Solonnikov []gﬂ. The detailed

proof of lemma 2 and 3 1s omitted here, but they are elementary.

Lemma 1. The following inequalities hold with some constants C.

(2.4) 1B 0ne)sc (b o+ ix - tet )72

(2.5 IVE(xE)ISC (£ +1x - te1? )72

Lemma 2. The following estimates hold independently of t,

(2.6) (t +]x - te y~L

2_)'l < if (xix1,

-1
jix\ (1 + 5.
Lx(=2 o if o xi<l.

1
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Lemma 3. For all p>1, there exists a constants C such that

=

(2.7) L (t + ]x - te1]2 YP gt = ¢ J|x1‘p+1/2 (1 + SX)—p+1/2

‘\ if ixixl,

-2p+2

1X}§ if ixi< 1

We also need the following elementary

Lemma 4. For all A>0, there exists a constant C such that

(2.8) | Toxey,e) iy ™ ay S ¢ (o4 x - te 27 V3

2.3 Integral representation

The integral represeﬁtation for smooth solutions of (1.2),(1.3) is
given by Knightly [8 1,[9 ]. This representation is valid for even
weak solutions. As we are here concerned with the classical solution

, Wwe don't demonstrate it. The representation formula is

(2.9) v = LIv] + N[v] ,
(2.10) Llv] = I,[v ] + I,0vyd + 2 [v]l + Z,0v],

(2.11) I 0vgl(x,t)

ol (x-7,%) vo(y) ay

(2.12) Ig[vO](X,t) K(x-y,t) vo(y)'ny dy ,

- hﬂ
where ny is the normal vector of 94 at y ,and

(2.13) K(x,t) = 1/4m $7§ [7(x-2z,t) |Z|”l dz ,

LS
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+
(2.14) Z 1 v1 (x,8) =j°d15 { [ Eyy(x-y,-D (—p(y,r)Jij

il
+ Yy, vyt aﬁ;yj Vk) - vj(y,T)(SK;ykEij
+ %byj Eik)] Doy - Ei3Vy0y7
- Eijvjvknyk } dy
| - i 2 ix "L . |
(2.15) = vl (x,t) 'SDIJL hm A x, Gixt 7)) v (y,%) n, 4y ,
t -
(2.16) N[v]i(x,t) =‘L ih Qéyk:Eij(x—y,t—T) Vj(y,T) v (v,7T)

dy dtT

2.4 On N[v]

Proposition 1. The operator {i(t) defined by

C(t) : ¢ — §

ir

LE(x—y,t) f(y) dy

is a bounded operator L%(.x,) — LY(.), the norm of which is

-1/2 -3/20 + t1 -3/20 )

smaller than C ( t , Wwhere 1/r = 1/q - 1/,

C is independant of t

Proof. The Fourier transform of E 1s eXxpressed as

FCHx, By (3) = 13, (& - 3, 3,/7)

i3]
exp (—t!ﬂz - V=1 ¢t %

Its 3 derivatives can be evaluated by the following inequality

with the polynomials p,, and Ay of order lwoj :
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| $79] F(VEC £ )] < ¢ polt137) + q (8151)
ot
exp (-tig|7)

Hence

‘§l§2§3l1/0~ l ?9;%(7E( BB sc ( t"l/2 -3/20°

+ t-1/2 -3/20 + /2

By virtue of the theorem of Marcinkiewicz - Mikhlin - Lizorkin, the

last inequality implies proposition %}, . /77
In this paper, we only use the proposition 1 in the case o= 0 |

Proposition 2. If VYyv € L (O;T; L2(JL)) , then

N[v] € L (0,T; L3(s)))

Proof. By virtue of the imbedding theorem of Sobolev, v & L (0,T:
LS(AE)) . ‘Apply prop.l with r = 3, o= . Then the proof is

completed . {//

2.5 A theorem of R.Finn.

The following theorem is owing to R.Finn

Theorem ( R.Finn ) . Let v(x) satisfy the following

inequality with some constant C

Ivix)] S cixi™t (1 + SX)—l + N[v](x)

3
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where

Nvlx) = | & (x-3) 19()1% ay ,

£
and ¢ satisfies

-2 if vy 1.

PH(x) = C{ %1732 (1 + sX)'3/2 if xi21,
Pl

Then, if v decays as follows:
ivix)l = cpx1” % for some C>»O0, o >»1/2 , and all x ,

v really decays more strongly', that is, satisfying

[ v(x)| < Clxi—l (1 + SX)—lb for some C >0 and all x

o]

We use this theorem for ¢ (x) =le7E(X,t)! dt
e -

2.6 A basic lemma
The following lemma is based on the argument of Babenko [ 1] .Both
theorem 1 and 2 are proved as applications of this lemma. We give

a simpler proof.

Lemma (K.I.Babenko). Let F( ) be a function such that
(1) P(R) = 0 for all sufficiently large R,
(ii) P(R) >0 as R—>o9,

(iii) there are constants Cys C2,<x>0, g>1 such that for all

aufficiently large R the following inequality holds:

e
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| . . 8
(2.17) ¢ (R) S CRT + ¢ f §(R/2)

Then, for all ¢ >0 , there exists Rg such that if R > R¢
f(R) S (Ccy +€) R

Proof. Let M= ( 22 g -1/8-1)

5) and let ﬁl = max {
sup { R; $(R)Z M} + 1, ( 2c,/M ) |,

Induction shows g (2mR1)2§ 2—mx M for all integer m and all

R, Ry €[ Ry, 2R)).

Next we choose ﬁé such that
= — oAf + BB - . _ &
R, C, K" 2 <& ; K=M(2R))

Now if R 2 max( 2R, ﬁe) , then

) — o .“3
¥ (R) € C,RT + C,( K (R/2) )

-

(c, + )R . /17

3. Proof of theorem 1

It 1s clear that L[v] satisfies
- A ~2
(3.1) Livi(x,t) < c(ixi~ "+ Ix| )

with a constant depending on T and for all (x,t) € Qg

To estimate N[v], let us define for fixed x and R,

A = {veds 1x-y1<RI, £y =Ny
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Now let

" \
N [vl(x,t) = j ngE(X—y,t—‘c) v(y, v(y, T dy d© ; k = 1,2
S M

so that N[v] = Ni[v] + No[v] . It is easy to show

(3.2) | [vIx,e)|s ¢ (1 + 63 sup | v(y )i 2
1X-yI< R, 0<wt

b

oo 3 . 2 5-3
(3:3) [H,lv1G0l £ 0 (L + )7 oup v SON3 00y | ° 0 R

By proposition 2, (3.3) implies
(3.5)  [N,IvIGe,e)l £ ¢ (1 + £)F RO

Let R =Ixt/2 in (3.1), (3.2), (3.4). Togethet with (2.9),those
inequalities imply
-2

(3.5) [ vix,t)| < Cl(lxrﬁ +] x| +ixiT3 ) 4 sup { \V(y,’t)\ﬁ2 .

\yizixye, o<t

Take sup of both sides of (3.5) over { (x,t); (x12R, OstsT}::S

R,T?
obtaining
(3.6) sup | v(x,t)l = Cltxrmln(z’%) + C, { sup |v(x,t)|j2
Sr,T SrR/2,T
Hence we can apply Babenko's lemma to sup | v(x,t)| =9 (R) ,
S
concluding R,T
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sup [ v(x,t)| £ ( O +&) r TMR(ZA)

Sg,T

for large R and therefore, for all x ,%,
jv(x,t)| = ¢ Vx TR(2,0) /77

4  Proof of theorem 2

It is easy to show under assumptions of theorem 2 that

1

(4.1) | LIvI(x,e)l < cixy™t (1 + sx)“1

Let us define this time

4 =un | x; ( Xl2 + x22)1/2 > R },
N, =0 {x; 1x) >R\,
dg =N (Y )

Let Nk[v] be defined 1n the same way as 1in the preceding section,
so that N[v] = Nl[v] + Nz[v] + Ng[v] this time. Calculation

shows

o0 . . 1/
(4.2) N [vI(x,0) §_§6{ Lle’E(X—y,t~7)lp ay { VP at
{

| 0.2 (2
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< -2 + 3/p . P 2
< CR ﬁfﬁg{““ ,t)ilL2q (ﬂ)§ s
i - -1+ 3/2p , 12
F4-3) Lﬁg[V](X,t)l < CR éﬁ?@‘V( ’T)“qu(fb)f ,

: : 11
by (NGIvI(x,t)| J [ 1VEG-y,e-D)|P ay VP ar
3 1Y [ 4‘13
« supliv( SOl 2q,,, )2
OS‘Céi»l L (AQ)}

T
j |E(x-y,t-T)|dy dT-sup (v(y,'THZ

+
Ye'a’z3a BT

t-1 ‘]13

< ¢ suplivC ;U q(1-¢), = sup vy, T E
QSTLt k ()} yeALJ,Ostgt(

in (4.2) ~ (4.4).
(4.b),

and every p 3 p> 3/2

for every ¢ >0 in (4.4)
(4.3) s (l-¢) g =r 1in

Let g =r/2 in (4.2) and

so that

(4.5) | N[vI(x,t)[sc ( RE T O/T 4 gl/2 - 3/r

+ C sup |v(y,t)\1+&
yé:ﬂy OgT<t
Fx=y{£ixl/2 .

R =ixl/2{2 so that - y€4ly implies

(k.5),

Now let
Then, from (4.1) and
1+ ¢

(’4.6) iV(X,t)‘ é Cllxl - + 02 sup (V(y,_C)‘
(ylzixv2, o<ttt

where -&X = 1/2 - 3/r < =1/2
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By virtue of assumption (iv) and theorem 1, [v(x,t)I >0 as [X|—>e
uniformly in o< t . Hence essentially the same argument as at

the end of the preceding section lead us to

-~ X

(4.7)  Jv(x,t)[sCrix
By Finn's theorem, (4.7) implies
-1

jv(x,t)I £ Cixl (1 + SX)_l . /77

5 Proof of corollary

Let Vg TV -V . ( See the remark after corollary.) We define
s
t _ o .
N[f,gl(x,t) = S S1$7E(X—y,t—1) f(y,0) gly,O dy dT
O VAL
Then V4 is represented as follows:
(5.1) vgq = LIv] + N[vg,vgl * N[vg,vg ] + N[v,,vg4]
We have already. seen

(5.2)  [vgx,0) = C! min{lx(‘l (1 + sx)'l , =1/t }

H

.. =1 -1
Crixi (1+ sX)

JA

(5.3) | vs(x,t)\

(5.2) can be replaced by
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1/8 XT1/2 -1/2

(5.1) (vd(x,t)f < Cc't l (1+ s,)

We state a lemma to go further, but don't prove it.

Lemma. For every p ; p>» 1 , and & ; A> 0 , there exists a

constant C such that

T _ ‘ _
(5.5) I (x,t) = SG'Z “{ t—T‘+]x—(t~“E)el|2 } 7P at

1A

C ;

_5
|

e i - —-
£=%72 g (7P T2 (44 s )P /2 rixiel,

|Xl_2p‘+2 1fxi1<1.

Then, frqm (5.2), (5.3), (5.4), we get

(5.6) |vgt,e)) < o e Ttar s )7,
and by this and (5.2),

(5.7)  |vy(x,0)l & o ¢7H/8 71325712y 5 y71/2
This improves (5.4) . Repeated argument proves

(5.8) (v (x,e)| < cr ¢TI 7l (ap s )71
instead of (5.6) , which ends the proof .. /77
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