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NONLINEAR OSCILLATION OF FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH DEVIATING ARGUMENT

Hiroshi ONOSE

1. INTRODUCTION

In this talk we consider the nonlinear second order functio-

nal differential equation with complicated deviating argument
(1) [(r(t)y' ()1 + £(y(h(t)),t) = 0.

The conditions we always assume for r, g, £ are as fOllOWS:‘
(a) r(t) is continuous and‘positive for t > a;
{(b) h(t) = g(t) + k(y(f))z, where kris a nonnegative consfant
> 8(t) is continuous for t > a and g(t) > t;

(¢) f(y,t) is continuous for |y| < », t > a, and yf(y,t) > 0

fory # 0, t > a.

Equation (1) is called superlinear if, for each fixed ¢,
f(y,t)/y is nondecreasing in y for y > 0 and nonincreasing in y

“for y < 0., It is called strongly superlinear if there exists a

number o > 1 such that, for each fixed t, f(y,t)/|y|gsgn y is
nondecreasing in y fdf y > 0 and'noninéreasing in y for y < 0.

Equation (1) is called sublinear if, for each fixed t, f(y,t)/y
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is nonincreasing in y for y > 0 and nondecreasing in y for

y < 0. It is called strongly sublinear if there exists a number

T < 1 such that, for each t, f(y,t)/IYITSgn y 1s nonincreasing
in y for y > 0 and nondecréasing iny for y < 0. In what follows
we restrict our discussion5to those solutions y(t) of (1) which

exist on some ray [Ty,w) and satisfy sup {|y(t)|:t > T} > 0 for

every T > Ty. Such a solution 1s said to be oscillatory if the
set of its zeros is not bounded; otherwise, it is said to be

nonoscillatory. Equation (1) itself is called oscillatory if all

of 1ts sclutions are oscilillatory. An important special case of

(1) is the following generalized Emden-Fowler equation
(2) [r(t)y' ()1 + p() |y(n(t))|Ysgn y(a(t)) = 0

where y is a positive constant and p(t) is a continuous and
nonnegative function on [a,»). The problem of oscillation of
solutions of functional differential equations with deviating
arguments has received a widé attention during the last several
years. Most of the literature, however, has been devoted to the
investigation of differential equations with retarded arguments,
and little is known about the oscillatory behavior of differen-
tial equations With complicated deviating arguments.

The main purpose of this paper is to undertake a first
attempt in the direction of estéblishing oscillation and non-
oscillation results of all solutions for equation (1) with com-
pliéated argument which seem to be'interestingvin the enginee-

ring. To do this, we refere to the papers[1-5,7]1, Hino[12] and
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the book([6], p. 3). Especially, we get a hint for this problem

from an equation

du(t)
at

= u(t) (l-u(t-h(t,u(t))))

in the book([6], p. 3).

2. THE MAIN RESULTS

In what follows we use the function R(t) defined by

t ,
R(t) =J r(s)‘lds, and 1im R(t) = o,

t >
o

THEOREM 1. Let (1) be either superlinear or sublinear.

Then, a necessary and sufficient condition for (1) to have a

bounded nonoscillatory solution is that

<]

(3) J R(t)|f(c,t)|dt < « for some c # O.

PROOF. (Necessity) Let y(t) be a bounded nonoscillatory

solution of (1). Multiplying (1) by R(t) and integrating from

tl to t, we have

R(5)r(8)y' (8) - y(t) = R(t)r(t)y' (b)) + y(t,)

t
s j R(s)f(y(h(s)),s)ds = O,
vy
which implies (3).

(Sufficiency) Consider the integral equation
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(5) y(t) = 2 + f R(s)f(y(h(s)),s)ds + R(t)f f(y(h(s)),s)ds.
T t
4 solution of (4) is a solution of equation (1). By using
Schauder's fixed point theorem, we have a solution y(t) of (4)

which tends to a finite limit as t -+ o=,

THEOREM 2. Let (1) be strongly superlinear. Then, a neces-

sary and sufficient condition for (1) to be oscillatory is that

<
oo

(35) J R(t)|f(c,t)|dt = » for all ¢ # O.

THEOREM 3. Let (1) be strongly sublinear. Suppose that

f(y,t) is nondecreasing in y for each t. If

[ee]

(6) : f |£(cR(t),t)|dt = « for all ¢ # O,

then (1) is oscillatory.

EXAMPLE. Consider the functiocnal differential equation with

complicated argument

2 _11 1
(67251 (6) 1 + 23t S[y(t2 + y(£)23 = o,

-

Which has. a nonoscillatory solution y(t) = t. As is easily seen
(6) is violated.

3. THE MORE GENERAL CASE

We consider the case h(t) = g(t) + s(y(t),y'(t)), where
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s(u,v) 1s continuous on R2 and s(u,v) > 0 for all (u,v) € R2,
and g(t) > t.

(7) [r(E)y" ()] + £(y(g(t) + s(y(t),y'(L))),t) = 0.

THEOREM 4. Let (7) be strongly superlinear. Then, a neces-

sary and sufficient condition for (7) to be oscillatory is (5).

0

4, THE CASE WHERE f r(t) tat < «

o

o]

We use the function p(t) defined by p(t) = f r(s) tds.
t

THEOREM 5. Let (1) be strongly superlinear. Suppose that

<o

(8) f |f(cp(t+M),t)|dt = » for all ¢ # O,

and h(t) =t + s(y(t),y'(t)), O < s(u,v) <M for all (u,v) e

R2 and M is a constant. Then (1) is oscillatory.

PROOF. Suppose there exist a nonoscillatory solution y(t)
of (1). Without loss of generality we may suppose that y(t) > 0

for t >t By adding some modifications to the proof part of

O'

Kusano and the present speaker([7], pp. 548-549), we have that
t .

(o-1)k"° J £(kp(h(s)),s)ds

t

A

[-r(t,)y" (6,017 [-r(t)y' (£)173°

2
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where k = r(t2)y (tz).

From this, we obtain

[o o] o0

f f(kp(s+M),s)ds < J f(kp(h(s)),s)ds < =,
ts v

which implies a contradiction to (8).

5. THE HIGHER ORDER CASE

We consider the higher order equation

(9) L y(t) + H(t,y(hy (6)),...,y(h_(£))) = £(5),

where n > 2, hy(t) = g, (t) + si(y(t),y'(t),...,y(n—l)(t)),

gi(t) >t, 1 <1i<m, si(yl,yz,...,yn),is continuous on Rn,

v

si(yl,yg,---,y )

n
0 0 for any (yl,yz,...,yn) e R, and Ln denotes

the differential operator

(10) L= 1 ’%_ 1 d 1 d

d .
n pn(t) - dt pn_l(t) at°rdt pl(t) at po(t)°

We assume that p,, f, g.: [a,®») = R and H:[a,») x R™ > R are

i
continuous and pi(t) > 0. (Cf. Singh and Kusano[9])

A) MAIN RESULT

Consider the case

(11) f p; (t)dt = o for 1 < 1 < n-1.
a



A differential operator Ln defined by (10) is said to be in
canonical form if condition (11) is satisfied. It is shown that
any differential operator of the form (10) can be represented
in canonical form in an essentially unique manner. We will use

the following notations:

(12)
I, =1,
{ t
Ik(t,s,;pik,...,p. ) = J Py (r*)]ik__l(r,s;p:.L ,...;pi )dr

and
(13)  J,(t,8) = py(£)T, (£,83p15000504), T (8) = J,(%,2),

(14) K (t,8) = p_(6)I,(t,85p__ ), K (8) = K, (v,a),

120 2Py

for e {1,2,...,n-1}, 1 < k <n-1, and t, s ¢ [a,=).

1x

THEOREM 6. Suppose (11) holds and there exists a continu-

ous function q: [a,¢) + [0,») such that

(15) [H(t,y 50005y, )| £ a(t) for (t,y55..-,y,) € [a,o)xR"

holds. Suppose that

[} o]

J K, _1(t)a(t)dt < » and J Kn_l(t)|f(t)|dt < o,

Then every oscillatory solution y(t) 92»(8) satisfies

1im [y(£)/py(£)] = o.

£ >



B) NON CANONICAL Ln

We consider the case where Ln in (9) is not in canonical
fofm. Any differential operator of the form (10) can be repre-
sented in canonical form and the representation is essentially
unique. More precisely, if Ln is given by (10) and if condition

(11) is not satisfied, then Ln can be rewritten as

(16) 1 = —=— ¢ 1 d 4 _1 a -
n v dt ~~ dt’*'dt ~ at v,y ?
p, () p_q(t) p, (t) p,(t)
so that
(17) J D7(t)at = =, 1 <1 < n-1,
a

NV
and the pi(t), 0 <1 <n, are determined up to positive multi-
plicative constants with product 1. By a principal system for

L is meant a set of n solutions Yl(t),...,Yn(t) of Lny(t) =0

which are eventually positive and satisfy

' Y, (t) e
N 1 — - . .
(18) %iﬁ ?ETET =0 for 1l ; 1 < 3 ; n.

In case Ln is in canonical form the set of functions
(19) () T ()T (8))

defined by (13) is a principal system for Lh , and the set of
functions

(20) {K, (), K (8)5en sk ()]

= 8 -



defined by (14) is a principal system for the operator

(21) M_ = 1 ¢4 1 _4a 4 1 a ,
n pa(t) dt p,(t) dt dt p (t) dt p_(%)
0 1 n-1 n

which is also in canonical form. For a general operator Ln a

principal system can easily be obtained by direct integration

of the equation Lny(t) = 0. A basic property of principal system
~ ~ '
is that if {Yl(t),...,Yn(t)} and {Yl(t),...,Yn(t)} are any two

principal systems for the same Ln’ then the limits

~J
(22) 1lim e 0, 1 <1ix<n
t+°° Yi -t 3 — — 3

exist and are finite.

THEOREM 7. Suppose that there exists a continuous function

g:[a,»)»R such that

IH(t,yl,...,ym)[ < q(t) for (t’yl,...,ym) e [a,») x Rm,

holds. Let {Yl(t),...,Yn(t)} be a principal system for L, and

let {Z,(t),...,2 (%)} be a principal system for M _defined by

(21). Suppose that

o) co

J z,(t)a(t)at < = and [ Zl(t)lf(t)ldt <

hold, then every proper solution y(t) of (9) satisfies

y(£) = (Y, () as © » =.
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C) NONOSCILLATION THEOREM

We consider the equation

(23) L y(t) + a(t)a(y(h (£))s...,y(h (£))) =0,

where a, hj: [a,») * R, 1 <J <m, and Q: R™ > R are continuous.

THEOREM 8. Suppose that (11) holds, Q(yl,...,ym) is bounded

and
Q(yyse--syy) = 0(ly,[) as y; ~ 0.

If in addition

o

. . 1
lim inf _EETET_— > 0 and f Kn_l(t)la(t)]dt < o,

t>

then all proper solutions of (23) are nonoscillatory.

REMARK. This contain the result of [11].

®% A part of this talk shall be published in [8].
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