On separable extensions over a local ring

By Kozo Sugano

- 1. Throughout this paper A is a ring with 1, and B is a subring of A such that 1 ε B. A is a separable extension of B if and only if there exists $\Sigma x_i \otimes y_i$ in $A \otimes_B A$ such that $\Sigma x_i y_i = 1$ and $\Sigma x x_i \otimes y_i = \Sigma x_i \otimes y_i x$ for all x in A. For a ring automorphism σ of A we denote as usual by $A[X;\sigma]$ the ring of all polynomials with an indeterminant X whose multiplication is defined by $aX = X\sigma(a)$ for each a in A. Now consider the following condition
 - (T. P. R) $A = B[X;\sigma]/(X^2 u)$ for some automorphism σ of B and a unit u of B such that $\sigma(u) = u$ and au = $u\sigma^2(a)$ for each a in B.

In the case where A and B satisfy the above condition, we will say that A and B satisfy condition (T. P. R) with σ . The aim of this paper is to show the following

Theorem. Let A be a separable extension of B, and suppose that $A = B \oplus M$ with a B-B-submodule M such that $M^2 \subset B$. Then A and B satisfy condition (T. P. R) with some automorphism σ of B, in the case where one of the following conditions is satisfied;

- (1) B is a local ring, and M is finitely generated as left (or right) B-module
 - (2) B is a left (or right) Noetherian local ring
- (3) B is a commutative Noetherian semi-local ring, and M is faithful as left (or right) B-module

- (4) B is a commutative Noetherian semi-local ring without proper idempotent.
- 2. To begin with we will pick up some lemmas which we need to prove our main theorem. Some of them have already been known.

Lemma 1. Let A be a separable extension of B, and suppose that $A = B \oplus M$ with a B-B-submodule M such that $M^2 \subset B$. Set $M^2 = I$. Then we have $I^2 = I \neq 0$ and IM = MI = M.

Proof. See Theorem 1 and Proposition 2 [6].

The next lemma can be seen in [3] in more general form. But we will repeat here.

Lemma 2. Let R be a commutative ring with 1 and I a finitely generated idempotent ideal of R. Then we have I = Re for some idempotent e of R.

Proof. Let $I = \sum_{i=1}^{m} Ra_{i}$. Then $a_{i} \in I = I^{2} = \sum_{j=1}^{m} Ia_{j}$, and $a_{i} = \sum_{j=1}^{m} c_{ij}a_{j}$ for each i with $c_{ij} \in I$. Set $d = det(E - (c_{ij}))$ (= $det(\delta_{ij} - c_{ij})$), where E is the unit matrix and δ_{ij} is the Kronecker's delta. Then, we see by direct computations that d = 1 - e for some $e \in I$, and $da_{j} = 0$ for each e. Thus (1 - e)I = 0, in partiqular, (1 - e)e = 0. This means that $e^{2} = e$, and e and e are e.

The next lemma is also well known. So, we will state it without proof.

Lemma 3. If there exists $B-B-submodules\ X$ and Y of A such that XY = YX = B, then X and Y are left as well as right B-pro-

generators, and there exist the following ring isomorphisms $i_X: B \longrightarrow [Hom(_B^X,_B^X)]^O, \quad i_Y: B \longrightarrow [Hom(_B^Y,_B^Y)]^O$

 $j_X : B \longrightarrow \text{Hom}(X_B, X_B), \quad j_Y : B \longrightarrow \text{Hom}(Y_B, Y_B)$

defined by $i_X(b)(x) = xb$, $j_X(b) = bx$ for each $b \in B$ and $x \in X$.

Lemma 4. Let B be a commutative subring of A (not necessarily contained in the center of A), and X and Y be the same as in Lemma 3. Then for each maximal ideal J of B, we have that [X/JX: B/J] = [X/XJ: B/J] = 1.

Proof. Set n = [X/JX: B/J]. Then, $Hom(_BX/JX,_BX/JX) = (B/J)_n$, the $n \times n$ -full matrix ring over B/J. On the other hand, we have by Lemma 3 that $B = [Hom(_BX,_BX)]^O$. But X is left B-projective. Hence there is a canonical ring homomorphism of $B = Hom(_BX,_BX)$ onto $Hom(_BX/JX,_BX/JX)$, where the former is commutative. Hence $(B/J)_n$ must be a commutative ring. This means that n = 1. Similarly, [X/XJ: B/J] = 1.

Remark. In the case where the left B-module structure of X coinsides with the right B-module structure of X, the obove lemma has already been shown in, for example, [1] Chap. 1 §5.

3. Now we will prove our main theorem.

First suppose condition (3). Set $M^2 = I$. Then by Lemma 1, $0 \neq I = I^2$, and I is finitely generated, since B is Noetherian. Hence, I = Be for some $0 \neq e^2 = e$ ϵ B, by Lemma 2. We have also M = MI = Me by lemma 2. Then, M(1 - e) = Me(1 - e) = 0. But M is faithful as right B-module. Hence e = I, and we see that $M^2 = B$. Then by Lemma 4, we see that [M/JM; B/J] = I for each maxi-

mal ideal J of B. Now let $\{J_1, J_2, \dots, J_r\}$ be the set of all maximal ideals of B. Since MM = B, we see that $J_1 \cdots J_{i-1} J_{i+1} \cdots J_r M$ $\not\subset J_i^M$ for each i. Hence there exists $m_i \in J_1^* \cdots J_{i-1}^* J_{i+1}^* \cdots J_r^M$ such that $m_i \not\in J_iM$. Set $m = \Sigma m_i$. Then $m \not\in J_iM$ for each j. Therefore, $B/J_i(m + J_iM) = M/J_iM$, and $M = Bm + J_iM$ for each maximal ideal J; of B. Then by Nakayama's Lemma we have M = Bm. Similarly, we have M = nB. Hence, $M^2 = nBm = B$. Thus there exists s in B such that nsm = 1. Then, n(smn - 1) = n - n = 0, and $smn \in B$. Therefore, M(smn - 1) = nB(smn - 1) = n(smn - 1)B = 0. But M is faithful as right B-module. Hence we have that l = (sm)n = (mn)s. Thus m, n and s are all units. Hence we can easily see that M = mB = Bm, and there exists an automorphism σ of B such that xm = $m\sigma(x)$ for all x in B. Set $u = m^2$ ($\epsilon M^2 = B$). Then, u is a unit of B, and $xu = xmm = mm\sigma^2(x) = u\sigma^2(x)$ for each x in B. Furthermore, $um = m^3 = mu = m\sigma(u)$. This means that $\sigma(u) = u$. Now it is obvious that $A = B + Bm = B[X;\sigma]/(X^2 - u)$ by $m \longrightarrow X + (X^2 - u)$.

Next assume condition (1). Set $M^2 = I$, and let J be the radical of B. If $I \subset J$, we have IM = JM = M by Lemma 1. Then, M = 0, since M is left B-finitely generated. Thus $I \not\subset J$, which means that $M^2 = B$. On the othere hand, since B is a local ring, every finitely generated projective B-module is B-free of finite rank. This fact together with Lemma 3 shows that M = nB = Bm. Then, I = nsm for some $s \in B$. Since B has no proper idempotent, we see that sm = 1. Thus m, n and s are units. Then, for the same reason as obove, we see that A and B satisfy (T. P. R) with some σ . Assume condition (2), and suppose $I \subset J$. Then by Lemma 1, we have I = II = JI = I. But I is left B-finitely generated.

Hence I = 0, which contradicts to Lemma 1. Thus we have again that $M^2 = B$. Now we can follow the same lines as above. It is also easy to see that under condition (4) we can obtain the same conclusion by the same method.

References

- [1] F. Demeyer and E. Ingraham; Separable algebras over commutative rings, Lecture Notes in Math., 181 (1971), Springer.
- [2] K. Hirata and K. Sugano; On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
- [3] T. Kanzaki; On Galois algebra over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [4] K. Kishimoto and T. Nagahara; On free cyclic extensions of rings, Proc. 10th symposium of ring theory, 1978,

 Okayama Japan.
- [5] Y. Miyashita; On a skew polynomial ring, J. Math. Soc. Japan, 31 (1979), 317-330.
- [6] K. Sugano; On separable extensions over a local ring, to appear in Hokkaido Math. J..

Department of Mathematics
Hokkaido University
060 Sapporo, Japan