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Soliton Equations as Dynamical Systems

on a Infinite Dimensional Grassmann Manifolds.

Mikio Sato

RIMS, Kyoto University, Kyoto 606

§0. Introduction.

It is shown that the totality of solutions to Kadomtsev-

Petviashvili (KP) equation

3u + (—Mut+u

vy X+6uux)x =0 (0.1)

XX
has a natural structure of Grassmann manifold (GM) of infinite
dimension. Evolution of  u in variables x,y,t (and also
hidden "higher variables") is now interpreted as dynamical
motion of a point on the GM by the action of 3 (or more)
parameter subgroup of the group GL(») of automorphisms of

our GM. Generic points of this GM give generic solutions to

KP equation, whereas points on particular submanifold of GM

give solutions of particular type — such as rational solubions,
(multi-)soliton solutions, (multi-phase) quasi-periodic solu-
tions, or (multi-phase) similarity solutions. (E.g. rational
solutions correspond to points on finite dimensional Grassmann
manifold contained in our infinite GM.) Also, different kinds

of submanifolds of the same GM (and in some cases different -
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choice of parameter subgroup of GL(»)) give rise to generic
solutions of other soliton equations such as Korteweg -

de Vries (KdV) equation, modified KAV equation, Boussinesq
equation, Sawada - Kotera equation, Non-linear Schrodinger
equation, Toda lattice, equation of self induced transparency,
Benjamin - Ono équation, etc. as well as to solutions of
particular type of these soliton equations.

The automorphism group GL(«) of GM naturally plays
the role of group of transformations (or, of "hidden symmetries™)
of KP equation. This fact provides us as a consequence with
thourough understanding on transformation property of various
soliton equations.

Multi-component generalization of the theory shows that
other soliton equations such as equation of three wave inter-
action, multi-component non-linear Schrodinger equation, Sine-
Gordon equation, Lund —/Regge equation, equation for inter-
mediate long wave, etc. also constitute submanifolds of infinite
dimensional GM.

It may be conjectured that any soliton equation, or
completely integrable system, is obtained in thié way .
Classification of soliton equations would then be reduced to
classification of submanifolds of our GM which are stable by

the subgroup of GL(») describing space-time evolution.
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§1. KP equation as isospectral deformation equation of a

micro-differential operator.

Consider a formal micro-differential (or pseudo-differential)

operator

g a 1-n )
Ld;f nzoun(X)(ai) N with uo(x) =1,
= L) w0 G e (1.1)

Since ul(x) is easily eliminated by the simple transforma-

. S(x), _=-S(x) . _[*
tion L » e L e with S(x) = ul(x)dx, we hereafter

' def
set ul(x) = 0 without loss of generality. Let Bn denote
the "differential operator" part of the n-th power " or L,
- d 2 a
e.g. By =1, B = &, B, = () w2u,, By = ()7 +3u, ()
+ (3u3+3u2 X),..., then isospectral deformation of the eigen-
3
value problem
Ly = Ay , A = eigenvalue, (1.2)
is achieved by
¥ = By, n = 0,1,2,..., | (1.3)
n
where to, tl, t2,... are deformation parameters on which
the quantities u,(x), u3(x),... and ¥(x,)) now depend,

or equivalently, isospectral deformation of L 1is given by

Lax-type equations



3L - 1B, 1] ; n=0,1,2,... ‘ (1.4)

n
n

[ B2 a5

(1.4) are equivalent to Zakharov—ShabatkequatiOﬁS which, derive

from (1.3):

[Bn - _é_%_,_ , Bm - _8..%_..} = O; n,m = 0,1,2,... . (1-5)
n m

The deformation equations ((1.4) or (1.5)) imply in particular
that L and hence its coefficients un(x;t) do not depend: . |

i.e.

on to and depend on t and x via their sum x+t1,;

1

u, = un(x+tl, t

55 tB"")’ 4 (1.6)

and hence, by replacingb X+tl by tl’ we consistently idehtify

. . d . 3
the variable x with ‘tl and Ix with EEI .
The deformation equations now read
1,12’t2 = 2u35xfu25XXf u3’t2 = 2ULM’X+1,13,XX+2‘u2L12,X
(1.7)
Yo ¢ 3ull,x+3u3,xx+u2,xxx+6u2u2,x’''

which yield in particular the XKP equation (0.1) for u

3

o, = (FMuy o osu Csbu.u. ) =0

Yot 5 2,xxx 272, x

272

where x,y,t are now written X(=tl), ts, tj.,,The complete

set of equations (1.7) describes complete hierarchy of
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extended or higher KP equations involving the complete set .
of deformation parameters tl’ t2, tB’ tu,..

F‘Within the category of microdifferential operators, our
L of (1.1) is transformed to the trivial one, é%# Namely

we can find

=
1"

1w GO T g T e ()

1) thatﬂ?

| | '
L = Wego W (1.9)

holds. Accordingly the eigenfunction ¢ 1is also Lransformed
Ax+(E .+ to+ Sto+...)

to the.trivial . one, 1y, = constant x e 0 1, 2 -
, 0 hg : :
yielding
(x,t) = WwO(X,t)
2
1 -2 AXH(L oA +ATE 54000
= (1+w1(x,t)A +w2(x,t)x +...)e

(1.10)

except for an arbitrary constant factor.

§2. Generalization to multi-component case

The construction of KP hierarchy given above is generalized
to multi—componént case as follows. (The number of components
will be denoted Ey".f; When r=1 the following formalism

reduces to the previous one.)
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We. introduce formal microdifferential operators with

matrix-coefficients of size ©rxr:

T | d . l-n . _ N
L = nonn(X)(5§ R with Uy(x) =1, U;(x) =0, (2.1)
. . =
® {0 .
c. = Y C (x) (L) with C. (x) = E.. = | -1 (2.2)
i £o.in dx ’ io ii . > .

n ‘ ‘0

subject to the conditions (i) L commutes Ci’ and (ii)

4

Cicj = Sijci' Entries of Un(x) and Cin(x> will play the
role of "potentials", i.e. unknown: functions to be solved in -
our multi-component version of KP hierarchy.

Consider the following simultaneous eigenvalue problem

of rxr matrix V¥

LY = 2\Y, . A = eigenvalue, (2.3)

l C.¥ = VE.. (i =1,... r) (2.4)

i ii?
i.e. the j-th column vector T(J) of ¥ 1is a simultaneous
eigenvector of L, Cl""’ C

P

R L R L T 1S I €S BORE S M )

and its isospectral deformation equations

9

ot T
n

= Bél)w (i=1,...,r; n=1,2,...)
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where Bél) -~ are. "differential operator'" part of »CiLn; e.g.

4

i1ax T (PE13Un¥Cio)s -

(1) _ d (1) _ d.2
Bi7' = Ejygx * Ci10 BpU = By (g0

Hence the isospectral deformation of L, Cl""’ Cr is given

by Lax-type equations

3C.

oL (i) (1) |
2y =Byt 1, —hy = 1B, Cl, (2.6)
3t n 9t n J

(i,3=1,...,73y n=1,2,...),

or equivalently, by Zakharov-Shabat type equations

(1) _ 8 (J) _ 3 -0 .
(B, P B, ggrer] = 0, | (2.7)
n m

(i,j=1,...,r3 n,m=1,2,...).

Again, we can find a matrix-coefficiented micro-differential

operator
IR Ly d -1 , vod -2 .

W= 1o W (x,0)(55) T+ Wy (x,8) (55) “+. .. (2.8)
so that L, Cl""’ Cr are transformed to trivial ones,
d - , .
5> Bppsces Eppnt

-1 , *
L= WeoW 5, o= WeE W7, (i=1,...,r), (2.9)

and we get



Y(x,t) = Wy, (x,t)

| (2.10)
= (1+wl(x,t)x'1+w2(X,t)x"2+...)Yogx,t)
where
| eXX+n¢(l),k)
WO(X,t) = constant x B - . (2.11)
eXX+ﬁ<t(r),x)

Cwith o6, = § A (1) (2.12)

def n=1 n

§% QGrassmann manifolds of finite and infinite dimensions

Let V = ™ pe a vector space of dimension m+n over
C. (Everything‘in this note is defined over ). The Grassmann
manifold &M(m,n) (or -GM(m,V)) is by definition the parameter
space for the set aof m-dimensional,subspaces in V. Since-
such a subspace is spanned by an m-frame & = <g(1),.;.,g(m))
consisting m linearly independent.vectors 5(1),;..,E(m) eV,
we have

GM(m,n) {m-frames in V}/GL{(m)

(3.1)

GL(m+n)/GL(m,n)

37

where we denote by GL(m,n) the subgroup of GL(m+n) consisting
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of elements of the form g = [ ] with glezGL(m),

g) € GL(n). We also set

éﬁ(m,n) = ({m-frames} x GL(1))/GL(m)

( = {m-frames}/SL(m), if m>0) C(3.2)

Am(V) m-th exterior product space of V (3.3)

and have the following situation

GM(m,n) C——— A™(V) - {0}

l GL(1) ' l GL(1) : (3.1)
Projective space
GM(m,n) c . . m+n
of dimension ( m -1

where the embedding of the upper line is .defined by letting
Eiséﬁ(m,n) represented by an m-frame § = (S(l),...,g(m)
correspond to g(l)A...Ag(m)E/F%V)-{O}. (3.4) gives the
standard way of embedding GM(m,n) into a.projectiVe space.
GM(m,n) will be called the standard line bundle over GM(m,n).

By dénoting by -the minors of &, i.e. the deter-

3
21...2m

minants of mxm matrices consisting of Zl-th,..., zm—th

rows of the (m+n) mxmatrix £, we have

(1) (m)

NN D y £ e, Aeeip8 (3.5)
128,<...<8_<m+n 21"'2m 21 lm
1 m
where e.,...,e denote the unit column vectors €V.
1 m+n
Eq . , are the Pliicker coordinates of &, and satisfy
LRI
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the following Plucker's identities:

m+1 i
izl(') Exl...sa k. bk ke ke o 0 (3.6)

In (3.4),VGM(m,n) coincides with the intersection of the
quadrics defined by (3.6) in the projective space. We remind
that the derivation of (3.6) relies on the Clifford algebra
structure of  A(V*).A(V).

We denote by V* the dual vector space of V. The
canénical inner product < , > : V¥xV > T is extended to

Am(V*)><Am(V) +~ T and it takes the form

<E*, B> o= aet®erer s &r g, (3.6)
21< <3 1 ‘ 17" "m
m
on GM(m,V*) x&ﬁ(m,v). For m<m', n<n' we regard V = e
1 1
as a subspace of V' = g™ n according to the scheme V!
| . v
=™ Mg v e " n’ and let an m-dimensional subspace Vl
L
of V correspond to the m'-dimensional subspace gt M g
Vl ® 0 of V'. This process induces the embeddings
GM(m,n) C GM(m'n') GL(m+n) G GL(m'+n')
W w and W . W
[ g — g
(3.8)

where

- 10 -
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m'-m m m'-m- m+n n'-n
/N N TN N ——
m'-m ( 1 0 1 0 0
£' = min ( 0 £ and g = 0 g 0 (3.9)
n'-n ({ 0 | O 0 0 1

If, further, £*e GM(m,V*) goes to E¥'e GM(m',V'*) then
<E*, E> = <EX', E'>, (3.10)

namely, the inner product is preserved by this embedding
process.

The infinite dimensional Grassmann manifold (GM) and
its standard line bundle (éﬁ) which we need to parametrize
the solutions of KP hierarchy are obtained as the topological
closure of the inductive limif of GM(m,n) and aﬁ(m,n) as ’

m and n tend to . Explicitly, our GM is defined by
GM = {N®-frames}/GL(N®), o (3.11)
where by an N®-frame we mean an infinite-sized matrix

= (Euv)ueZ,ve]Nc (3.12)

whose rows and columns are labeled by integers Z and strictly

negative integers N = Z - = {-1, =-2,...}, respectively,
det

satisfying the condition that (i) JmeNN such that EUV =

5uv for up<-m, and that (ii) m column vectors for v =

-m, -m+l,...,~1 are linearly independent, while GLMN®)

- 11 -
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consists of

b= HMv)u,veIW - (3.13)

satisfying the similar condition as above.

§4. Construction of solutions to KP hierarchy

Let A be the shift operator defined by A = (éu,v—l)u,veZ'

We define t-function for KP hierachy by

t(tsg) = T(tl,tz,...;é) = <€O,en(t’A)§> (4.1)
def

e n .
whereK n(t,A) = Y tnA , and gy *© (s It is

def n=1 def
shown that (4.1) well defines <t(t;£) under a very mild

uv)ueZ,véNc'

“condition on the growth order of (t_) _ and
n‘n=1,2,...
(g

uv)ueZ,vﬂNC‘

From (4.1) we get the following expansion of T in

terms of character polynomials XY(t) (cf. Appendix):

T(3E) = % Eyxy (%) (4.2)

€¢ + Eﬁxm(t) tE xm(t) + EEXB(t) too..

What distingishes (4.2) from the expansion (A3) of an arbitrary

function f£(t) 1is the fact that coefficients in (4.2)

ty
are Pliicker coordinates of EE€ éﬁ, and as such they satisfy

- 12 -
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the Plucker identities, e.g.

€. ~ &8 * ELE = 0, etc. (4.3)

> H 5 = f

To any & €GM we associate I8N eGM defined by

gu+l,v+l .1f v < ~1

(g[A1) = (4.4)

UV
AHFL ir oy o= -1,

and define W(t3;A3E) by

w(t3a3E) = e | (h.5)
t(t;E)

Then we have

Theorem.

For any E;séﬁ (4.5) solves KP hierarchy (1.2), (1.3),
and vice versa.

Namely, E Eéﬁ completely parametrizes the set of solutions
to KP hierarchy.

uv(t) are given in terms of 1. For example:

' -1 1
u,(ts;g) = (logrt) > ux(t,&) = =5(logt) +=(logt) .
2 b1ty 3 2 £, 2 £16,%1

Returning to the t-functions, we have

t(t+a,B) = (s, eM@Mgy (4.6)

-13 -
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| t
e T(t,E) = T(t,en(b’ A)E) (4.7)

which are very special cases of the general transformation

formula of the form
Tgr(t,g) = 1(t,g8) (4.8)

where Tg is a linear operator acting on the functions in ¢t.
+

Let K and K  denote the abelian subgroups of GL(®)

. t
consisting of elements of the form eﬂ(a,A) and en(b’ A),
respectively, and set K = k*+k™. (4.6) shows in particular

n(t,/\)z)

that Tt(t,E) = 1(0,e and hence, that the evolution

of T (and hence, of u.) in variables ¢t T is inter-

v 1> Upseen

preted as the motion of EeGlM caused by the action of
e"tsM) e x* = k/K”. on the other hand, (4.7) implies that

t : =
e ™M e ¥ on E does not change Y(t;A;€)

the action of
and uv(t;é). (This in particular means that what is in 1-1
corresponce with the totality of solutions of KP hierarchy

is the quotient space K \GM, rather than GM or aM - itself;)

§5. Specializations

Ir EEE@M is generic, its orbit K& is dense in GM.
If, contrarily, & lies in a submanifold of GM which is stable
under K, & represents a solution of special type.

Let f£(A) €T((A"1)) (= the field of quotients in the

formal power series ring E[[X—l]]). Then, regarding f£(A)

- 14 -
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as an element of the Lie algebra of K, we have

f(A) fixes £ &—==—= f(L) is a differential operator.
(5.1)

Let A Dbe a subalgebra of T((2"1)) such that

1

AA~AC[INAN 1] =8, (5.2)

and define

A {Ee@ﬁ[f(A) fixes & for any f(A)€A}. (5.3)

oI =
M e
Then we see that G is the parameter space for solutions

of the specialized KP hierarchy satisfying the additional

condition:

f(L) is a differential operator for Vf(A)e€ A. (5.4)

For example, if A contains an element of the form analkn—l<

+... for every sufficiently large n, then -GMA represents
quasi-periodic, soliton or rational solutions attached to
the algebraic curve SpecA, while éﬁm[Ag] and éﬁm[xzj
parametrize solutions to K4V hierarchy and Bonssinesqg hierarch&,

respectively.

- 15 -
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Appendix. . Character polynomials of GL

Irreducible tensor representation of GL(n) is classified
by Young diagrams. Let XY(g) be the irreducible character

of geGL(n) corresponding to a Young diagram Y. Since

XY(g) is a symmetric polynomial of eigenvalues ai;...,en
of g, it is expressed as a polynomial of tl, fg,... defined
by
_ 1, v vy _ 1 Y < p Ay
t, = 5(€1+"'+€n) = Strace g (A1)
The result is well known to be
v
. vy v2 ‘tlltzg... -
xy(8) = xg(t) = = ) my(1 72 Tl ), (A2)
- ] 1
| v1+2v2+..,—N . Vit o
S - . - Vi VY,
where N = size of Y (= rank of tensor), and 7,(1 2 “...)

Y

denotes the irreducible character of the symmetric permuta—
tion group of N 1letters corresponding to the Young diagram

Y and to the conjugacy class consisting vy cycles of size 1

Vs cycles of size 2, etc. For example we have

6
tss x (t) = -t

= 2
t% t% ti
XEED (t) = ?;+t t,+t XEP(t)=—~—t3, X (t)=?;-t1t2+t

X6(6) = 1, x_(£) = £y, x_(8) =

.2
L4
3

5 2

1°27%3> 320

Note that these "character polynomials" XY(t) are independent

t

of n as long as nz2N so that the variables tl"“’ N

are independent.

- 16 -
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{XY(t)} constitute .a linear base for the polynomial ring
E[tl’tz”"]' Namely, any polynomial f(t)é.m[tl,tz,...] is
uniquely expressed as a finite linear sum of xY(t)'s.
Further, any formal powerlseries £(t)é& E[[tl,tz,...]] ‘is

uniquely expressed as an infinite formal sum of XY(t)‘s:
£(6) = T gy xg(6), £y€, (A3)

and vice versa.

It is known that Young diagrams are in 1-1 correspondence
with strictly monotone maps d:ZNC4+ Z such that g(v) = v
for almost all véJNc. On the other hand, such ¢ is

characterized by the striétly increasing series of natural

numbers (Qo, Lyseees Qn—l) defined by L, = o(-n+v), v =
0, 1,..., n-1, where we assume that n 1is so chosen that

glv) = v for v <-n.

- 17 -



