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Numerical Calculation of Standing Gravity Waves in Deep Water

Hiroshi AOKI and Tetuya KAWAMURA*
Dept. Physics, Univ. Tokyo

*Dept. Applied Physics, Univ. Tokyo

Numerical solutions of inviscid equations that describe
standing waves of finite amplitude on deep water are reported.
The calculations are performed using a numerical scheme based on
the expansions of the wave profile and the velocity potential in
the Fourier series. It is suggested that the fast development of
higher harmonics leads the breakdown while it does not occur as
the wave amplitude is small. The same results are given by the

other numerical method (MAC method).

1. 1Introduction

In this paper we consider standing gravity wave of finite
amplitude on deep water. The fluid is assumed to be inviscid
and incompressible. An analytical study of this problem was
made by Penney and Price (1952). They calculated approximate
solution for standing wave using a series expansion in wave
amplitude to fifth order. One of the authors, H. Aoki (1980),
calculated approximate solution to eighth order by the same
method using the formula manipulation language REDUCE-2 (A.C.
Hern) on the computer. In these papers they obtained stable
highest wave profiles by assuming that the downward acceleration

at the crest of the wave of greatest hight is g, where g is
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gravitational acceleration.

The validity of the arguments of Penney and Price was ques-
tioned by Taylor (1953). However, the results of his experiments
to determine the highest standing wave profile were found to be
consistent with the results of Penney and Price.

Saffman and Yuen (1979) presented numerical calculations of
standing waves using a method based on that developed by Longuet-
Higgins and Cokelet (1976) which solves the exact free surface
unsteady flow problem of an inviscid, irrotational, incompressible
fluid with periodic boundary conditions for prescribed initial
conditions and external pressure. They show the existence of
standing waves with H/L greater than 0.218, Penney and Price's
results, on the condition that the downward crest acceleration of
the highest stable standing wave is equal to g, where L is the
wavelength and H is the peak-to-trough wave-hight.

We transformed the basic equations of the wave with the
boundary conditions, all of which are partial differential equa-
tions, into the simultaneous ordinary differential equations of
the coefficients by which the Fourier expansions of the wave
profile and the velocity potential are generated. In analytical
investigation these coefficients are also expanded in a power
series of wave amplitude.

The basic equations are approximated by the above simulta-
neous ordinary differential equations to eighth order of the wave
amplitude and the time development of the wave profiles is
calculated numerically by Runge-~-Kutta scheme. Our numerical

calculations show that if the wave amplitude is sufficiently
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large, the computation fails because the approximate equations

are singular. It corresponds with the physical breakdown of the
standing gravity wave. It also suggests that the fast development
of higher harmonics occurs when the breakdown of the standing
gravity wave occurs.

We also verify the above phenomenon by the other numerical
method. This method was first developed by Harlow and Welch
(1965) and improved by Hirt and Shannon (1968), Chan and Street
(1970), etc.. It is called MAC (Marker-And-Cell) method and is
the standard method for solving the free surface unsteady flow
problem of viscous, incompréssible filuid. We modified MAC method
and adapted it to above problem by keeping the viscosity of the

fluid small.

2. Numerical results

The basic equations are the eighth order approximate equa-
tions which are the simultaneous ordinary equations for Fourier
coefficients of the wave profile and the velocity potential.
These equations were reported in the other paper of the author
(Aoki 1980). The numerical calculations for these equations are
carried out by using the fourth order Runge-Kutta scheme. The
initial wave profile is determined by the analytical eight mode
solution (given by the author) at the timehwhen the wave is at
rest. The accuraéy of the solutions is verified by computing the
period which should coincide with the analytical result when the

wave amplitude is small. We show these results in the following

table 1.
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A Numerical Analytical
0.1 6.29108 6.29108
0.2 6.31534 6.31536
0.3 6.35760 6.35787

Table 1.

The periods are calculated numerically and analytically
when A=0.1, A=0.2 and A=0.3, where A, the wave amplitude, is very
small.

We also show these calculations in Fig.l, Fig.2 and Fig.3
which correspond with the case of A=0.1, A=0.2 and A=0.3 respec-
tively. When the wave amplitude is small, numerical and analytical
calculations give the same results approximately. In 6ur calcu-
lations the mass flux across the surface is exactly zero since we
use the equations of the Fourier coefficients. The gradual
increasing of the periods with A is due to the effects of finite
amplitude.

Figures 1, 2 and 3 show the timé plots of wave profile,
which are the stable standing gravity wave.

Fig.4 shows the numerical results for A=0.6. The smooth
profiles of standing wave with the large amplitude at the initial
time become the oscillating wave profiles with the higher har-
monics. Then the equations become singular and the numerical
calculations fails. It gives the good agreement with Penney and
Price's results and the results of author's analytical calcula-
tions. It also coincides with the results of Saffman and Yuen.

We also calculate the above problem by the numerical method
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(MAC method) to verify thé phenomenon that fast development of
higher harmonics causes the breakdown of the gravity standing
wave. This method was developed to simulate the unsteady flow
problem df viscous, incompressible fluid includihg-free surface.
However if we adapt this method in its original form to our
problem, the well-shaped initial wave becomes irregular after a
few time steps of computation,

Considering that small variations of wave profiles within -
grid-size are meaningless in finite difference approximation, we
used an adequate smoothing method (e.g. the method of least
squares) to get reasonable results.

Our numerical calculations are shown in Fig.5, Fig.6 and
Fig.7 by the MAC method and smoothing. These results also give
the same rusults that the standing gravity waves are stable when
the amplitude of the gravity waves is small. Fig.5 and Fig.6
show this results. They correspond the case of A=0.43 and A=0.53
respectively. Fig.6 shbws.that the wave profile with the higher
harmonics appears when the amplitude of the gravity waves is large.
However we can continue to calculate this wave corresponding to
A=0.58 without the breakdown if the strong smoothing method is
applied to this problem. It is shown in Fig.8. Therefore we can
not give the greatest stable gravity standing wave accurately by

the present methods (MAC method and smoothing method).

3. Conclusion
Numerical solutions of the inviscid equations that describe

standing gravity waves of finite amplitude on deep water are
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giveﬂ. It is sﬁown that the fast development of higher harmonics
in the Fourier series of the wave profile and the velocity
potential cause the breakdown.

Numerical calculations were carried on Hitac 8800/8700
system and Hitac M-200H system in Computer Center of University

of Tokyo.
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