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Multiple trigonometrical sums

v
according to Arhipov, Karacuba and Cubarikov

By S. Kanemitsu

Dept. of Math., Fac. of Sci., Kyushu Univ., Fukuoka 812

As a topic in the theory of exponential sums we shall
present here without proof the outlines of the theory of multi-
ple trigonometrical sums following the monograph [2]. The
reason why I have chosen just this one article is that the
theory has been got so well into shape and expounded in detail
in the monograph that one can do without other enormous papers
by the authors themselves to go through further developements
(see, e.g. [3], [4)1). I will try to follow and reproduce the
exposition of the monograph as faithfully as possible so that
the reader may get the information before it is translated as
Trudy Mat. Inst. Steklov 151. For example, the bold-face
figures that will appear stand for the numbers of the correspond-
ing paragraphs in ([2].

First we fix some notation. Let

n]_ r tl t
F(xl,...,xr) = FA(Xl""’Xr) = Z_ e Z_ q(tl,...,tr)x1 AR
tl—O t_=0
€ R[Xl,. --/Xr] ’
where A = (a(O,...,O),a(0,0,...,l),...,a(nl,...,nr)) is an

m-dimensional vector, m being given by
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pefine the r-multiple trigonometrical sum (abbreviated: m.t.s)
s, (A) by

t

P
st(A) = J .- 7 exp(ZﬂitF(xl,...,xr))
1

where

Further, we write
S = S(A) = Sl(A)I

and with the estimation of which we shall mainly engage ourselves.
Since S is a periodié function of u(tl,...,tr), enough to

estimate it for a(tl,...,tr) € 2, the m-dimensional unit cube,

i.e.
Q: 0 < u(tl,...,tr)i;, Of_tl L35 PP 0 < tr.i[nr .
When r = 1, the sum
P , .
S = ) exp(2mif(x)), f(x) = AX + -ec + o X
x=1 n

carries the name of Weyl's exponential sum.

In the monograph the case
Pl='..=P =P, n = eee = 1 = n

is considered. The general case in which the values of main
parameters Pi (i =1,...,r) are essentially different in
their order of magnitude is stated as Problem B in Conclusion.
This problem has recently been solved out by the authors in

their papers [3], [41.
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For the estimation of S(A) we need the estimate of the

so-called Vinogradov's integral J = J(P;n,k,r) defined by

( 1 1
J = J---J|S(A)l2k da = J --.f |S(A)|2kda(0,...,0)---du(n;...,n)g
CBRLY
J(P;n,k): = J(P;n,k,1).

Clearly, J(P;n,k,r) is the number of solutions of the following

system of Diophantine eqgns:

..,trin, 1<x, .,e..,%x .<P,

- lIJ

.t t
I -1 x T Ti= 0, 02,

i= 1,...,2k,
and J(P;n,k) is the number of solutions of the following

Diophantine egns (in the case of single sum this has the name

of Vinogradov's integral):

Xl + - + xk = yl + ... + yk,
2 2 2
Xl + + Xk = yl + e + Yk,
n n I
xl + + xk = yl + + yk'
1 in,...,Xk’ylr-°'IYk iP’

Here J has the following expression as an integral:

1 1 2k
J = J ---J | ] exp(2mif (x)) doy - - -da
0 0 |x<P n
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Chap. I Mean value theorems

§1. p-adic proof of Vinogradov's mean value theorem (i.e.
the estimate of Vinogradov's integral J) is given, which helps

one to go through the complicated proof of the mean value theorem

on m.t.s.
4. Fundamental theorem. Let 7 ,rl,...,rT, n, k € N,
rT— B 1
1=1r) <r, < Sre Lm MM = s ) s )
r -1 r,-1
-1 1 1 1 1
‘- ) b e 4+ (L - ) (L - =) e (1= =) (= =),
T -1 2
L2
k= ) (x5 + A(3)). Then for k > nt ,
T Lo Jj -
j=1
2A(T)r K _
J < n T 5 T(8k)2nT P2k A(T) .
1 . 2.2
Corollary to Theorem 1. For 5 >e >0, 1f k=mn < e'n",
then
J << Pk(1+e) .

which is almost precise, since always J >> Pk.

From the Fundamental theorem it does not follow that when

k < nzlog n, we have

o~ _nn+l)
J << P 2 (Vinogradov),

the simplified bound for J, but Theorem 2 enables one to obtain

estimates for J when k. is near to Eigfi—il, the case useful

for applications.
* Vinogradov's mean value theorem is proved by a p-aidc method

whose basis is the following fundamental recurrence inequality:

-4-
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J < aTJ; + bd,, (4)

where a and b are quantities explicitly given, T the number

of solutions of a system of congruences, Jl and J2 are quan-

tities of the same nature as J, however, with smaller values
of parameters. (4) is simplified here (with J, = 1).
8. Lemma 3. If k >n, r e N, P>1, r <n, then

E

P é [Pl/r,2Pl/r]. such that

J < 2r2( ﬁ )2p2k-2nTJ(Pl;n.k—n) + (2n)2krPk_l
r(r-1)
2k-2n+ —=——~_
< 4k2n P 2 p" J(Pl;,n,k—n) + (2n)2kr Pk, (11)
_ -1
where Pl = Pp + 1
§2. Theorem on the mean value of the 2k-th power of the
modulus of r-m.t.s.
We say that a vector Xy = {(xl,j"' ’Xr’j)’ 1 <3<k}
is reqular iff
tl tr
rank M = rank(x, ., ...,X " .) {(mod q)
1.3 Trl o<t t_<n
SEyreee bl
1<j<k
is maximal. [If k > m = (n + l)r and El""’if satisfy the
regularity condition, then rank M (mod gq) = m.]

Lemma 3 (on the number of solutions of a complete system
of congruences). Let p be a prime and T be the number of
solutions of the system of congruences:

2m . tl t tl+. .o+t
Y oo(-1)3 x,tLe-ex T = 0 (mod p Ty, o<t

541 1,3 r,3 ...,trin,

l!

-5~
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B < xs’j < B + prn, s=1,...,r, j =1,...,2m. Suppose that §j’
j = 2,4,...,2m satisfy the regularity condition mod p. Then
2 rmn
2mr"n - >
T <m! p .

Fundamental Lemma. Suppose that n >2, k>2m, P> 1. Then
3o e 2177, 201/ guch that

J(anlk,r) i 2(rn)2( k )2 p2r(k—m)

n TJ(Pl;n,k—m,r) + 2J

2

rmn
-2rm

2
om 2ME n+2rk- 2 J(Pl;n,k—m,r) + %(ern)

< 2k

2rknP2rk—k

14

where P, = Pp—l + 1.

Theorem 3 (Mean value theorem). If 0 < T € Z, k > mT ,
P > 1, then

2
2mT4mr nT(nr)anA(T)P2rk— —— +8§ (1)

14

J <k

where
§ (1) rmn

= ———( -

;o A(T) = B os(q).

Chap. II Estimation of m.t.s.

§1. Lemma 2 (on multiple trigonometrical integrals).

Suppose that a(0,...,0) =0 and let o = max [Q(tl,..,tr)l.
0<t;,...,t. <n
— 1 r—
Then
1 1 -
|Ir| = J -»-J exp(ZWiF(xl,...,xrldxl...dxr < min{1l, 32%q 1/n

0

{log(a + 1) + 2071y
the estimate being precise.

Lemma 8 a) (on complete m.t.s.). Suppose that F(xl,...,x )



€ Z[xl,...,xr], (¢(0,...,1),...,0(n,...,n),q) =1, ao(0,...,0) = 0.
Thén '

S (

F(xl,...,xr)) _ ?
q =

(5n2n)rw(q)(d(q))r— g

§2. The simplest estimate (i.e. the one depending on approx

imation of a coefficient by a rational number, see [1]).

Theorem 1. If 0 < tl,..., tr < n, tl + e + tr > 2
such that
£, 4.+t
a 6 1
a(tl""'tr)=_q_+—q—2—' (a,q)=l, Ielilrl<q<P rr
then
2
|su(A)| <3lOr n+3log(w/p)u3p/wPr-p ,

PerJ:llq:Pl ’

where w 1is defined by the relations q
t

e ot - e e - +ee ot
tl+ tr 1 l+ +t_ -1 t t

according as 1<q<P, P<g<P , P T <qep '

and

3rnm))

o = w/ (5mrnlog( o

§3. A general estimate for m.t.s.

The points 0 < a(tl,...,tr) <1, tl + eee + tr > 1 are

divided into two classes depending on their approximation by

rational fractions:
rnm 2
Sl
Q = QlL)Qz, mes Ql = O(P ), mes Qz =1 - mes Ql.
On @, the estimate for |s(a)| 4is obtained, (which is, in most
cases, unimprovable,) using the estimates for mn.

t.s. from §1 and a generalization of van der Corput's lemma
-7 -



(Lemma 15) .

Oon 0 the following uniform estimate is obtained on the

2

pasis of Lemma 14 on the intersection multiplicity of domains:

2
cr'’n _r-p

s(a)] < e P y P =

3. General estimates
Theorem 2. Suppose that

a(tl,...,tr)

rnm log (rnm)
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a(tl’”"tr) = q(tll"°rtr) + Z(tll---rtr)l (a(tlr---rtr)l
qltyre--st)) =1, 0< ty,...,t <n, Q= LCM qlty,eeert).
+eoodt
r
def 0.1 AT R %
a(tyreeest) € Q) == Q<P 7, |z(ty,...,t)[<P '
(t t) e Q def a(t t ) & Q Then on §
o l,..-, r 2@ l,.o., r l - ) l,
Is| < (on®™*@ (@) ()T 1pT :
+eeett
Moreover, putting S(tl,...,tr) = z(tl,...,tr ’

§ = max S (t

17
0<ty, ..., t <1

5| < 327 200”9 (3(9)) T e (05) TP (log (1 + 6) + 1HTTL,

.,tr), s (0,.

.., 0)

Theorem 3 is used in §§1 & 2 in Chap.

ITT.

0, then on §2

ll

4. An estimate of a complete m.t.s. by the mean value theorem

(Theorem 3 in Chap. I).

Theorem 4. Let g(0,...,0),...

their LCM. Suppose that

-8 -

,a(n,..

.,n)

€ N

and Q be
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(@altyre-ert)ralty ... t)) =1, O<tqreeost <1, &4 + --0 + £ >1,

and define

Q Q , n n a(t,,...,t.) t
U: = ) -+ ) exp(2mi ) -+ ) (tl tr) xll...xrr)

xl=l xr=l tl=0 tr=0 ity re--rty
t.o+ee4t >1
1 r—

Then :Hc, cq > 0 such that
2 _ <
lul < T Mt =

" rnm log (rnm)

Chap. III Applications of the theory of m.t.s.

§1. Precise upper bounds for the number of solutions of
complete and incomplete systems of Diphantine eqgns.

1. Problem setting. To obtain an estimate for J, asymp-
totically precise with true number k of summands w.r.t. n

and r, i.e. to obtain an estimate for J of the form

c;D(P) < J < c,D(P), (1)

where cq and depend only on n, r & k, D(P) - = as

€2
P > » and (1) holds for k > ko = ko(n,r); moreover, the bound

for k for which (1) holds, i.e. the quantity ko should

essentially decreases, which means that for any fixed € > 0,

1l-¢
(1) does not hold for k < ko .
2. Theorems.
Theorem 1. 53c, cl > 0 such that for n > 2, P > 1,
k > clrnm log (rnm) , we have
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3.2 2kr- 28
J = J(P;n,k,1) < ST nm log (rnm) P 2 ,
where from now on o (0,...,0) = 0.
Theorem 2 (On an incomplete system of Diphantine egns). Under

the same conditions as in Theorem 1, we have

3.2
J. = J.(P;n,k,r) = J.,.JISH(A)IdeA < ecr n nllogtrnm)PZkr w

H H r
QH
where
P P - -
Sy = [ .- ] exp(2rig(xy,.-.,%.)),
xl=l x =1
r. ,
sl sr tl tr
g(xl,...,xr) = oc(Sl,...,sr)xl TreX + e + cx(tl,...,tr)xl --xr
Y1 Yy
+ e+ a(ul,...,ur)xl e A
Q¢ the mH-dimensional unit cube, my = the number of non-zero o's
and
w = (sl+---fsr) + "'+(t1+'°'+tr)+"'+(ul+"’+ur)f

That is, Theorem 2 gives the precise upper bbund-for the meéﬁ
value of degree 2k of the modulus of r-multiple t.s. with
polynomials in fheir exponent, part of whose coefficients are
identically zero. (The suffix "H" is an abbreviation of "He"
—— negation in Russian.)

3. Estimates from below

Theorem 3 (which shows that the parameter k in Theorem 1
has the true order). Let k0 be such that for all k > ko
(1) holds, i.e.

-10-
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2kr—Ar
Jr = J(P;n,k,r) < c(n,k,r)P ,
where
A = Inm _ rn(n + l)r
r 2 . 2 :
Then 3c ¢ > 0 such that

0’

cOAr < kO < cAr log Ar .

§2. Asymptotic formulas for the number of solutions of

a complete and an incomplete systems of Diophantine egns.
2. Asymptotic formulas

Theorem 4. Let kO = crnm log(rnm), c, cq > 0. Then for

k > kO we have

C
2kr- 55 2kr- B3R - oot
J = o8P + O(P o9

),

where ¢ and 6 are resp. the singular series and the singular

integral defined by

" It ' 2k
8 = J—w...f J ...J exp{2ﬂ1F(xl,...,xr)} dxl...dxr da(n,..,n)

~w| /0 0
ee. do(0,...,0,1),
+00 +00 a(n,...,n)
g = o o o e e o
g(n,...,n)=1 q(0,...,9,1)=1 a(n,...,n)=1

(a(nl---rn) Iq(nl"’rn))=l

q(0,...,0,1) B a n
2 e s e z exp(z'n'i Z e oo
(a(O,...,O,l),q(O,...,O,l))=l_ xl=l Xr=l tl=0
n a(tl,...,tr) xtl---xtr) 2k
£ =0 q(tl,...,tr) 1 r !
r

-11-
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q = I <. q(tl,...,tr), q(0,...,0) = 1.
tl=0 t =0
r

Theorem 5. Let k > k0 = crnm log(rnm), c > 0. Then53c1>0

such that
c
2kr-w 2kr=w - 1og(inm)
JH = UHeH P + O(P ),

where Oy and eH are defined from ¢ and 6 Dby restricting
them to non-zero a(tl,...,tr).

Note that JH is the number of the following incomplete

system of Diophantine eqns:

2k sl

Z (-1) %, *.-.ox T = 0,
521 1,3 r,]

2k tl r

I 1% teeex BLo= 0,
521 /] r,]

2k . Uy

oD% teeex FLo= 0
j=1 7] r,]J

Theorem 6. For s < n let

P
H = H(P;n,k,r) oo Z exp(ZHiF(xl,...,x )) 2k dA.
x_ =1

r

Il
—_—
.

.

.
—_—

r

xs+---+xS<PS
1 r—
Then with the same k., o, F(%.,...,%X._) as in Theorem 4, we
0 1 r
have for k > kO
c

2kr- Iom 2kr- oM _ 1

H(P;n,k,r) = 06P 2 4o 2 Tog (rnm)




