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1. Imtroduction

Frobabilistic algorithmes are algorithms fhat make use of
random cholces and may make mistakes with some error
probability. Fecently several eramples of efficient
probabilistic algorithms have been proposed [7, 1. Time and
zpace efficiency of thesze algorithms have been extensively

ztudied using praobabilistic Twing machines (FTMs) as their

hal
i
=

rmal models [4, 81.

Eut 1t i=s also important to study their reliability. Even
if some problem is solvable by & fast FTM, it is not =so useful
if it is unreliable. We are interested in the following
questions: Can we get desirable reliability without losing
efficiency™

T find counter examples to this guestion is one of the
time-precision tradecff problems and it zeems to be very
difficult like ordinary tradeoff problems (L173). Im this paper
we show this sort of time-precision tradeotf results on some

bindse of Turing macheines (random accessible TMz and on-line



TMs) . Moreover these examples are also shown to be examples of

the difference between nondeterministic executions and

prmbahiliﬁtic ones.

2. Turing maching models
In this paper we consider some special types of Turing

machines such as réndam accessible Turing machines and on—-line

Turing machines. They are obtained from Etandard Turing

machines by slight modifications. As a standard Turing machine

we use a multitape Twing machine that consists of a finite

control uint equiped with a read-only input tape, a write-only
output tape,;, and a finite number of read-wite work tapes (LZ21)
Here we use Turing machines only as acceptors, so the output of
a Twing machine is alwavys "accept” or "reject”. 1Ne use the
words “"deterministic” and "nondeterministic” in the
conventional way ([21).

A random accessible Twing machine is a model of the
comnputation which uses a rahdcm access input device such as a

dizsk, and is defined as follows.

Definition 2.1

A random accessible Turing machine (RTM) is a Turing

machine which has the special work tape called address counter

which contains only an integer by binary representation.

The move of a RTM is almost the same as that of a usual
Tuwring machine except that its input tape head moves to the ith
cell on the input tape in one move where i is the number in the

address caounter. ]
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On—line Turing machines have often been wused to find good
lowsr bounds on the computation time (L3, 5, &1). They are
detined as follows.

Definitipon 2.2

An on—line Turing machine (ONTM) is a Turing machine with

N
1
J

following restrictions:
{12 at any time the input tape head can only move Lo the
right or stay on the input tape, and
(2 it must halt at the time when the input tape head
marches off an input seguence.
Remark
From the restriction of on—-line execution, 5efmre an ONTM
moves its input tape head to the right, it must decide whether
or not it accepts the seguence that is to the left of the head.

A random accessible probabilistic Turing machine (RFTM

and a on—-line probabilistic Turing machine (OMPTM) are obtained

respectively from a RETM and ONTM as follows.

~y

Definition 2.3

A RFTHM (ONMFTM) is a RTHM (ONTM) which may have coin—tossing
states. The computation of a RFTM (ONPTM) is deterministic
Eﬂcépt when the machine EﬂtEFS-H.CQiH“EQSﬁiﬁg state where an
unbiased coin is tossed to decide the next movement from two

possible ones. } o
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Let M be a RPTHM (ONMPTM). Define M{x) Lo be the output of M
with input . Because of the probabilistic execution, M) is
a random variable for each =. We define the language accepted

(recogrnized) by M, the error probability, and the maxzimum run

i

time of M as follows {(the motivation of these definitions i

discussed in [101 but is omitted here).

Definition 2.4

The language accepted by M is

LMy = {x | F{ M{x) = accepts ) }f%},

The error probability of M is

@y in) = 1 - F{ M) = accept ? it w € LiM),
1 F{ M) = accept ) if x ¢ LMY, and
The maximum run time of M is
thf) = least m such that every possible caomputation of

M on input ¥ halts in m steps. ]

Because of the above definition, the error probability of
a RFTH (DNPTM}Fis less than %r ; and we say the ervor
probability of a RFTM (ONFTM) is bounded if there is a constant

¢ T i-%—, such that eyix) < & for every possible input .

ﬁu The time-precision tradecfs regulta_

Here we dEECFihEAthE timé~preciaimn tradeoff results on
RFTMs and OMFTHMs formally. In this paper we omit their proofs,
which can be found in [103.

Firet we show a language such that time-precision tradeoff

actually occocurs on its recognition by RFTMs.
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Definition

.1

. . . . SO S - .
The set D ¢ {0, 1, 2, 2 iz defined as follows:
D= {ku t (1} k is the binary representation of an
integer k > 0,

Es P B 2N
{2 u € L&, A s and
{3} Walid = ulM + i1 for &ll i, 1 £ 1 < M,
where M is 2 and wlil dencotes the ith
symboal of wu Ja

The time-precision tradeaff

D is

Theorem 3.

()

(b}

e
il

There is

(1) LM} = D,

oy
( . 3

Mis

{3)  the error

{in this paper
If there is a

{1y LiMy = D,

(2 M is Tin}

(%) the error

then there is
S Tim) Foen

a RFTM M

a constant ©

ot the recognition of the set

described formally as follows.

such that

{log ny time bounded, and

probability is bounded by + - &=

the base of logarithm is ).

RFTM M such that

time bounded, and

probRability of M is bounded,
- 0 such that
R 4 2

for infinitely many n

where n is the length of an input.
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MNext we show the time~preciﬁimn tradeoff result on ONFTMs.

Let 2 denote the set {0, 1; 23 Hennie showed that a

2 .
subset A of z2* needs more than 0O 1—5?;— Y steps Lo recognize
By ONMTMs ([31). Here we show the time-precision tradeoft on

the recognition of the set A by ONFTMs. S0 we define the set A

agairn.

pefinition 3.3
The set A ¢ 2% is defined as follows.
anese K b ] “a B “3 n b ” ~
5 o= U S @ www w W’ 207 & e wi, |

(1) there is k > O =uch that

for all i, 1 £ i 5 N, u; € o, 1¥ and

-~

£ 8 N, ouw e o, 13,

for all 4. 1
() N = 2¢ and N* » O, and
(Z) there is i, 1 ¢ 1 & N, such that w . = u;>.

The time-precision tradecff result on the readgnition“dF 

the set A is stated as follows.

Theorem 3.4
{a) There is an ONPTM M such that
€1y LM = A,
{2y M i= 0im time bounded, and
(3 the error probability ia"bmunded'by-%-~ 3%?—
(h) I there is an ONFTM M such that
1y LM = A,

{2y M is Tim) time bounded, and

!
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{E) the error probability of M is bounded,

then there is a constant ¢ » QO such that
n
Tim)y = C(T————f for almost all ny,
osh :
where n is the length of an input. ]

4., Nondetermistic executions ve. probabilistic ones

In this section we show that time-precision tradeoff
examples showed in the previous section are alseo examples of
the essential difference between nondeterministic executions
and probabilistic ones.

The basic idea used in the proof of the first part of
Theorem 3.2, 3.4 was proposed by Gill in the proof of NF FF
(L41)., Here we analvrze this technigue little more preciselvy.

Let M be a nondeterministic Turing machine (NDTM). We
define the numberlaf nondeterministic configurations of M as

follows.

Dafinitinn 4.1

The number of nondeterministic configurations of M on
g

input % iz the function CM(x) detined by
cyix) = the maximum number of nondeterministic
configurations in the execution of M for every

possible computation sequence on input . |

In general every language accepted by a T(n) time bounded
NDTM can be accepted by some 0{(T{(n)) time bounded PTM by Gill's
technigue, which is stated little more precisely in the

following proposition.
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Froposition 4,2
ey e

i

et L be a set of finite strings. I+ there is a NDTM M
such that
{1y LMy = L,
(2 Mis Tin) time bounded, and
(%Y there is a function n from B to N such that i
computed by some T(n) time bounded determinictic T™M and
for all # € L, cyix) < N, where n and N is the length
of an input » and the set of all positive integers
respectively,
then there is a PTM M° such that
(1Y LIM™)Y = L,
{2y M is Q4T(n)) time bounded, and
1 i

() for all x € 2%, eyG) <9 - — o

where n is the length of an input M.

This proposition shows that NDTM acceptors are simulated
by FTMs in the same order of time, but it alsq{shqwa that their
error probabilities are large {(close to Y. So it iz not an
essential comparison.

What we really want to know is whether the same thing can
be said with the restriction of bounded error probability.
Although we intuitively expect that there is some difference,
it seems very difficult to prove it in general. But the time-
precision tradeoff results showed in the previous section are
also examples that nondeterministic executions are more
powarful than probabilistic ones with restriction of bounded

-y

error probability. That is, we have, from Theorem 3.2 and 3.4,
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the following theorems.

Theorem 4.3

La) There is a random asccessible NDTHM M osuch

AN \ c .c - oy
{1y LMy = D fwhere I denotes the compliment of D),

() M is Q{log rmy time bhounded.
=] I+ there is a RFTM M such that
(1y LM = DY,

(2 M is Tin) time bounded, and

that

{35 the error probability of M is bounded,

then there is & constant o » O such that

Tin} * on for infinitely many n > 0O,

Theorsm 4.4
{z) There is an on-line NDTM M such that
1y LAMy = Ay
(2 M is 04in) time bounded.

(b I+ there iz an OMFTM M such that

i

(1) LMD A,

(2) Mi=s T(nd time bounded, and

3 the error probability of M is bounded,

then there is & constant ¢ » 0 such that

. . n .
Tin) > c 2

= ) for almost all n.
logn
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