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I. Introduction.

(1) (2)

Recently, the dynamic properties of the XY-model
received much attention within the role of the model as a non-
trivial many-body dynamical spin system, whose time dependent

(3)

properties can by studied exactly. It is well known that the

magnetization in the 2z direction is non-ergodic, and contains
an explicit "memory" function. However, a single perturbation(u)
does approach its equilibrium 1limit, which leads to the interpre-
tation that the XY-chain acts like a "heat bath" on the local
impurity.

A natural question rises in view of these results, namely
how big can the "impurity" be while still approaching its equi-
librium limit. It is the purpose of this note to address this
question via an exlicit calculation. It is found that when the
perturbation's size is comparable to the chain's size the system
is not ergodic. When the perturbation is of a finite size,
thermal equilibrium is always achieved. The situation is more

'complicated when the pertubation size is large but much smaller

than the chain size.
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ITI. Formulation

Define the XY-Hamitonian as
U = - i [(1+y)or o +H1-v)oY o), . ] (2.1)
o 2 j=1 J i+1 J T3+l ’
with o?, o?, o? being the standard Pauli spin matrices. Also

define the perturbation ;Qﬁp as

n Z
= - 3 o. 2.2
Hop= -5 o (2.2)

(2.3)

In other words, we assume that at t < 0 the system 1s at
thermal equilibrium with a heat bath at temperature Bnl, and
at t = 0 the external field is turned off. The initial density

operator p is then defined by

oy = 771 exp{~BL 7, + h}%;]} (2.4)

with Z being the partition function defined by trpN =1,

and the expected value Q> of an operator @ is given by

Q) = triey@) (2.5)

The expected value of the perturbation at time t 1s the

magnetization of this impurity at time t given per site as

m, (t) =

S
o~

< %/exp(ih%t)oi exp (-1/F5)) | (2.6)

J=1
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We first take the thermodynamic (N -+ «) I1imit, use the
fact that the one-dimension XY chain does not have a long range

order at any finite temperature and ask for which n does ﬁz(t)

as defined by (2.6) approaches 0 as t =+ «» . Previous cases
are n=N, n=1,n=20. In the following Hz(t) is computed
explicitly for any n . Since 1t has been demonstrated that

thermalization information is independent of <y as 1long as
y # 1 , we specialize to the simpler case Yy = 0 for mathematical
convenience. Extension to Yy # 0 1is straightforward, somewhat

more elaborate but contains no new information.

III. Computation of ﬁz(t)

The Hamiltonians 7?0 ’]%b (with Yy = 0) can be written in

terms of Fermion operators as

N-1 4 +
%o ==L {05 Cuyy 7 0505400 (3.1)
J=1
}/ = -2 z tcte, - 1/2) (3.2)
p j=1 973 )

and define b = 2h . Using the definitions (3.1), (3.2) and

(2.6) , we obtain

= 1 ° z
m (t) = =z <oj(t) > . | (3.3)
j=1
and with
+ _ 1 7
cij.)t .—.5{1 +<oj(t)>} (3.4)

we rewrite (3.3) as



m,(t) =52 {Cc) -1 (3.5)
j=1

with <ch0. given explicitly by
SR TAR

<C;Cjz;= Tr[C;Cj exp[it]%b] exp[—B(?fo + h]%l)] exp[—it(ﬁéjj
< {Trlexp (-8(#  +n 7, D17 (3.6)

The computation of the expected value at (3.6) is performed

using the following steps

(1) Transform 7ZO into a diagonal form

(ii) "Evolve" Cf and C.
| J ]

(1ii) Transform back, so 7%-0 + h 7%1 remains invariant

(iv) Diagonalize 710 + h 7{i and compute corresponding

expected values.
We now proceed to perform these steps

(1) Define new Fermion operators n q by

o = N-1/2€-1ﬂ/u 5 elqm n (3.7)
m q
a
with
q=2§_ﬂ , s = 0, 1, 25000 N-1, (3.8)

With this transformation ‘7$b takes the form

o + _ -1,
'jéb 2 é cos q (nq nq 1/2) +0o( N9 (3.9)

(ii) The "evolved" operator C;Cj at time t takes the

form
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+ , + 1 13(q'-q") .+
(c;c.)g = expl2it Zcos a ny m Il I e Ja’-a") ngn Ny}
J

a q'q" :
+
*exp[-2it I cos qq nql nql] (3.10)

dq

+ .
In other words the evolved operator (CJ.CJ.)t can be written
+

as in terms of the operators nq s nq and the explicit time

t as

(ctc). =L 1 exp{il2t(cos p'-cos p)+3(p-p')I} n'y n_  (3.11)
J7i't N ' ‘ p' 'p

b,D

(i1i) Since the transformation (3.7) 1is cononical, W€ can
easily express nq in terms of the original Fermi operators

C as

i(p'm'-pm) ,+ .
e Cm'Cm (3.12)

and the evolved operator (C; Cj) is then given by

t

N (0 i[-2tcos p + p(j—m)]]

+
(c.c.)t= z §Ze
JJ m,m'=1 p

<[ oil2tcos p'+ p‘(m'—j)]] C;icm} (3.13)

1

N,
p

Define the function F(t,2) by

F(t,2) = —2%; [T elleteosp +pl] 4o _ 48 7, (2t) (3.14)

with J£(2t) be Bessel's function of order £ , and it is
elementary to verify that each term in the square brackets in
(3.13) tends to F(t,2) asymptotically as N »> « . Even though

it is premature to take the thermodynamic 1limit at this stage, it

-5 -
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can be taken for the above functions, at least for convenience,
with the understanding that J2(2t) is at present a notation for

the sum at (3.14) and not the integral.
We thus rewrite the evolved operator at time <t as

+ 1 E(m' -
(cie)y = = el2(m'—m) Tpeg(26) T, (26) ctc (3.15)
m,m’ B B

with the expected value of Ez(t) given by

Sl
o=

= _ im/2 m" -m)
m (t) = 1/ 2K Jm_j(2t) Tar—g (28) By (3.16)

1

S5 ™=

1
L

1l m,

with the expected value Em m' given by

>

tr{C;,Cm expt[—B(ﬂO + h](p)]}

Eomt = (3.17)
tr{exp[—B(j(o + h}gp)]}
Thus, calculation of Emm' completes the explicit, exact
computation of ﬁz(t) . This is done in the forthcoming

subsection (iv)

(iv) In Principle, the computations of Em,m' is straight
forward, however the actual expressions do become rather cumbersome.

Since 7%@ and -ﬁg are both quadratic structures in Fermion
operators, we know thatﬁgiggts a unitary transformation and new

Fermion operators wk, w; in which ng is diagonal. More pre-

cisely we have the followlng relations
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M= -y + b%%g ey C] By, 0, + Const. (3.18)
with }3j’k =1 if j=%kx * 1, Bjj =b if j < n , and
Bj,k = 0 otherwise.

Co = I U ¥ > O™ § URig ¥ (3.19)
and the Hamiltonian is given by

-4 =z A v oy + Const. (3.20)
k 'k "k "k

with wk’ w; defined by (3.19) and A being the eigenvalues

k
of the matrix B defined by (3.18). The expected value E

m,m’
thus takes the form
+ N +
tr{wlwk explB .. Ay, ¢ 1}
5 J=1 33 3
Enom' = koo Ymte Unk ¥
’ ’ > tri{explB2 A_ yT v 1}
J J J
- % BAk,-1
ﬁ,Um;k Uy (1 +e™7) (3.21)
Equation (3.21) reduces to computation of E to the

m,m'
eigenvalues problem of the matrix B, whose eigenvector components

are given by the coefficients Ujk'
Define the function DN(X) by

DN(X) = det (B -X1I) (3.22)

Clearly, the N zeros of DN(X) are the N eigenvalues Aj'
Furthermore, due to the absence of translation invariance, the

recursion relation for DN(X) are non-uniform, namely



D= (b - X) D - Dy > 2 sk <n
ntl < & < N (3.23)

and (3.23) can be solved exactly, with the explicit solution given

by
D () = A(X) 2y () + B N () (3.24)
with
Xt [x° - y7t/2 .
Zi_' (X) = P (3-25>
2 1/2
AG0 = (- T {p LU=y P (0-p_ (O] (3.26)
RIS VER SIS SR SN ¢ Gl D Bt (4P (O (3.27)
B(X) = (x°- 1)7V/2 {[ ! 1 e (0+p (0} (3.27
2 1/2
_ 2 -1/2 ~(X=D)+[(X=b) = 4] n+l
P (X) = [(X- )2 4] {r : ]

N (v y1i/2
_ [ o=lxen) [<X2b> 4] Jn+1} (3.28)

The coefficients U,

U,(A_) are determined in a similar
Jm J

manner from the equation

Us g (A + 55 DA + Ug () = AU (M) (3.29)
with
N 2
s U] =1 (3.30)
and tj is given by
_f{b J<n
e, ={g 450 (3.31)
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Define the functions ei(Am)’ @i(Am)

2 1/2
—(b-Ap) ¥ [(b-Ap)® - 4] | (3.32)

0, (1) =

I
@
—
—

0 () = 0, (A, b=0) (3.33)

In terms of (3.32) and (3.33), the coefficients Uj(Am)

are given by

In
o]

A(h) [od(A) - 09 )T 1<
U, (A |
j-1 j-n ,
ACADLCCA) 0™ (A + D(AL) @27 (A )] ngy <N
(3.34)

where A(Am) is determind by the normalization condition, and

C(Am) and D(Am) are given explicity by

c(a ) = (12 - 1)™H2eR (6,-0_) - o%(0_ - 0)]
D(A) = (A2 - ))7H2[e? (o,-0,) - 0% (e, - 0_)] (3.35)

Note that at n = j the two expressions of Un(Am) at
(3.34) are identical. Also note that Uj(Am) is proportional to

A(Am) for all j =1, 2,°** N .
Thus IA(Am)l2 given explicity by the relation

2 _( 2% 4] J 2
A 1% ={Iled () - el ()]

p j-n j-n 2]-1
+j=g+ll C(Am) Qi (Am) + D(Am)é— (Am)l } (3.36)
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We can now express E of (3.21) as a contour integral

m,m’

where the contour surrounds the zeros of DN(X) given by (3.24)

but avoiding the zeros of 1 + exp(BX). 1In other words Em .

is given by

L D (X) U, (X) U (X)

1
mm' ~ 2wi Dy (X) [1+exp(BX)] dx (3.37)

with DN(X) given by (3.24), Um(X) given by (3.34). Substitution

of (3.37) in (3.16) yields the désired answer. Explicitly,ﬁz(t)

is given by

_ 1 01 dc 2 D'y(2)
mo(t) =+ & : § ¢.(z,t) (3.38)

Z - 2mi l+eBC l j ' DN(C)

and Gj(c,t) is given by
_ 1 -1(2t cos p - pi)y
N -ipm
Vy(p,2) I e U (2) (3.40)
m=1

with Uj(g) given by (3.34) and DN(C) by (3.24). Note that the
thermodynamic limit of (3.38)-(3.40) can be taken directly, from
which the following conclusionscan be drawn (Yes or No represents

thermalization or non thermalization)

(1) N—>e, t >0 , n finite Yes

(i1) N—>oe , n = O(N), € —> oo : NO
(iii) N—> e , £t >0 , N = o : Yes
(iv) N> o , (n,t)—> oo : Needs further analysis.

- 10 -
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