goooboooogn
O 4820 19830 49-72

EFFECTS OF PRACTICAL ASSUMPTIONS IN AREA COMPLEXITY OF VLSIFCOMPUTATION

Ken'ichi  HAGIHARA ,
Kpuichi WADA and
Nobuki TOKURA

Department of Information and Computer Sciences
Faculty of Enginéering Science

Osaka University

Toyonaka, Osaka 560

JAPAN

49



a0

1. Introduction

Brent, Kung and Thompson have presented suitable VLSI models [1, 10], and
discussed area-time complexity of various computations such as discrete Fourier
transform [10], and multiplication [1]. Following their pioneering works, several
researchers have presented additional results [5, 9, 11, 12, 131,

Although the VLSI models by Brent-Kung and Thompson are suitable for analizing
VLSI circuits thebretically, their models are not yet sufficiently practical from
the viewpoint of the current VLSI technology. Thus, it is important to add new

assumptions to their original models so that the modified model may become more.

suitable for the current technology, and it is also important to obtain better lower
bounds on the new model, In this paper, effects of the following assumption on bounds

of the area complexity are discussed,

Boundary Layout Assumption : all input/output (I/0) ports of a circuit must be

located on its boundary.

-

The boundary layout assumption is one of the practical assumptions and
technologically important, A VLSI circuit is hierarchically composed of several
subcircuits called "blocks." These blocks communicate each other by the wires which
connect the blocks through their boundaries, In this case, the inputs and the outputs
of each block are performed on the boundary. The boundary layout assumption reflects

such situation.

It has been shown that the boundary layout assumption affects lower and/or
upper bounds of complexity [2, 14, 15]. For example, the area A necessary to embed
the complete binary tree with n leaves under the present VLSI model satisfies

A

8(n) without the boundary layout assumption, and

A

]

8(n*log n) with the boundary layout assumption [2].
On of other ekamples is the area-time complexity ATu for nontrivial n-input m-output
functions, such as decoder and éncoder. It has been shown that the lower bound on
AT® (a22) for these functions satisfies
o a-1
AT = Q(max(n,m)-[max(log N, log M)] )

without the boundary layout assumption, and

-1-
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At = Q(max(n,m)-max(loguN/log log N, logaM/log log M))

with the boundary layout assumption [14],

where N is the maximum of Npsee N (N, (1 i <m) is the number of input variables

on which the i-th output variable essentially depends), and where M is the maximum

of Ml""’Mn(Mj (1 £ j <n) is the number of output variables which essentially
depend on the. j-th input variable). In this case, the boundary layout assumption

can reinforce the lower bound oniATa measure by max(log N/log log N, log M/log log M).

In this paper, lower bounds on area of combinational circuits to perforﬁ
addition, multiplication, divisionvand sorting are derived on a VLSI model with the
boundary layout assumption. In Section‘3, a relationship between relative positions:
of 1/0 ports of a circuit and the circuit area is sﬁownf By using the result, it is
shown that a combinational circuit to compute the addition or the’multiplication
requires Q(nz) area, if some I/0 port locations are specified, where n is the input
bit-size. Similar result is shown by Savage [9]. But the result in this paper
properly contains his result and is cOnéidered to be generalized one.

In Section 4, lower bounds on area of combinational circuits to perform the
multiplication, the division or the sorting are derived, It is shown that the
coﬁbinational circuits to performitheée functions require Q(pz) area under the boundary
1a§out assumption, These results are obtained by using the relationship between the
1/0 port locations and the circuit area shown in Section 3, It should be noted that
the lower bound is independent of the I/0 port locations and holds for any
coﬁbinational circuit with the boundary layout assumption. These lower béunds ére best
possible for the multiplication and the division, and are optimal within a

logarithmic factor for the sorting.
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2. VLSI model

In this section, a model of VLSI circuits is described and is used as a basis
for deriving area bounds.

VLSI model
(A-1) A VLSI circuit is constructed from processing elements (PEs for short) and
wire segments. A PE corresponds to a gate, a (l-bit) storage element, an input/output
port (I/0 port for short). A VLSI circuit is embedded on a closed planar region R.
(A-2) Wires have width of A (> 0). Separation and length of wires are at least A.
Each PE occupies area of at least Az.
(A-3) Wire and PE, or PE and PE cannot overlap each other. At most v (2 2) wires
can overlap at any point in the ci?cuit.
(A-4) 1t takes minimum time T > O to transmit a bit along a wire w, where T is a
constant independent of geometry of a wire. It is assumed that the computation time
of PE is included in .
(A-5) Each input value is available only once. It implies that if the same input
value is required at different times it must be stored within the circuit.
(A-6) The time and location at which input and output values are available are
fixed and independent of the contents of the input values.
(A-7) All I/0 ports of a circuit C are located on the boundary of R. This

assumption is called boundary liayout assumption.

This model is essentially the same as the model by Brent and Kung [1] except
the nonconvexity of a circuit region (A-1) and the boundary layout assumption (A-7).
Although Brent, Kung and others assume the convexity of a circuit region [l; 8],
the resulttin this paper does not require the convexity. The boundary layout is
assumed by Chazelle-Monier [3] and Yasuura-Yajima [15].

In this paper, since area complexity of -combinational circuits is discussed, all
the assumptions in the VLSI model are not needed. The assumptions used in this
paper are (A-lj, (A-2), (A-3) and (A-7). 1In what follows, it is assumed that a

combinational circuit is embedded on a closed region and satisfies the boundary
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jayout assumption, unless otherwise stated. And through this paper, for a
combinational circuit C, let A(C) denote the area of the circuit.

For a VLSI circuit C, let V be the set of PEs in C. Let W be the set of wires
connecting PEs in C, and an element of W is represented by <a,b>, where a and b are
PEs and data flow from a to b.

The circuit graph corresponding to C (denoted by G(C)) is a directed graph
(Gp(V), GW(W)), satisfying the following conditions:

(1) The node in G(C) corresponds to each PE in C. The set of nodes in G(C) is
denoted by GP(V), where Gp is a bijective mapping from the sét of PEs to the set of
nodes.

(2) The directed edge in G(C) corresponds to each wire connecting PEs in C. The
set of directed gdges in G(C) is denoted by Gw(w), where Gw is a bijective mapping
from the set of wires to the set of directed edges. When a wire <a,b> is in W, the
directed edge <Gp(a), Gp(b)> is included in GW(W), that is, the direction of the
edge corresponds to the flow of data in C.

The circuit graph G(C) is used to analyze topologiéal or graph theoretical

properties for C.

3. Relationship between Circuit Area and I1/0 Port Location Restriction

In this section, a lower bound of the area complexity of a combinational
circuit is discussed, which is embedded on a closed region and has some I/0 port
location restrictions.

The situations with I/0 port location restriction are often encountered. For
example, n input ports (or output ports) corresponding to. an n-bit integer are
usually located with preserving the bit order (Fig. 1). One of other examples
is that the location of an operand X, the location of another operand W and the
location of a result Y are separated one another (Fig. 2).

The results in this section insist that such constraints aﬁout the order of
I/0 port location possiblly requires larger area than the complexity of'tﬁe function

itself. For example, a combinational adder circuit of two n-bit integers can -be

—4—
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Fig. 1.

Fig. 2.

O : input port

( : output port

I/0 port locations with preserving the bit order

0 : input port

O : output port

Separated I/0 ports.
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- constructed with O(n) area bleocating input ports of the addend and the augend
alternatively on. the boundary. However, separated I/0 ports as shown in Fig. 2
must require Q(nz) area to perform the addition itself. And it is shown that usual
restrictions on the location of I/0 ports (e.g., Fig. 1 or Fig. 2) requife large area
say Q(nz), when the multiplication or the division are computed by combinational
circuits.

It should be noted that the result in this paper is based on the following
assumption: the amount ofkinformation which>e;ch logic gate can éutput is only one

pit. That is, a logic gate may have some fanouts, but the values on them are

identical.

Definition 1 Let G = (V, E) be a directed graph. ‘A path in the. graph is represented

by the sequence v A of thé nodes. A pair of paths p = (v

e seeisv) and

1
q =.(ul,.;.,um) is called node—disjoint if p and q have no common nodes. A set P
of paths is called node-disjoint if each pair of paths in P is node-disjoint.

Let V1 and V2 be 'subsets of the node seé V such that Vlfﬁ V2 = ¢. A directed
path VisereVy is ‘called (Vl’ Vz)—connecting, if it has the folloﬁing properties:

1) (vle V1 and vng V2) or (vi§ V2 and vne Vl)'

-vy. O

i (2 £1isn-1 -
2) for each i ( isna ),vie(v vl 5

The following two lemmas demonstrate the relationship between a restriction of
1/0 port locations and the circuit area, Let R be a closed region on which a circuit
is embedded. The boundary B of R forms a closed curve. A segment of the closed curve

is called a contiguous subboundary of B,

Lemma 1 ‘For a combinational circuit C, let G(C) = (V, E) be the circuip graph of C,
and let IO denote the set of I/0 nodes of G(C). If there exist subsets Vl’ V2 and
V3 of 10 which satisfy the following conditions,

1) Vi{ﬁ Vj =¢ (1 <1i<js 3).

2) G(C) has a node-disjoint set P1 of (Vl,’VB)vconnebting paths,

3) 6(C) has a node-disjoint set P_ of (Vz, V3)«connecting paths,

2
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4) |Pll = |P2| = IV3!'
5) There exist three contiguous subboundaries Bl’ B2 and B3 such that
V., < 10, (i = 1-3),
i i
where IOi (i=1-3) denotes the set of I/0 nodes located on Bi.
Then, it follows that

' 2
A(C) = Q([V3| ).

(proof) For the nodes of V_ on B3, number the nodes from v, to v, in the order of

3 1 k
the location on B,, where k = |V3l. For each v, (1 <£ixgk), let p, and q4 be the
paths in Pl and P2 which have v, as an endpoint respectively.

Since the endpoint of 4> which is not Vs is located on neither B. nor B3 by

1
the condition 5), each q; crosses each pj (j < i) on R at least once, or crosses
each Py (h > i) on R at least once. Therefore, each 9y must cross at least
nin(i-1, k-i) paths in P1 on R. Note that the expression "a path p crosses a path
p' " has two meanings. One is that p and p' join at a common node and branch from

the node. Another is that an edge in p and an edge in p' cross each other (Fig. 3).

Since a unit of area has at most v crossing wires, a unit of area has at most

(;) crossing points. Thus A(C) hds at least (1/(;))-2 min(i-1, k-1i) units.

So we have

AC) > (l/(;))\§1min(i—l, Kk-1i)

: J(l/4'(;))-k(k—2) (if k is even)
v 2 . .
l(l/4'(2))-(k—l) (if k is odd)

- a(lv, [H. O



crossing with a common vertex , .~ multi-level. crossing

Fig. 3 Two kind of crossings.
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The next lemma is proved similarly to Lemma 1,

Lemma 2 For a combinational circuit C, let G(C) = (V, E) be the circuit graph of C,

1’ V2, V3 and

and I0 denote the set of I/0 nodes of G(C). 1If there exist subsets V
V4 of IO which satisfy the following conditions 1)-4).
1) Vi f\Vj =¢ (1<21i<3jsgé).

2) G(C) has a node-disjoint set P, of (Vl, V3)—connecting paths.

1

3) G(C) has a node-disjoint set P, of (V2, V4)—connecting paths.

2
4) There exist four contiguous subboundaries Bl’ B2, B3 and B4 in clockwise order-
such that Vi g;IOi (i = 1-4), where IO‘i denotes the set of I/0 nodes located on Bi'

Then, it follows that

A = a(lp,|-|z,[). O

Lemma 1 and 2 state a relationship between a circuit graph G(C) and the circuit
area A(C). 1In order to obtain lower bounds on area of combinational circuits which
compute a function f by using these lemmas, we examine some properties of the circuit
graph for that function.

For a sequence Z = (z ,zk), a sequence (zi ,...,zi ), where 1 5 i, <...<

1 1 3 1

.+»2, ), let Z denote

ij < k, is called a subsequence of Z. For a sequence Z = (zl,.
the set {zl,...,zk}.

Let Z, and Z, be subsequences of Z. If it holds that er1_72 = ¢ and 7%.” zZ, = Z
then Z_ is denoted by Z - Z

2 1°

Definition 2 Let X = (Xl,...,xn) and Y = (yl""’ym)’ and let Y = f(X) be a function.

Let X1 = (xil,...,xih) denote a subsequence of X and let X - X1 = (le,...,xjn-h).

Let Y1 = (yki,.,.,ykl) be a subsequence of Y, Let Q = (ql,...,qn_h) € {0, 1}n—h
Y1 = b(Xl) is a subfunction obtained from f, if it is obtained by assigning

q, to each input variable Xjr of X ~ Xl for £ (1 s r £ n-h), aqd by restricting

output variables to Yl of £f. The subfunction h is denoted by YIY1 = f(X, Q)lxl-
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A function (yl,...yk) = g(xl,...,xk) is a‘k—identity function, if it holds that
7, = xp(i) for each i (1 < i £ k), where (p(1),...,p(k)) is a permutation of
a,....n. 0

Let C be a combinational circuit which computes a function f. In order to
combine the function f with the circuit graph G(C), the following proposition and
jemmas are needed. In what follows, a combinational circuit.which computes f is
denoted by Cf, unless otherwise stated.
gnggﬁigigg_;_(Menger's theorem) [7]

Let G = (V, E) be a directed graph. Let a be a node of G whose indegree is

zero, and let b be a node of G whose outdegree is zero.
Let U be a subset of V - {a, b} satisfying the following conditions:
1) Every directed path from a to b goes through a certain node in U,
2) U is minimal; i.e., for every U' ¢ U, U' does not éatisfy‘l).‘
2

Then, the maximum number of node-disjoint ({a}, {b})-connecting paths is equal to

the number of nodes in U. 0

In order to use Proposition 1, the following directed graph is constructed from
a circuit graph and special nodes a and b.
For a circuit graph G(C) = (V, E), define the directed graph G(C) obtained from

- 6(C). to be

8c) = (VU{a, b} , EU {<a,p>| p € I} U {<q, b>| q € O}).
where a, b & V, and I and O denote the set of input nodes of G(C) and the set of

output nodes of G(C) respectively.

Lemma 3 Let (yl,...yk) = g(x xk) be a k-identity function, For the directed .

~1’.."
" .

graph G(Cg) obtained from G(Cg) = (V, E), let U be a subset of V such that -every
Path from a to b goes through a certain node in U. Then,

] 2 k.

-10-
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(proof) Let U = {vl,...,vj} and assume j < k-1. Since Cg is a combinational circuit,
the output value of each logic gate corresponding to v, (elD»is uniquely determined
by the input values, and the output values of g are also uniquely determined by the

output values of the logic gates corresponding to v ..,vj. By the assumption that

1’
each logic géte can output only one bit amount of information, the number of possible

values of the ldgic gates corresponding to v "’Vj is at most ZJA( < Zkal), On the

1’
other hand, since g is a k-identity function, the number of possible oﬁtput values

of g must be equal to 2k. This implies that Cg cannot compute g correctly, Thus,

vl 2 k. O

Let (yl,...,ym) = f(xi,...,xn) be a function, and let G(Cf)‘be the circuit
graph. Let IO denote the set of I/0 nodes of G(Cf).,~For G(Cf),,the 1/0 node
mapping

P : {xl,...xn} U {yl,...,ym} > 10
is defined as the bijective mapping that indicates which I/0 node an input or output
variable corresponds to. '

The following lemma combines a function f with the circuit graph G(Cf).
Lemma 4 Let f be a function whose suEfuﬁction contains a‘k-identity function
Y = g(X). Then, the circuit graph G(Cf) has k node—éisjoint (Vl, V2)—conﬁecting

= P(X) and v,

pétﬁé,'where v, = P(Y).'
(proof) Let EKCfZ be the directed graph obtained from G(Cf). Since Cf computes a;
k-identity function, Lemma 3 implies thét
Jul 2
for E(Cf). Therefore,-by Proposition 1 the maximum number of node-disjoint
({a}, {b})-connecting paths in E(Cf) is at least k. From the construgtion of GXCf),

G(Cf) must have k node—disjoint-(P(X), P(Y))-connecting paths. O

By Lemma 1 and 4, the following theorem holds,

-11-
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Theorem 1 Let Y = f(X) be a function. Assume that there exist subsequences X and
Theorem -

x. of X, and a subsequence Yl of Y which satisfy the following condition 1)-3).
2
1) X1(\ X, = ¢.

2) There exist assignments Ql and Q2 to X -~ X1 and X - X2 respectively, such that
subfunctions Y[Yl = f(X,Ql)]Xl and Y!Yl = f(x,Qz)]x2 are [Yi|—identity functions.
3) There exist two contiguous subboundaries Bl and B2 of the boundary of Cf

such that

1) P(X)C 10, and (B(X) U PE)) N 10, = o,

i) P(¥)) & 10, and (P(X)) U P(X,)) N 10, = ¢

3

ﬁhere IOi (i = 1, 2) denotes the set of all I/0 nodes located on Bi'
Then, it holds that
= 12
accp) = (%[5, ‘ |
(proof) By the condition 2) and Lemma 4, the circuit graph G(Cf) has [Yil
node-disjoint (P(ii), P(?i))—connecting paths, and ]Yil node-disjoint
(P(Xé),P(?i))—connecting paths. And by the condition 1), it holds that
P(X)) MPX,) = ¢.
Thus, the conditions 1)-4) of Lemma 1 are satisfied, Since the condition 3)‘
satisfies the condition 5) of Lemma 1, we have
- 2 '
accy = oy, 1H. O
Remark; If the relationship between input variables and output variables of f is

exchanged, similar result holds, This is shown by the next theorem,

Theorem 2 Let Y = £(X) be a function. Assume that there exist a subsequence Xl of

X, and- subsequences Yl and Y2 of Y which satisfy the following conditions 1)-3).

n YN ?} = ¢.

2) There exist assignments Q, and Q, to X - X;

such that Y[Yl = f(X’Ql)IXl and
Y|Y, = £(, Q,)|X; are |X||-identity functions.

3) There exist two contiguous subboundaries B, and B, of the boundary of"Cf such

1 2.

that

-12-
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i) P(Yl) < I0, and (P()‘(‘l) U P(?‘z)) n Iol ®,

1

]

ii) P(Yz) < 10, and (P(Xl) U P(Yl)) N 102 b,

2
where IOi (1 = 1, 2) denotes the set of all I/0 ports located on Bi'
Then, it holds that

A(Cy) = Q([‘X‘llz). O

From Theorem 1, it can be concluded that combinational circuits which compute
the addition, the multiplication, the maximum operation or the minimum operation
require Q(n ) area, if the circuits have the separated I/0 port locatlons where n
is the bit-size of the operand. Generally the following'corollary can be obtained
from Theorem 1. |

A binary algebra [S, B] is a set S with a binary operation B:;SxS - S. It is
assumed that the binary operation 8 is expressed aé

(yl""’ym) = B(Xl,-..,xn, wi;,..,wk),
where the operandé (Xl""’xn)’ (wl,...,wk) and the result (yl,...,ym) are
represented in the same coding system, »

Let n = k, and m 2 n for the binary operation 8. An element (s;,...,s ) in'S
is called an identity of B, if it holds that (al,...,an, 0,:000,0) = B(sl,..;,sn,

a .e,d for any elem . oo i .
s n) y ent (al, ,an) n s

10"
Corollary 1  Let (yl,...,ym) f (xl,.,.,x > WiseeesW ) be a binary operation which
has én identity, where m an- If the 1nput ports corresponding to two operands and
the output ports correspondingrto the result are separafed one another, then it '
follows that

AGc, ) = ew?y. O
b

A combinational circuit to compute the addition of two n-bit integers requires
Q(nz) area if the input ports of the addend and the augend and the output ports are
separated one another. However, there exists a construction of tﬁe n-bit additiond
with O(n) by locating the input ports of the addend and the aUgénd aiternativély on

the boundary. For the multiplication of two n-bit integers, Theorem 2 implies that

-13-
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even if the input ports of the multiplier and the multiplicand are located
alternatively on the boundary, the circuit requires Q(nz) area by locating the

output ports corresponding té the result while preserving the bit order. Then, does
there exist a combinational circuit to compute the multiplication‘with smgller area,

’ if some I/0 port locations are properly specified? It will be shown in the following
section that it is impossible to construct these circuits. That is, if combinational
multiplication circuits satisfy the boundary layout assumption, the circuits would
requiré Q(nz) area independent of‘theAi/O port 1ocations, It is also shoﬁh that- :

similar results hold for the division and the sorting,

4. A Lower Bound on Area of Combinational Circuits

4.1 -Multiplication and Division

Consider the following N-bit shift function with selectors‘so,...,SN‘_l

(yl,...,yN) = fs(xl,...,xN, Sgrere 2SN’
i) one and only one 85 is set to 1 among the selectors SO""’SN’l’
ii) the i-th selector s; is equal to 1 if and only if '

yj+i = xj for 1 £ j £ N-j, and

yj is undefined for j < i.

Since the muitiplication and the division contain the shift function as a

subfunction, obtaining lower bounds for the multiplication and the division is
reduced to deriving a lower bound for the shift function., In the following, a lower

bound on area of combinational -circuits to compute the shift function is considered.

In order to derive the lower bound, some definitions are needed.

Definition 3 Let [k, k'] = {i€ %] k < i < k'}, where Z is the set of integers.
For an integer r and nonnegative integers a and b, let Lr(a, b) denote the set of

all the subsets of exactly b elements of [r+l, r+a]l.

14—
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For a subset p = {21,...,2b } of Z, define the i-shift of p, si(p) as

si(p) = {21+1,..., 2b+1}. For two subsets p = {21,...,2b} and q = {ml"°"mb}’,
define the number of meets m(p, q) between p and q to be m(p, q) = lp F\ql, where

Ip N q[ denotes the number of elements in p.N q. 0

For two elements p and q in Lr(a, b), the following property holds. This

property plays an important role for deriving the lower bound of the shift funétion.

Lemma 5 For any p, q in Lr(a, b), there exists an integer i (-a < i < a) such that
n(p, s, () 2 [b°/2a].

(proof) TFor an element £ in p and an element m in q, it holds that
r+1<2s5r+ a, and

r+l1l<mg<r+ a,

Since the following inequality is satisfied
-(a-1) <2 -mx< (a-1),
there exists exactly one integer i (-(a-1) < i < a-1) such that £ = mti for every

pair (&, m). Thus,
a-1 a-{
L mp, s () = I

. p 0s, (9]
i=-(a-n i=-{a-1)

=% 5 o1 [{e) {mki}]
i=-0-) fep me$

=z 2 % {2} {wHi}
2eP megi=-lo-n

= 5 Izl = b2

dep meg

If Lemma Svdoes not hold, fo: every i (-a < i < a) it follows that
2, :
n(p, s;(q)) < [b7/2a].
Therefore, we have
a-t
z

)m(p, s; (@) < (2a - 1)-|p%/2a] < b2,

1e=(a-l

This is a contradiction. [

The following lemma enables us to use the result in preceding section.

-15-
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L£222~é Let (yl,...,y3N) = fs(xl""’XBN’ SO""’S3N—1) be the 3N-bit shift function.

Let X be an arbitrary subsequence of (xl,...,XN) and Y be an arbitrary subsequence of

(yN+l""’y2N) such that IXI = IYI = k < N. Then, the shift function fs contains an

g-identity function Yl = f(Xl) as a subfunction which satisfies the following

conditions.
— - S c S
1) xlg_, X and Yl_. Y, and
2
2) & 2 [K°/2N].
(proof) Let p = {i#N| x, € X} and q = {i| y, € ¥}. By definition, it holds that
P, 9 € LN(N, k).
By Lemma 5, we have
2
m(p, s;(@)) 2 [k /28],
for an integer i such that -N < i < N.
By letting X, = {xj_N[ jeprns(@land ¥ = {yjl jer s, (@},
we have m(p, si(q))—identity function
- '
vy, = £' X, Qlx), |
where Y = fs'(X) is a subfunction of fs, and where Q is the assignment of

= = + i).
(SO""’S3N—1) such that SNt 1 and S 0 (h#N+1i). O

The following theorem is a main result in this subsection and is obtained from

Lemma. 2 and 6.

Theorem 3 Let (yl""’YBN) = fs(xl,...,x3N, SO""’SBN—l) be the 3N-bit shift
function. Let C be a combinational circuit to compute a function which contains fS
as a subfunction. Then,
2

A(C) = Q(N7).
(proof) Consider the subset IO of I/0 nodes corresponding to xl,...,xN and
YN+1,...,y2N, that is,

10 =

0 P({xl,...,xN} ¥ {yN+1”"’y2N})'
Let N = 4t + ¢ (0 £ 6 £ 3). Let B be the boundary of C. Since each node in IO is

located on B, we can divide B into two contiguous subboundaries Bl and B2 such that

~-16-
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each Bi (i =1, 2) contains at least 2t input nodes in IO. And either B1 or 32
contains at least 2t output nodes in IO. Without loss of generality, it is assumed

that subboundary B, contains at least 2t output nodes in IO.

2

The subboundary B, is divided into two contiguous subboundaries D, and D, such

1 2

that both Dl and D2 contain at least t input nodes in 10, and the subboundary B

1

218

also divided into two contiguous subboundaries Fl and F2 such that both Fl and F2

contain at least t output nodes in I0

Consider the exactly t input nodes in IO located on'Dl and D2

and let Il and 12 denote the set of such nodes. And consider the exactly t output

nodes in IO located on F1 and F2 respectively, and let 0l and O2 denote the set of

respectively,

such nodes.

By Lemma 4, 6, there exist 21 node-disjoint (Il,Ol)—connecting paths, and %

2

node-disjoint (12,02)~connecting paths, where 2 22 2 L;Z/ZNJ and t = LN/QJ.

l’

Therefore, Lemma 2 implies that, for comstant ¢ > 0,

A(C) 2 c‘Rl'ZZ

ce (| 1/2N(|N/4))] y%)?
a?). O

v

Remérk: The shift function fs considered here is slightly different from usual ome.
A usual shift function has an encoded selector, that is, shift by i-bit (0 £ i < N-1

is specified by a binary number a ..a,. However, Theorem 3 holds for shift

log N ° 1

functions with selectors of any form.

The'ﬁ—bit multiplication.and the n—bif division contain the shift function fs
as a subfunction. Thus the following corollaries are directly obtained from
Theorem 3.

Corollary 2 Let C be a combinatioﬁal circuit to compute the multiplication of two
n-bit integers. Then,

A(C) = Q(nz). O
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67

922211932—2- Let C be a combinational ciréuit to compute the division of 2n-bit
integer by n-bit integer. Then,v ‘
A =2ad. [ |

522255»13 Loweribounds on area of combiﬁational circuits‘tojcqmpute the»gpltiplipgtion
and the division have not been known without trivial ones. Although»our lower bounds
on area of these functions assume the boundary layout, it’is copsideréd that the
jower bounds are fairly good in the sence that the multiplication and the division
are both constructed with O(nz) area [4].
R;mark 2: In the derivation of the lower bound on area for the shift funct%on? the
convexity of a circuit region is not assumed. If the convexity is assumed, fhe éame
lower bound on area for the shift function (thus, the multiplication and the division)
can be proved without the boundary layout assumption. The next theorem ié“éhoWn“by
using Lemma 6 and the relationship between the area of convex region and the length
of a chord perpendicular to the diameter [1].
Theorem 4 Let (yl,...,yn) = fs(xl,...,xn, SO""’Sn—l) be the n-bit shift functiog.
Let C be a combinational circuit to compute a function which contains fS as a
subfunction. Assume that C is embedded on a convex region. Tﬂen,

A© = 2@d). 0 |

(proof) Let R be é éohvex‘region on which é is embedded. ‘Lef D ge'é‘éiémégeff;er,

,andyi bé a éhofd‘pefpendicuiér éo D. | » - o

Consider the input'nbdes corresponding to x >+ Xy and let I denote the set of

1

such input nodes (I = P({xl,...,xN})). The chord L divides R into two parts R1 and

R2 such that R, contains i input nodes in I, and R, contains N-i input nodes in I.

1 2

We can assume that the input nodes in I are shrunk to infinitesimal size and that
L does not intersect any input nodes in I, because the area of the input ports is
not used in the proof. By sliding the intersection of L and D along D, we can

4arrange that both R1 and R2 contain at least LN/%J input nodes in I.

Since either Rl or R2 contains at least LN/%J output nodes in P({YN+1"'y2N})

(denoted by 0), without loss of generality, R, contains at least |N/2| output nodes

2
in O,
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Consider the exactly Ly/gj input nodes in I located on Rl’ and let Il denote
such input nodes. Similarly, consider the exactly LN/@J output nodes in O located
on R2’ and let O2 denote such output nodes. By Lemma 4 and 6, there exists % node-

disjoint (Il’ 02)-connecting paths, where & 2 LLN/ZJZ/ZQJ. Then, since § edges

cross the chord L, it follows'that
L2282 [LN/ZJZ/ZNJ.
By the relationship between A(C) and L [1], it holds that

A 212 2 ||v/2)%2m) = e®). O

4.2 Sorting

When a sorting is computed by a combinational circuit, a lower bound on area

can be also shown by using the result in the preceding section,

Definition 4 [11] A boolean function (yl,...,yN) = f(xl,...,xN, sl,...,sb) computes
a permutation group G, if for each permutation g & G, there exist values for

.,s., such that v; = Xg(i) (1 £ i< N), where (g(1),...,g(N)) denotes the

S12t b

. permutation of (1,...,N) by g. O

It has been known that a function to sort a list of n k-bit words (k > logzn)
contgins a booleén f§nction which computes the symmetric group S[P/ZJ as a
subfﬁnction [3]; Whereas, a lower bound on area for the boolean function which
computes the symmetric group SN is considered more generally. The lower bound for

the sorting is obtained from the result.

Theoreﬁ 5 Let (ylf""yN) =.f(xl,...,xN, Sl""’sb) be a boolean functibnlwhich
computes the symmetric gfoup SN' Then it follows that

aCcp) = ).
(proof) Let I and O denote the input nodes and the output nodes corresponding to-‘

Xpaee Xy and MARERER ¢ respectively, that is,
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1 = P( {xl,...,xN} ) and 0 = P( {yl,...,yN} ).

Let B be the boundary of C_.. Since each node in I U O is located on B, we can

f

divide B into three contiguous subboundaries B., B, and B, such that each Bi

1 72 3
G@=1 2, 3) contains at least LN/QJ output nodes in O. Then, there exists

contiguous subboundary among B, B, and B3, on which at least LN/3J input nodes of

1’ 72

1 are located. Without loss of generality, it is assumed that the subboundary Bl

contains at least LN/3J input nodes in I (Fig. 11).
Consider the exactly LN/QJ input nodes in I located on Bl’ and the exactly

0, and O

[N/3] output nodes in O located on B, and B 1 9 3

2 3’

denote the sets of such nodes, i.e.,

respectively. Let I

11 = P( {xil,...,xik} ),
0, = P( {yjl,...,yjk} ), and
04 = P( {yhl,---,yhk} )
where k = |[N/3| and I,¢1,0,, 0,C0and0,N0,=¢.

Since the function f computes the symmetric group S there exist permutations

N’
gl’ g, € SN such that yj =X
p q
= (X, 5e005%, )y Yo = (¥, 3e40,y, ) and Y, = (y, ,...,y¥, ), the
1 i, i 1 iy Iy 2 h1 hk
conditions 1)-3) in Theorem 2 are satisfied and liil =k (= [N/3]).

ip) (1 <p < k) and Yy q) (1 £q < k).

—3 X .
8, ( g, (1

By setting X

Thus, it follows that

acy = ey, O
Corollary 4 Let C be a combinational circuit to sort a list of n k-bit words
(k 2 logzn). Then

A(C) = e@?). O

' Remark: Sorting a list of n 1og2n-bit words is conmstructed by a combinational

circuit with O(nz'log n) area [6], so the lower bound shown here is optimal within

“a logarithmic factor.
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5. Conclusion

It is important to discuss the area complexity or the area-time complexity on
the model more suitablé for the current VLSI technology. In this paper, it has been
shown that the practical restrictions such as the boundary layout assumption, and
the restricted I/0 port location assumption, possibly'requires larger area than the
functional complexity.

A lower bound on area of combinational. circuits to compute the multiplication,
and the division is little known. It is still open whether or not any combinational
circuit to compute the multiplication requires Q(n?) area. However, from the results
of this paper, if the combinational circuit is embedded on a convex region, or it
satisfies the boundary layout assumption, then the multiplication must have the area

complexity quadratic in the bit-size of its input.
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