goooboooogn
0 4820 1983 0 115-128

115

Polynomial Time Inference of Extended Regular Pattern Languages

Takeshi Shinohara

Computer Center, Kyushu Unlvers1ty 91,
Fukuoka. 812 Japan

ACT
A‘pattern is a string of constant symbols and variable symbols.
The language of a péttern P is the set of all strings obtained by
substituting any non-empty constant strlng for each variable symbol
in p. A. regular pattern has at most one occurrence of each variable
symbol. The class of pattern 1anguages was introduced and discussed
by Angluin[Z]. In the previous paper [Shinohara, 9] we have studied
polynom1a1 time inference from positive data about the class of
'”'regular pattern languages.
In thls paper we cornsider this problem in case of extended
regular pattern languages which are sets of all 'strings obtained
by substituting any (possibly empty) constant string instead of
non—eﬁpty string. Our inference procedﬁfe uses MINL calculation,
introduced By Aﬁgluin [2], which finds a minimal language containing
a given finite set of strings. The relation between MINL calculation
for the class of’extended regular pattern languages and the longest’

common subsequence problem is also discussed.

< o .

There have been known two kinds of inferences, deductive
inference and inductive inference. Many studies on deductive
inference cover a wide range from theoretical problems:to practicél
problems. Although some theories of inductive inference have been
developed, few of them have reached practical applications to
computer sofﬁwares. This study presents an approach to practical

applications of inductive inference and give its theoretical basis.

116

Inductive inference of languages, we consider in this paper,
is called "polynomial time inference from positive data." The direct
mqtivation of this research is to develop a data entry system with
learning function, proposed by Arikawa[4]. The system must infer
or learn the structure of input data from the user. The informationm,
the system can use, is only the input data. Hence we should consider
inference from positive data. The éompufational 6oﬁp1exity problem
is another important point in discuséing such'practical problems as
the learning data entry system. Polynomial time inference is an
inference carried out by a machine which makes every guess in

polynomiél time.

It has been considered of little interest to study inference
from positiﬁe data, since Gold[5] proved a strong theorem which
assefts thét any class of languages over an alphabet is not
inferréble from‘poéi;ive data 'if it contains all finite languages
and at least ome infinite language. Hence, for example, the class
of regﬁlar sets ié nét inferrablé from boéitive data. Recently
Angluin[2,3] gave new life to the studj of inferencé by characterizing
the class of . languages inferfable from positive data and presentiné
interesting classes. The clésswof pattern languages is one of her
classes; | L ’ _
’A pattern is a string of Eonstagt symbols and'ﬁariable symbols,
and the language of‘a patterﬁ p is the set of all strings obtained /
by suﬁstituéing any ﬂgnrgmpxl constant string for each variable '
symbol in p. . Shinohara[9] has shown that two subclésses of pattern
languéges. named regular,battérn languages and non-cross pattern
languages, are polynomial time inferrable from positive data. o

A regular pattern is a pattern in which each variable symbol occurs

at most once.

In this paper we first point out some problems of our previous
version of inferemnce method and then we give a solution to them by
considering polynomial time inferrability of extended regular pattern
languages. Our extemsion is to allow the substitutions to erase
some variable symbols. For example, the extended language of a
pattern 0xl can contain string "01" while the language‘byvAngluin

can not. The erasing variables requires a new discussion.

117

The inference, we deal with here, is carried out by using MINL
calculation introduced by Angluin[2]. Hence our main attention is
paid to the time complexity of MINL calculation for the class of
extended regular pattern languages. MINL for extended regular pattern
languages finds a regular pattern which represents a minimal extended
regular pattern language containing a given non-empty fiqife set of
strings. We also refer to the relation between MINL calculation for
extended regular pattern languages and the longest common subsequence
problem. We propose an algorithm which calculates MINL for extended
regular pattern languages in polynomial time. By using this fact,
the class of extended regular pattern languages is shown to be

polynomial time inferrable from positive data.

) liminari

. We begin with a brief review of our previous results.

2.1. Patterns and Their Languages

Let I be a finite set of symbols coﬁtaining a£ least two
_stbolsiand let X = {XI’ xé. ees } be a countable set of symbols
disjoint from I. Elements in I are called constants and elements
in X“are called yariables. A.pé;;gxn isbany string over I U X.

The set (X u X)* of all patterns is denoted by P.

We say that a pattern p is regular if each variable in p
occurs exactly once in p.

Let f be a non-erasing homomorphism from P to P. If f(a) = a
for any constant a, then f is called a substitution. If f is a
substitution, f(x) is in X, and £(x) = £(y) implies x = y for any
variables x and y, then f is called a renaming of variables. We
use a nmotation [a;/vys ... » a,/v;] for the substitution which maps
each variable symbol v; to a; and every other symbol to itself. We

i
define two binary relations on P as follows:

1) p =' q iff p = £(q) for some renaming of variables f,

2) p ' q iff p = £(q) for some substitutiom f.

The language of a pattern p» denoted by L(p), is the set
{wez|ws' pl. These syntactic relations =' and <' are

characterized by the followihg lemma.

-3-

118

Lemma_ 1. [Angluin, 2]

1) For all patterns p and q, p = q iff L(p) = L(q).
2) For all patterns p and q, if p S' q then L(p) < L(q),
but the converse is not true in general.
3) 1f p and q are patterns such that [pl = Iql,
then p <' q iff L(p) < L(q). 7 v

2 1 ial

Inference machine is an effective procedure which requires
inputs from time to time and produces outputs from time to time.
Let s = 57, Sgss.. be an-arbitrary infinite sequence, and let
g = 815 Zpseee be a sequence of outputs produced by an inference
machine M when inputs in s are successively given to M on request.
Then we say that M gn input s converges to 80 iff g is a finite
sequence ending with go or all but finitely many eleménts of g
are equal to g0

Let L = Ly» Lysee. be anbindéxeé family of recursive
languages, and let s = s;5 S9s... be an arbitrary enumeration of
some,languageJLi. Then we say that a machine M jinfers I from
positive data if M on input § converges to an index j with Lj = Lj.
We say that a family I is jinferrable from positive data if there

exists a machine which infers I from positive data.

IhggxgnLl,bfAnglﬁin, 2] 1If a class L = Lys Lgse.. satisfies
the following condition, then L is inferrable from positive data.
ggndinign: For any non-empty finite set S of strings, the

set {L]S €L, L = L; for some index i} has finite cardinality.

Lemma 2. [Angluin, 2] The class of pattern languages satisfies

Condition of Theorem 1.

Hereafter we omit the pbrase "from positive data", hence
for example "inference" means "inference from positive4data."
An inference by a machine M is consistent iff a language Lgi
contains all inputs given so far whenever M produces output g;-
An inference is conservative iff am output 84 from M 1is mnever

changed unless L__ fails to contain some of the inputs. These

gi . :
two properties matural and valuable in inference problem. It is,

Sy

119

however, known that inferrability does not always mean consistency
and comservativeness [Angluin, 2]. ' '

A class [is polypomial time inferrable iffvthere,exists an
inference machine M which infers L consistently and conservatively,
and requests a new input in polynomial time (withvrespect to the
length of the inputs read so far) after the last input has been
received. . ;

- MINL calculation for a class [= Ly, Lys... is defined by
Angluin [2] as follows:

MINL(S) = "Given non-empty finite set S of strings, find an

index i such that § € L; and for no index j, S ¢ Lj g Li."
The following theorem shows the importance of MINL calculatiom.

 Theorem 2. [Angluin, 2] 'If a class L = Lys Lgs... satisfies
Condition of Theorem 1 and MINL for I is computable, then the

procedure Q below infers L consistently and conservatively, -

procedure Q;
' g1 := "none" ;3 S := @ ;
ﬁg; each input 55 do
s :=su {s;};
J.f.sieLgiLhen
i+l *T &5

end
Corollary 1. 1If a class [= Lis Losees satisfies Condition of
Theorem 1, and the membership decision and MINL calculation for L

are computable in polynomial time, then the class L is polynomial

time inferrable (from positive data).

120

Angluin [2] showed that the membership decision of pattern
languages is NP-complete and £-MINL calculation, a special case of

MINL for pattern languages, is NP-hard.

£-MINL(S) = "Given non-empty finite set S of strings, find a
pattern of maximum possible length which represents a minimal

pattern language containing S."
The following summarize the results of our previous study.

Lemma 3. For any regular pattern p and any string w, whether
w € L(p) is decidable in O(lpl+|w]) time.

Theorem 3. The following procedure computes {-MINL(S) for
regular pattern languages in 0(nn) time, where m = max{|wl; w € S},
o = card(S), and w = aj...a; (a; € I) is one of the shortest strings

in S.

Py T XjeeeXy
for i :=1 to k do
begin
q := p;la;/x;] 3

if 5 < L(q) then P41 = q
else pPj4; = Pj 3
end ;
return Py4)

end

Theorem 4. The classes of regular pattern languages is

polynomial time inferrable (from positive data).

3. Some Problems on f/-MINL Calculation for Regular Pattern Languages
There are some difficulties in the £-MINL calculation when the

polynomial time inference of regular pattern languages is applied to

practical use. The main reasons are in

1) restriction on the length of pattern, and

2) prohibition against substituting empty string for amy variable.

We present some examples to explain these problems.

-6~

121

Example 1. Let S be the set {ABCdeFGh, ABCiFGjk}. Then every
answer of £-MINL is eight symbols long because the length of the
shortest words in S is eight. Let p be any pattern of the form
plFGPZ' where P and P, are any regular patterns. Assume S < L(p).
Then, clearly, ABCi ¢ L(pl) and h € L(pz), therefore '

lpl = Ipyl + IFG] + Ipyl <4 +2+1=7 <8,

Hence the string "FG" does not appear in any answer of £-MINL(S).
However the pattern q = ABCx;FGx, is a possible answer of MINL(S).
Thus MINL(S) may have an answer which contains more constant

symbols than any answer of £-MINL(S)..
Example 2. Let S = {aBcdf, GHcdBiii}. Then both patterns

P} = X1Bx,x3x, and

pz X1X2CdX3

" are correct answer of £-MINL(S). Our £-MINL algorithm of 7
Theorem 2 returns P for 8. If we change the order of substitutions

in the algorithm, we can get p, as the answer of [-MINL(S).

Example 3. Let S = {ABC, AC}. Then MINL(S) does mnot have
any answer containing both symbols'Avand'C because we can mot

substitute empty string for any variable.

To solve these problems, we extend the definition of,pattern

languages to allow erasing substitutions.

4, Extension of Pattern Languages

We givé new’definitions_of pattern languages to allow ‘ ;
substitutions to erase variables and we show some their pfopertiéé.
The definitions of patterns and regular patterns are the same ones
as in Section 2.

A substitution is any (possibly erasing) homomorphism from
P to P which maps each constant symbol to itself. A special
substitution which ﬁaps each variable to empty string is denoted
by ¢. For example, if Z = {0, 1, 2} and X = {X, ys+s. }, then

c(0x1y2) = 012. We define two binary relations <' and =' as follows:

122

1) p s' q iff p = £(q) for some substitution £,
2) p='q iff ps'q and q £' p.

The language of a pattern p» denoted by L(p), is the set

T

{weI* | ws'p). Hereafter we use the term "pattern languages"

in the sense just defined above.
Proposition 1.

1) va' q ==> L(p) ’
2) p ='q ==> L(p)

In

L(q)
L(q)

We say that é_pattern ﬁ is in gangnigal form iff ’

''q ==> 1p] < lql for any pattern q, and

> >

P contains exactly k variables X1s Xgseees X, for some integer k
and the leftmost occurrence of x; is to the left of the leftmost

occurrence of X141 for i =1, ...s k-1,

Theorem 5. There exists a unique canonical pattern §

equivalent (=') ‘to p for any regular pattern p.

Proof. Let p = woxll'"xlilw1x21'"Wn—lxnl"'xninwn (wgs v € *,

ﬁi e ot (i=l,...fn-l)). Then p = ﬁoxlwlxz...wnqlxnwn is in canomical
form and ﬁ =' p. Any pattern equivalent to p is of the form
» wovlwlvé... Yo _1VnVn (v; € X*). Therefore the uniqueness of such

canonical pattern is obvious. 0

Lemma 4. If 6 is a canonical regular patterﬁ, then
181 < 2le(P)] + 1.

Theorem 6. The class of (extended) regular pattern languages
satisfies Condition of Theorem 1 and it is inferrable from positive

data.

Proof. Let S € ©* be any non-empty finite set of strings and
let w be one of the shortest strings in S. Assume S € L(p), where
$ is any canonical regular pattern. Then Iwl 2 lc(P)I because
v € L(s). By Lemma 4, Ipl < 2lc(P)] + 1 < 2Jw] + 1. Therefore

the number of such patterns P is finite. ' O

123

Theorem 7. For any regular pattern p and any string w,

whether w € L(p) is decided in O(lpl+lw]) time.

Proof. We can construct a deterministic finite automaton
recognizing L(p) in O(lp|) time by using the method of pattern
matching machines [Aho, et al., 1]. '

5, MINL calculation for Regular Patterp Lapguages

To show polynomial time inferrability of regular pattern
languages, we need discussions on MINL calculation. In this section
we also refer to the relation between MINL .calculation and the
longest common subsequence (LCS for short) problem.

First we give some definitions on subsequences:

1) For any strings w = aj...a, (a; € I) and s; € =%,
s <Sw(orwzs) iff s = ail...a- (1 i< ... <imsk).
We say that s is a subsequence of w (or w is a supersequence of s)

if s £ w (or w 2 s).

2) The set of common subsequences to a set S of strings is
cs(s) = { s € Z*_l s £ w for any string w € S }.

3) The set of maximal common subsequences to S is
MCS(S) = { s € CS(S) | s = s' or s £ s' for any s' € CS(S) }.

4) The set of the longest common subsequences to S is
1cS(s) = { s € ¢S(S) | Is| =2 Is'] for any s' € CS(S) }.

1) w e L(p) ==> w 2 c(p)

2) L(p) € L(q) ==> c(p) 2 c(q)
3) L(p) = L(q) ==> c(p) = c(q)
4) s c L(p) ==> c(p) e Cs(S)

We need three notations in the discussions below:

1) For any string w = aj...a; and any integers i and j,
w<izj> = { 800085 (if 1 i< js lwl)
€ (otherwise), and

w<i> = a; (i = 1,...0wl).

124

2) For any éymbbl a and any intéger i,
al = { € (if i £0)
aal™l (otherwise).
3) For any variables ViseeesVy € X and any constant strings
WiseeasWy € z*, [wy/vyseseswy /vy] denotes the substitution which

maps each variable v; to w; and every other variable to itself.

Theorem 8. Let p and q be any regular patterns and card(Z) 2 3.
Then L(p) € L(q) implies p <' q.

Proof. We may assume, without loss of genmerality, that p and q
are canonical regular patterns. -We also assume card(Z) 2 3,
L(p) € L(q), but p £' q. let q = WX{WyeeeWy (X Wys WheTe wy, W € *,
and w; € ¥ (i=1,...,n-1). Since c(p) is a supersequence of c(q)

and p £' q, there exist integers i, j, and k such that

0<i<n, 1< 3j<k<|pl, and
p = p<l:j> p<j+l:k-1> p<k:|p|>, where /

c(p<1:j>) € L(woxl...xi lwi_l). '

c(p<l:j'>) £ L(wpxj...x;_1w;_1) for amy integer j' < j,
p<j+l:k-1> Z? rw;r' for any patterns r and r’,
clp<k:|pl>) € L(w;41Xj49-0eX %)s and

c(p<k"lpl>) £ L(w; 1% 40000x,w) for anmy 1nteger k' > k.

Let p; = p<l:j>, py = p<jtlik-1>, andvp3v= p<k:lpl>.

Then L(p,) < L(x iVi¥i+

Let a be any constant symbol except w;<1> and w;<|w;|> and let

1) because L(p) < L(q) and‘C(pl)pzc(p3)‘S' P.

Vis e » vy be all variables in py. Then

fws | lwy | '
pla * /vl....,a /v] e L(pz) L(x W x1+1) This contradicts

L(p,) € L(x; i%3 xl+1) v 'v 0O
The following lemma says that the condition card(Z) = 3 is

necessary in Theorem 8.

Lgmﬁa_i. When card(Z) = 2, there exist regular patterns p and q
such that L(p) ¢ L(q),.p #' q» and q £' p.

Proof. Let £ = {0,1}, p = x;01x,0x5, and g = x; 0x,10x5.
Then, clearly, p £' qs q £' ps but L(p) = L(q). O

~10-

125

Hereafter we assume that the constants alphabet I contains at

least three symbols.

Theorem 9. For any maximal common subsequence s € MCS(S),
there exists an amswer p of MINL(S) for regular pattern languages

such that c{p) = s.

Proof. Let s = aj...a; € MCS(S). Then the pattern qy,; defined

as follows is an answer of MINL(S):

qi 3=‘ { xlal...akxk_,,l (i=0)
if S € L(q;-1[&/x;1) then q;_;[€/x;] else q;_; (i=ls...,k+l).

We must show that L(qy,;) is a minimal regular pattern language
containing S. Assume that there exists a regular pattern q' such
that S € L(q') ¢ L(qy4;). Then c(q') 2 c(quyy) = s. Since s is a
maximal common subsequence to S, c(q') = c(qy4;) = s. By Theorem 8,
q' <' qp4; and q' #' qu4;. There exists a substitution f which maps
q+] to q'. The substitution f maps at least one variable to empty
string because‘q'vi' Qy+1+ Let j be an integer such thét_xj appears

in quyps f(xj) = €, and £(x:y) = x:y for any integer j' < j. Then

. J J
t <t g, .1. . e/x. . = Q. €/x.].
q qJ_l[e/xJ] Therefore S ¢ qJ_l[/xj] and,qJ qJ_l[/xJ]
Hence the variable x; can not appear in Q1 This contradicts the
selection of j. ‘ 0
Here we should note that we can get an answer of MINL(S) in
0(n?n) time from any maximal common sequence to a set S of strings,

where m = max{|wl; w € S} and n = card(s).

We may prefer the longest common subsequences to the maximal
common subsequence. However the problem to find one of the longest
common subsequences to a set of strings is known to be NP-complete
[Maier, 8]. Therefore finding an answer of MINL(S) containing
constants as many as possible does not seem to be done in polynomial
time. To find an answer of MINL(S) for regular pattern languages,
is it necessary to select one of the maximal common subsequenées to S?

The following theorem asserts that it is not the case.

-11~

126

Theorem 10. There exists an answer p of MINL(S) for regular

pattern languages such that c(p) ¢ MCS(S) for some set S of strings.

Proof. Let S = {01020, 0212}. Then 02 ¢ MCS(S) because
012 € CS(S). However the pattern p = X;02x, represents a minimal

regular pattern language containing S. O

In the proof of Theorem 10, the patterm q = 0x11x22x3 is a
possible answer of MINL(S) and c(q) = 012 € LCS(S). In some cases
q is not always better answer of MINL(S) than p;$ecause the pattern
P contains a longer comstant string "02" than q. Finally, from
this obsevation, we get a MINL,algoritﬁm by using a method to find
common strings in length decreasing order. The correctness is easily
shown by Theorem 8 and the computing time is O(m4n), where

m = max{|w|; w € S} and n = card(S).
In our MINL algorithm we use some notatioms for simplicity:

‘let O = Wiseoos W be a sequence of strings. The notation L(O)
denotes the regular pattern language L(x;wjXg...w X .1)» 0| denotes
the number of strings in O, and [|Oll denotes the sum of lengths of

strings in O.

-12-

127

Procedure MINL(S);

(* Input S: non-empty finite set of strimgs *)
(* Output p: a pattern representing a minimal

(extended) regular pattern language containing S *)

s := one of the shortest strings in S
C := €3 (* sequence of common strings *)
n := |sl] 3 (* length of candidate string *)

while n > 0 do begin
for i :=1¢to Isl -n % l‘dgﬂl
more: for j := 0 tao lol do
if s ¢ L(o<l:j>,a<i:i+n-1>,0<j+l:]|o|>)
then begin

O := o<l:j>,a<i:i+n-1>,0<j+l:|O[>) ;

g0 to more
end ; '
n := min(|s|-lof, n-1)
end ;
p = x10l<1>x2...‘c<lol>xlcl+l H
if s < L(p[e/x;]1) then p := ple/x;] ; -

if s ¢ L(p[8/xlcl+1])v£h§2 P := ple/xi5y41]

return p 3

Theorem 11. The class of‘(extended) regular pattern languages

is polynomial time inferrable (from positive data).

6. Concluding Remarks

We have discussed polynomial time inference for the class of
the extended regular pattern languages and we have seen that MINL
calculation for the‘class plays an important role in inference from
positive data. We have also‘diséussed the relation between the MINL
calculation and the longest common subsequence problem. |

It should be noticed that our MINL algorithm for the extended
regular pattern languages is consistent to the NP-completemess of the
LCS problem. The MINL algorithm finds common strings to a set in
length decreasing order. It should also be noticed that our method

in the algorithm is natural. i3 P

128

Since our evaluation of the time complexity is not so acute,
the exponent of the maximum length of strings might be reduced.
The MINL algorithm is originally designed for the learning data
entry system, and it should have other practical applicationms.

A little modification may be needed for some problems.

ACKNOWLEDGMENTS
The author wishes to acknowledge'Professor S. Arikawa for his
helpful suggestions and encouragement. He would also like to thank

Mr. S. Miyano for his useful comments in the course of starting this

study.

J
REEERENQE&

[11] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974), The
Design and Analysis of Computer Algorithms, Addison-Wesley,

Reading, Mass.

[2] Angluin, D. (1979), Finding Patterns Common to .a Set of
Strings, in Proceedings, 1lth Annual ACM .Symposium on Theory
of Computing, pp. 130-141.

3] Angluin, D. (1980), Inductive Inference of Formal Languages
from Positive Data, Inform. Contr. 45, 117-135,

[4] Arikawa, S. (1981), A personal communication.
[5] Gold, E.M. (1967), Language Identification in the Limit,
Inform. Contr. 10, 447-474, ' ' C

[6] Hirschberg, D.S. (1977), Algorithms for the Longest Common
Subsequence Problem, JACM 24, 664-675 ' o

[7] Hopcroft, J.E. and Ullman, J.D. (1969), Formal Languages

and their Relation to Automata, Addison-Wesley, Reading, Mass.

[8] Maier, D. (1978), The Complexity of Some Problems on
Subsequences and Supersequences, JACM 25, 322-336.

[9] = Shinohara, T. (1982), Polynomial Time Inference of Pattern

Languages and its Application, in Proceedings, 7th IBM Symposium

on Mathematical Foundation of Computer Science.

[10] Wagner, R.A., and Fischer, M.J. (1974), The string-to-string

Correction Problem, JACM 21, 168-73.
14~

