goooboooogn
0 4820 19830 129-144

A linear tree matching algorithm

by

Keiji Kojima

Central Research Laboratory, Hitachi, Ltd.

Kokubunji, Tokyo 185, Japan

130

Abstract

An algorithm is presented which searches all occurrences of |
a given complete binary tree in another, in running time :
proportional to the sum of the numbers of their nodes. The
algorithm is essentially an application of Knuth-Morris-Pratt's
string matching algorithm. An extension to more general tree
structures is also described.

1. Introduction

Pattern matching for typical data structures (string, tree,
grapn etc.) plays an important role in symbolic manipulations
[1]. For string matching problems, a number of algorithms have
been introduced ([2],[31,[4],0(5]). Knuth-Morris-Pratt's string
matching algorithm (KMP) [3] is noted among others as the first
linear time algorithm. This paper introduces a linear pattern
matching algorithm for binary trees, whose basic idea is derived
from KMP.

Tree matching algorithm have wide-ranged applications in
information processing e.g. automatic algebraic simplification
and logical deduction. Figure 1.1 illustrates the example or the
use of the tree matching algorithm.

T: 4//#\\1 P: //,\\
SN\
a//’\\1

T': * 4 ¥ 3 1 11

The binary tree T represents the algebraic expression (a*1+1)%*1
which can be simplified to a+1 using the formula x*1=x. In order
to perform this simplification, it is necessary to find all
occurences of P in T regarding x as a special node that matches
to any node of T. An ovious solution is to apply a string
matching algorithm by transforming trees to strings. In fig.1.1,
T' and P' are strings wnich are obtained from T and P by preorder
traversing. In fact, *al, which is an occurrence of P', will be
found if we apply a string matching algorithm to T' and P'.
Unfortunately, however, no other occurence of pattern P in T can

131

be detected from P' or T'. Such defect is not particular to
reorder ordering. It can be easily proved that no matter what
representatlon may be used, extra informations are required in
order to disaround this defect Besides the ovious loss of time
which is consumed for tree-string transformations, this fact
shows that use of string matching algorithm is not the best
solution for the tree matching problem.

The tree matching algorithm which is presented in this paper
works on tree structures directly. In KMP, string matching is
considered as placing the pattern string (say X) over the text
string (say y) and sliding x to the right. KMP slides x over y
as far as possible making use of the information which is
constructed by the analysis of x. The analysis of x requires
o(lx!) time (i.e. time proportional to the length of x) and the
sliding x over y requires O(lyl) time. Therefore KMP requires
o(ixl+lyl) time on a whole. 1In order to attempt to apply the
idea of KMP to tree structures, following problems must be
solved. ' ' ' '
(i) What information is necessary in order to slide a
. pattern tree over a text tree efficiently ?

(ii) Is the information able to be constructed in llnear
time ?

The tree matching algorithm which is described in thls paper
solves these problems in the case that the pattern tree ‘is
complete binary. The algorithm has two stages just as KMP-
pattern analysis and matching between text and pattern.

In Section 2, we introduce the basic data representatlons as
the basis for the discussion of the later section. In Section 3,
a linear time algorithm for the analysis of the pattern tree is
described. In Section 4, we describe the matching algorithm
. whose running time is also linear. In Section 5, the matching

algorithm is extended to cover text trees which are not
necessarily complete. ~

2. Data Structures

In this section, we introduce the basic data structures and
the operations on them. Given a complete blnary tree with 2h_q
(h>0) nodes, we represent it by an array T in the following
manner.

(i) the root of the tree is stored in T[1].

(ii) the left son and right son of the node which is stored in
T{i], are stored in T[2i] and T[2i+1] respectively.

That is, the nodes of the tree are stored in level-first order in
array. So hereafter let the nodes of a complete b1nary tree be
denoted by their level-first numbers.

We define "compact subtree" which is a su1table unit to our
discussion.

Definition 2.1

Let T be a complete binary tree. rA compact subtree T(i,J)

132

is the tree whose nodes are descendants of i and numbered less
than or equal to j. The node i is the root of T(i,j). The node
j is called the bottom of T(i,j). |IT(i,j)! represents the number
of the nodes of T(i,j). (fig.2.1)

T(3,13)

fig. 2.

Using def.2.1, our tree matching problem can be formally
described as follows.

Problem

Let T and P compelte binary trees. T is called a text tree
and P is called a pattern tree. Construct an OC|IT{+IP}|)
algorithm that searches all compact subtrees of T which is equal
to P.

We define three operations which give characteristic
positions on compact subtrees.

Definition 2.2
(i) left(i,j) = 2tl08 jl-log il * ;3 (i, j#0)
(ii) right(i,j) = 2t108 jl-llog il * (i + 1) - 1 (i,30)

(iii) fwd(i,J) if left(i,j) < j < right(i,])
then j + 1 else 2%*left(i,j) (i,j$0)

These functlons are also defined on i=0 as 1eft(0,J) Js
right(0,j)=j and fwd(O,J) j. (fig.2.2) .

fig2.2

leftti,j>" 7 right(i.j)
’ furd(i,])

Proposition 2.1

133

Let T be a complete binary tree and T(i,j) be a compact
subtree of T.
(i) If T(i,k) is the minimal complete compact subtree of T which
contains T(i,j), then left(i,j) is the leftmost leaf and
right(i,j) is the rightmost leaf of T(i,k).
(ii) T(1 fwd(i,j)) is a compact subtree which contains T(1 j) and
[T(i, fwd(l J))f—lT(l J)i + 1.

Corollary

(i) left(i,j)=j iff T(i,k) is a complete compact subtree
where j=fwd(i,k).

(ii) right(i,j)=j iff T(i,j) is a complete compact subtree.

Two auxiliary functlons are introduced by the follow1ng
definition.

pefinition 2.3

(i) trans(i,j) = j - 2t108 ijiog Pl #(i-1) (i, 3£0)
(ii) trans™' (j,1) = (1-j)*27H08 il 1 (j,140)

It can be easily proved that trans(i,j)=|T(i,j)|. trans
is an inverse of trans in the sense that trans™ (j,trans(i.j))=1i.

3. Analysis of pattern tree

In this section, we describe the analyzing algorithm which
produces information used to speed-up the matching procedure.
- This algorithm takes a linear time for the size (number of nodes)
of pattern tree. We assume that pattern tree is stored 1n array
P and that its size is m. First of all, we define five
characteristic compact subtrees. These trees supply all -
necessary informations for the linear matching.

Definition 3 1

Candidate tree (C- tree) of the node j is the maximal compact
subtree P(i,k) that satisfies follow1ng conditions.
(i) i £1
(ii) j = fwd(i,k)
(iii) P(i,k) = P(1, trans(l k))
If there is no such a compact subtree, C-tree for j th node of T
is an empty tree. This also holds for def.3.1 to def.3.5.
Notice that C-tree for j is unique because there always exists
the maximal tree among compact subtrees with the same bottom.

Definition 3.2

Success tree (S—trec) of the node j is the maximal compact
subtree P(i,j) (i £ 1) such that P(i,j) is equal to
P(1,trans(i, j)).

134

Definition 3.3

Failure tree (F-tree) of the node j is the maximal compact .
subtree P(i,j) (i # 1) that satisfies following conditions.
(i) P(i,k) = P(1,trans(i,k)) where j = fwd(i,k)
(ii) P[j) = P[trans(i,j))

Definition 3.4

Right tree (R-tree) of the node j is the maximal compact
subtree P(i,k) (i # 1 , j = fwd(i,k)) such that P(i,j) is
complete and equal to P(1,trans(i,j)).

Definition 3.5

Left tree (L-tree) of the node j is the maximal comapct
subtree P(i,j) (i # 1) such that P(i,j) is complete and equal to
P(1,trans(i,j)).

We define functions which return the root of C,S,F,L or
R~-tree of a given node. :

Definition 3.6

Let X represent 'C','S','F','L' or 'R'. Then,
X-root(j)=i iff i is the root of X-tree for j.
If the corresponding tree is an empty one, the value of function
is 0. For example, C-root(j)=i if i is the root of C-tree for j
th node and C-root(j)=0 if C-tree for j th node is empty.

We define one more convenient function named 'next'.

definition 3.7

Let X be 'C','S','F','L' or 'R'. Then,
next(X,j) = trans(X-root(j),j))
next ® (X,j) = next(next %=V (X, j))

Qur next task is to construct C,S,F,L and R-tree in a linea
time. This can be achieved by utilizing the inductive relations
among these trees. Firstly, we show this inductive relations.
The following five propositions show that we are able to find
S-,F-,L- and R-tree of the node j if we know C-tree of the node
and these four trees of nodes whose numbers are less than j.

Proposition 3.1

Assume that C-tree for j (j>1) is an empty tree. (i.e.
C-root(j)=0) 7
(i) 1f P[jl=P[1], then S-root(j)=j, F-root(j)=0, L-root(j)=j and
R-root(j)=0.
(ii) Otherwise, S-root(j)=0, F-root(j)=j, L-root(j)=0 and
R-root(j)=0.

Proposition 3.2

T ———.g

135

Assume that C-root(j)=i (i#0) and that P[jl=Pltrans(i,j)].
(i) S-root(j)=i
(ii) F-root(j)=trans~ (j, next(F,trans(i,j)))

proposition 3.3
Proposit 97

Assume that C-root(j)=i (i#0). If left(i,j)=j, then
R-root(j)=1 else R- root(g) trans“(J,next(R trans(l,J)))

proposition 3.4

Let i=S-root(j). If right(i,j)=j then L-root(j)=i.
otherwise, L-root(j)=trans-1(j,next(L,trans(i,j))).

Proposition 3.5

Assume that C-root(j)=zic (ic#0) and that
P[jl#P{trans(ic,j)].
(i) Let m be the smallest integer wthh satisfies
P(jl=P[next ™ (F,j")] or next (M (F,j')=0, where j'=trans(ic, 3)
Then S-root(j)= trans“(J next(m)(F,J)). _ i
(ii) F-root(j)=ic

1f C,S,F,L and R-tree of nodes whose numbers are less than
or equal to j, some C-trees of the nodes whose numbers are '
greater than j are known. The following two definitions and
three propositions show this. ' o

Definition 3.8

Let is=S-root(j) and ic=C-root(j). R’ is a set nodes, which
is constructed as follows. L :
(i) If right(is,j) < right(ic,j), then right(is,j)+1eR’ .
- (ii) If xeR’> and right(R-~ root(x) x) < rlght(lc,J) then

right (R-root(x),x)+1e€R*. (fig.3.1) ; - —
C

Definition 3.9

136

LIJ
Let is=S-root(j) and ic=C-root(j). Then,is a set of nodes
and constructed as follwing. ;
(i) If left(is,j) > left(ic,j), then left(is,j)-1cL’.
(ii) If xeL? and left(L-root(x),x) > left(ie,j), then
left(L-root(x),x)-1el’ .

Proposition 3.6

Let is=S-root(j). If is=0, then C-root(2j)=0 and
C-root(2j+1)=0. Otherwise, C-root(fwd(is,j))=is.

Proposition 3.7

Let xeR’ and ic=C-root(j). Then,
C-root(x)=trans~! (x,next(R,trans(ic,x))).

Proposition 3.8

Let xelL’ and ic=C-root(j). If L-root(x)=0, then
C-roct(2x)=0 and C-root(2x+1)=0. Otherwise,
C-root(fwd(L-root(x),x))=L-root(x).

Now we are able to establish the pattern analysis algorithm which
constructs C-,3-,F~,R- and L-tree for a complete binary tree T.
The algorithm is based on the inductive relations of C,S,F,R,and
L-tree which are shown by prop.3.1 to prop.3.8. That is, each
part of the algorithm corresponds to prop.3.1 to prop.3.8
strictly. This correspondence is as follows.

prop.3.1 line 6,7,8
prop.3.2 line 11

prop.3.3 line 16,17
prop.3.4 line 18,19,20
prop.3.5 line 12,13,14,15
prop.3.6 line 22,23

prop.3.7 ; line 24,25,26,27
prop.3.8 : 1line 28,29,30,31,32

The algorithm uses five array c¢,s,f,l and r corresponding to
the five tree. For example, f[jl=F-root(j) after the algorithm
was executed.

O3 O Ul =W N) -

10
1
12
13
14

15

16
17

18
19
20

21
23

24
25
26
27

28
29
30
31

- 32

137

Algorithm 3.1

(cl11,s(11,f011,r(1],2011):=(0,0,0,0,0);
(el231,c(31):=(0,0);
for j from 2 to m do
ic:=cl[jl;
if ic=0
then
if P[jl=P[1]

then (s(jl, 1[3]) =(3,3); (£031,rL31):=(0,0)
else fljl:=3; (s[J],r[J],l[J])::(O,O,O)
end if .
else

j':=trans(ic, j);
if PLjl=P[j'] ‘
then s[jl: =1c, fljl: -trans"(J,next(F,J))
else x:=3'; fljl:=ic; :
until P[x] P[j] or x=0 do
x:=next(F,x)
end until;
sljl:=trans™ (j,x)
end if;
if left(lc j)=3j then rl[jl:=ic
else rl[jl:=trans™ (j,next(R,j"))
end if;
if right(ie,j)=3
then 1[jJl:=s[j]
else 1[jl:=trans=1 (j,next(L,trans(s(j], J)))

end if
end if;
1s.=s[3]

if is=0 then (c[23],c[2j+1]):=(0,0)
else c[fwd(ls,J)] =is

end if; .

x:=right(is, j)+1; g

while x= <r1ght(1c Jj) do
clx]:=trans-' (x,next(R,trans(ic,x)));
X: :rlght(c[x] x])+1

end while; '

x:=left(is,j)-1;

while x>= left’lc,J) do
if 1[x1=0 then (ecl2x1,c[2x+11):=(0, 0)

else c[fwd(l[x] x)]1: -l[XJ
end if; :
x:=left(1[x],x)-1

end while

end for -

138

The correctness and complexity of algorithm3.1 are described
by the following theorems.

Theorem 3.1

Algorithm 3.1 computes C-tree, S-tree, F-tree, R-tree and
L-tree correctly.

Proof of Theorem 3.1

Each tree of the node 1 of T is correctly computed at line 1
of algorithm 3.1 by definition of each tree. Assume that
c[jl=C-root(j) at line 4. If c[jl=0, then S-root(j), F-root(j),
R-root(j) and L-root(j) are correctly computed by prop.3.1. So,
let c[jl=0. If P[jl=Pltrans(C-root(j),j)], then S-root(j) and
F-root(j) are correctly computed at line 11 by prop.3.2,
otherwise they are also correctly computed at line 12-15 by
prop.3.5. L-root(j) and R-root(j) are correctly computed at line
16-17 and line 18-19 by prop.3.4 and prop.3.3 respectively.
Therfore it is sufficient to prove this theorem if we show
e[jl=C-root(j) at line 4. To show this, we provide the loop
invariant (¥) at line 4.

1
(®) /\ eljk]l = C-root(jk)
k=1
where j1=j, jk=right(ecljkl,jk)+1 (1<k<1+1)

and jl+i=2left(ec(j1],3j1). (fig.3.2)

C-tree(j;) C-tree(j,)

- .. Jl 1 Jl J1 J2

When j=2, (*) becomes c[2]=C-root(2) c[3]=C-root(3) and this is
true 51nce C-root(2)=C-root(3)=0 by def.3.1 and prop.3.6 and

cl[2]=c([3]=0 at line 2. Now assume that (*) is true for j (j>1).
If C-root(j)=S-root(j)=0 and j<right(C-root(j),j), then ;
j+1=fwd(C-root(j),j). By prop.3.6 C—root(j+1)=C-root(j). Hence .

139

(*¥) is still true after one for-loop traversal. If
c-root(j)=S-root(j)=0 and j=right(C-root(j),j), then j+1=j2 and
j1+1=fwd(C-root(j),j)=21eft(C[j2],j2). Since C-root(j2)=cl[j2]by
hypothesis and .) . \) N
c-root(right(C-root(jl),jl)+1)=clright(C-root(jl),jl)+11,

e[fwd(C-root(j),j)] is correctly assigned at line 23 by prop.3.6.
Hence (¥*) is also true after one for-loop traversal. If’
c-root(j)=S-root(j)=0, then j+1=j2,2j=jl+1,
2j+1=right(C-root(jl+1),jl+1)+1 and : ~
right(cl2j+1]),2j+1)+1=21eft(c(j2],j2). Since C-root(j+1)=cl[j+1],
c-root(2j)=cl2j] and C-root(2j+1)=c[2j+1] by hypothesis and
prop.3.6, (¥) is true in this case. If C-root(j)=S-root(j), then
R} and L’ can not be empty. From the construction of R? and L?,
however, (*) is clealy true. Therefore we have established (¥)
as the loop invariant for for-loop. From (¥), cfjl=C-root(j) at
line 4 especially. Hence algorithm 3.1 correctly computes each
tree. ‘

Theorem 3.2
Algorithm 3.1 requires 0(m) time.

Proof of Theorem 3.1

The algorithm has three loop at line 13, line 25 and line 29
on which the time complexity depends. Let us define two .
functions G and H in order to evaluate the cost of these-three
loops.

G(J)
H(J3)

2))
g;lc~tree for jkl
1

where j1=j, jk=right(ecljk-1],Jjk-1)+1 (1<k<1+1)

Jl+1=2left(clj11,j1).

Notice that cl[jkl=C-root(jk) at line 4 by the loop invariant ‘in
proof of theorem 3.1. Assume that x:=znext(F,x) is executed p(j)
times at line 14. Then G(j) decreases by p(j)-1 at least because
p(j)<C-root(j)-S-root(j) and j becomes an element of C-tree for
fwd(S-root(jg,j) if S-root(j)#0. Therfore G(j+1)<G(j)-p(j)+1.
Hence p(j)<G(1)=-G(m+1)+m<m since G(1)=0 and G(m+1)20. That
is, line TU is executed at most m times during the execution of
~algorithm 3.1. On the other hand, if the while loops at line 25
and 29 are repeated q(j) times, then H(j+1)2H(j)+q(j) since at
least q(j) new C-trees are added. On a whole,

q(j)<H(m+1)-H(1)<m since H(m+1)<m+1 and H(1)=1. Therfore
the total cost of the loops at line 13, 25 and 29 is O(m). Hence
algorithm 3.1 requires 0(m) time. v

140

4 Matching algorithm

We are going to construct a linear pattern matching
algorithm for complete binary trees in this section.. We assume
that text tree (size n) is stored in array T and pattern tree
(size m) is stored in array P. For pattern tree P, we have
already its F-tree, L-tree and R-tree in array f,1 and r
respectively by Algorithm 3.1. C-tree and S-tree are not used in
the matching algorithm which we will construct. First of all.
we revise the definitions of C-trees and S-trees. -

Definition 4.1

C-tree for j th node of T is the maximal compact subtree
T(i,k) which satisfies following conditions.
(i) j = fwd (i,k)
C(ii) T(i,k) = P(1,trans(i,k))

Definition 4.2

S-tree for j th node of T is the maximal comapct subtree
T(i,j) which is equal to P(1,trans(i,j)) where trans(i, j)¢m

Since def.3.1 and def.3.2 are the special case that T=P and
i=1 in def.4.1 and def.4.2, the revised versions of C-tree and
S-tree are the extensions of old ones. From hereafter, we adopt
def.4.1 and def.4.2 as the definitions of them.' Because we do
not utilize C-tree and S-tree of P which are constructed by
algorithm 3.1 at all in this section, this causes no confusion.
By def.4.1, constructing C-tree for every node of T is equivalent
to solving our pattern matching problem. That is, we are
searching C-tree T(i,k) such that [T(i,j)l=m and T[jl=P[m] with
j=fwd(i,k). From this point of view, algorithm 3.1 is considered
to - be a matching algorithm between pattern tree and itself by
regarding T as P in def.3.1 and def.3.2. Using def.4.1 and
def.4.2, prop3.1,3.2 and 3.5 holds with minor changes.

Proposition 4.1

Assume that C-root(j)=0. If T[jl=P[1], then S-root(j)=j.
Otherwise, S-root(j)=0.

Proposition 4.2

Assume that C-root(j)=i (i#0) and that T[jl=P[trans(i,j)].
If trans(i,j)tm, then S-root(j)=i. Otherwise,
S-root(j)=trans-*(j,next(L,trans(i,j))).

Proposition 4,3

" Assume that C-root(j)=i (i#0) and that T[jl#P[trans(i,j)].
Then, S-root(j)=trans-1(j,next? (F,j')) where j'strans(i,j) and
1 is the smallest integer which satisfies T[jl=Pl[next " (F,j')]
or next ‘"’ (F,j')=0.

141

Prop.3.6, 3.7 and 3.8 hold true without any change.

Now we show the matching algorithm. This algorlthm searches
all T(i,j) that is equal to P and prlnts pair (i, j). "As we have
mentloned the matching algorithm is essentially the same as
algorithm 3.1. The correspondence between propositions and lines
is as follows. - .

prop. 4 1 : line 5
prop. 4.2 line 8
prop.4.3 line 9,10, 11
prop.3.6 line 14,16
prop.3.7 line 17,18,19,20
8 line 21,22,23,24,25,26

prop.3.

Algorithm 4.1

1 C[TJ::O
2 for j from 1 to n do
3 ic:=cljl;
y if ie=0
then
5 if T[j1=P[1] then s[jl:=j else s[jl:=0 end if
else
6 j'-trans(lc,J),
7 if T(jl=P[j"]
8 then s(jl: -1c; if j'=m then print(ic,j)
9 else x:=]!
10 until T{J] P[x] or x=0 do
1 X:znext(F,x)
» end until;
12 sljl:=trans? (j,x)
end if;
- end 1if;
13 ‘is: =s[J] '
14 if is=0 then (cl[2j], c[23+1]) =(0, 0)
else
15 if j'=m then is:=trans~'(j,next(L,j')) end if;
16 - clfwd(is,j)]l:=1is
end if;
17 x:=right(is,j)+1;
18 while x= <r1ght(1c j) do
19 clx):=trans-'(x,next(R,trans(ic,x)));
20 x:=right(cl{x], x)+1
end while;.
21 x:=left(is, j)-1;
22 while x>= left(lc j) do
23 y:=trans’ (x, next(L trans(ic,x)));
24 if y=0 then (c[2x] e[2x+11): -(0 0)
25 else c[fwd(y,x)] zy
end if;
26 x:=left(elx],x)-1

end while
end for

142

Theorem 4.1

Algorithm 4.1 searches all occurence of T(i,j) such that
T(i,j)=P in O(n) time.

We are able to prove this theorem in quite similar manner
supplying the same for-loop invariant and the cost evaluation
functions as proof of Theorem 3.1 and Theorem 3.2. We omit the
detail.

5.Extension

Algorithm 4.1 can be extended to cover text trees which are
not necessarily complete. Assume that a text tree T with n nodes
is stored in array text in level-first order. Lson, rson and
parent are arrays such taht lsonlk], rsonlk]l and parent(k] are
the left son, right son and parent of node k respectively.

(Fig.5.1)
b///a\\\c K
d// \\a ;:iZnt
_ lson
//\\ rson
I a

WO —
NLE-=00MN
vOO—-‘OUJ
ooha &=
~ovnhvo W,
[eNeR®)NelNe N
ooV

T is embedded to a complete binary tree T' by two functions
f:T=->T' and f':T'->T. That is, for node k of T, f(k) gives the
corresponding node of T' and f' is the inverse of f. (fig.5.2)

a
N
/S S ’ Kk 1 2 3 4 5 6 7
d\a ‘T f 1 2 3 4 510 11
4 5
AN
6 7

Zb/ 'a\c3 T kK 1 2 3 4 10 1
4 / \as Go/ \07 £' 1 2 3 4
c/\a o/\o o/\o

(o])
8§ 910 N 12 1314 15

5,18
oo
—-~

143

The table of f and f' can be constructed in 0(n) time in the
ovious manner. It is possible to calculate f' for nodes which
don not appear in the table but their parents do.

f''(k) = if k is even then 1lson[f'(k/2)] else rson[f'(k-1/2)]

Note that the number of the nodes of T' for which f' is defined

is 0(n). Now assume that the construction of C-tree for T and P
proceeds upto j th node of T and that C-root(j)=ic. Then, using
f, T(ic,j) is translated to T'(f(iec),f(j)). (fig.5.3) That is,

f(J) and f(ic) are used instead of j and ic in algorlthm 4.1.

e - - -

matching rans\fGic), f(j))

Since T' 1is complete, algorithm 4.1 correctly works for
T'(f(ic),f(j)) and decides C-trees for appropriate nodes of T'.
Let us assume that C-root(x)=y for nodes x and y of T'. This
time T'(y,x) is translated to T(f'(y), f'(x)). That is, let
C-root(f'(x))=f'(y) in T. '

There is a possibility, however, that the corresponding node
to x may not exist in T (i.e. f'(x)=0. Notice that f' .is
defined for x since f'(parent[x]) is not zero in algorithm 4.1.)
In this case the extended algorithm searches the node x' of T!
‘such that x<x'$r1°ht(y,x) and f'(x')#0. For such x',
C-root(f'(x))=f'(y') in T where :
y'=trans~'(x',next(R, trans(y,x))). If there remains the node
x'' such that rlght(y x')<x"''<right(y,x) and £'(x'')#0, then
C-root(f'(x"*))=f" (y") where
y''=trans-?(x'',next(R,trans(y,x''))). This process continues
untill there remains no such x . A similar process is performed
to the left of x using appropriate L-trees and R-trees.(fig.5.4)

£

Lrans
PRSI,

/ ;
next (R, fausty X3P

traws™

R-root (trausCy, XM

fransy,x) = traus (7.X)

After these processes, the construction of C-tree successfully
proceeds to j+1 th node of T since all necessary C-trees have
been decided and quite a similar loop invariant which is used in
the proof of Theorem 3.1 also holds. The time complexity of the
extended algorithm is O(n) since we have only accessed to the
nodes of T' on which f' is defined. The space complexity is
clearly O(n) from the above data structures.

Acknowledgements

The author wishes to express his deep appreciation to
Professor Reiji Nakajima for his helpful advices. He also thanks
to Etsuya Shibayama and Tatsuya Hagino for valuable discussions
with them.

References

[1] Donald E.Knuth, Fundamental Algorithm, The art of Computer
Programming, Vol.1, Addison-Wesley, Reading,Mass., 1968; 2nd
edition 1973. ' '

[2] Malcom C.Harrison, Implementation of the substring test by
' hashing, Comm.ACM,14 (1971) pp T77-=779.

[3] D.E.Knuth, J. H Morris Jr., V.R.Pratt, Fast Pattern Matching
in Strings, SIAM Jd. of Computer, Vol.6, No.2, June 1977.

[4]) Alfred .V.Aho and Margaret J.Corasick, Efficient string
matching: An aid to bibliographic¢ search, Comm,. ACM 18 (1975),
pp.333-340.

{51 R.S.Boyer and J.S.Moore, A first string searchlng algorlthm,
Comm.ACM, Vol 20, No.2, Oct 1977.

