goooboooogn
0 4820 1983 0 215-239

215

Decsign and Implementation

at

A Highly Modularizea functional ilanguage

Nobuyuki Saji
Software Product Engineering Laboratory
Nippon Electric Company
Akinori Yonezawa

Department of Information Science
Tokyo Institute of Technaolagy

I. Introduction

The recent rapidly growing interaest in functiognal
programming 1is a ‘practical one in contrast to the purely

thzoretical one in the past. This shi#t of interest is: the
reflection of two recent phenomena: the much publicized
"Sottware Crisis". and the promised development of the VLSI
technology. The  crisis due to the difficulty in

constructing and maintaining reliable software in imperative
{(Ven  MNeumann type’ languages drives us fo seek semantically
simple ianguages such as functional lanquages as a very
attracoive alternative. & the zz2me tim=2 +the VLSI
technology affords us to build nardware with a large number
of processing elements, which 1n turn allows us to take
advantage af a very large degree af caoncurrency in
computation. Again functional languages. oy their nature of
side—effect freeness, distinguish themselves as powerful
notational systems that are quite suitable for exploiting
parallelism. 3

For functional programming to be practical, ane must,
of course, be able to write and maintain large “Functienal
So¥tware” less castly (not orohibitedly castlyl. He

aeiieve, for this purpose, “methodologies” for functional
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pragramming are indispensable as they are for conventional
programming. In particular, structuring and modularization
of pragrams are of paramount importance. This paper
concentrates on language issues in functional programming.

First, we discuss program structuring 3and modularization
concepts and propose a new functional langusgs called FLADT
(Functional Language with Abstract Datas Types). which
inzgrparates such concepts. The concepts discuszed include
abstract data types, higher order functions, type
parametrizstion, and function modules. Next, we present a
novel enviranment retention methaod which wuniformly handles
both higher order functions and type parametrization an
conventional (Von Neumann type) architectures. Our method
can 1implement 3 quite general tupe parametrization scheme
more e+ficiently than the opreviously gzroposed methods
gﬁLS7B,Yua793. .

Qur: adherence to conventiaonal architectures is
justified by our view that we must experiment and accumulate
experiences of functional programming on conventional
architectures wuntil reasonably efficient architectures for
executing functional program come to hand. Taking this view
further, we also .consider functional programming as
"executable specification" writing. In this sense: ourtr waork
is relevant to conventional programming methodologies which
emphasize specification writing in every phase of program
construction and maintenance.

’
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I Structuring Concepts

The following concepts seem important in structuring and
modularization of large functional programs. Those concepts
are made concrete as language constructs in the language
FLADT [Yon81, SayB2a, Sa 82bl. )

1. Abstract Data Types

In order to write a program which solves a given problem
in a natural fashion, one should be able to define (user-
defined) new data types which naturally reflect data
components of the problem domain. Furthermore, the user
must be able to use such data types without knowing how they
are represented. The user of such data types should rely an
gnlq their abstract properties. When the user defines a new
data. type, the description . of its representation and the
definitions of its associated operations should be textually
put ftogether and the linguistic mechanism (the language
semantics) must prohibit any operations pgot associated ‘with
the type to be applied to data of that type. This is the
idea of abstract data types. Of coursasa, the concept of
abstract data type has been developed [DDH721 and
implemented in a number of imperative languages [e.g., CLU;
Iota, Euclid, Adal to provide the programmer with a powerful
modulatization wvehicle. We feel that this «concept af
abstract data types is equally useful and FLADT language:
pravides a facility for defining abstract data types as a
ma jor modularization construct. See the “fadt unit® in the
next section.

2. Function Modules

When we define a group of functions which are used for . a
single complex task, the structure of programs is not easy
to comprehend if the definitions of 'such functions are
scattered in the program text. Thus we shauld provide some
mechanisms to put the .definitions textually together .and
form .a  linguistic  unit. This mechanisms is wused faor
grouping functions which are wmutually related, but not
assaciated through abstract data types. To enhance program
modularity. the names of the functions which are wused (er
called) outside the linguistic unit should have their names
explicitly <ctated and the  semantics rule of language
disallow the use of the other functions defined in the unit
outside it.  In FLADT. such a linguistic unit  is <called a
module definition . unit. “Modules"  in Euclid [EUC771 and
"packages" in Ada [AdaB801 are similar linguistic constructs.

3. Higher Order Functioans

A function which takes functions as parameters or returns
a function as its result wvalue is called a higher order
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function. Fascal and ather conventional imperative
languages provide facilities for higher order functions in
restricted forms, yet the danger of side-effects
substantially reduces its usefulness. ‘In  functional

programming, however, the use of higher order functions 1is
not only safe, but also extremsly powerful in expressing
certain kinds of computatians naturally. {Henderson’s
bookfHenB801 gives 1interesting examples of higher  order
functions such as a parsing program for context free
languages. This program consists of definitions. of the
functions which are precise transliteration of corresponding
BNF  syntax’ rules and it seems as natural and succinct as
ones written in Prolog for the same purpoaose. )

Higher order functions also provide ws with means ¢to

structurize and schematize descriptions of algorithms
through functional parametrization’ and the resulting
descriptians are aften much shorter and easier ¢tao
comprehend. This is another important merit to wuse higher

ordar functions.

A word of caution: considerable care should be taken to
avaoid miss—match of parameter types in using higher arder
functions. So we think type specifications for functional
parameters and rtesult functions should be made explicit in
definitions. (The syntax of FLADT requires explicit <type
spacifications in interfaces of function definitions.)

4. Tgpé Parametrization

One of the most important disciplines for writing
reliable software 1is to maintain the ¢type "consistency
between operatars and their operands (functions and their
arguments) that are wused in programs. When one wishes to
_cause similar effects to different types of objects, the
type discipline requires wus to write different programs

individually. For example, two different sorting functions
musft be writtenm for a sequence of integers and a sequence of
character strings even if the same algorithm 1is wused. If

the = type parametrization facility is provided, one need nat
write two different sorting functions; a single function
with parametrization of object ¢€types 1in the sequence
suffices. ‘

The notion of type parametrization is not restricted to
functions. The type of components constituting an abstract
data type can also be parameterized. Moreover, the data
types appearing in the definitions of functions. which
comprise a function module can be parameterized. Thus the
use ‘of type parametrization in various parts of a software
system contributes to the reduction of the system size " and,
of course, it structurizes the whole system.

It should be noted that types to be parameterized often
nead to satisfy some conditions. For example, the types
parameterized in the sorting functions mentioned above ' must
have order relations which are identified by the same name.
(E.g., the greater—than relations for integers and character
strings must have the same predicate name. ) Therefore this
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kind of restriction should be stated explicitiy in the
definitions of type—-parameterized program wunits. But if
type parametrizatian is wused together with higher order
functions, the restriction suggested abave can be removed.
For example, if the predicate which tests the order relation
is abstracted as a functional argument 1in the type
parameterized sorting function, the condition is
automatically satisfied by the formal arcument name, (which
is of caurse unique) for the predicate.
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[TI. The language FLADT

In ¢this section, we discuss a new functional
(applicative) language FLADT (Functional Language with
Abstract Data Types) which ‘incorporates the structuring
concepts introduced in the previous section. The

implementation of FLADT was written in our CLU sygstem
(Sad81] which &also supports powerful abstraction features
CCLU721. Moreover, we discuss the FLADT system which we
plan to implement as a total sustem for e+fective functional.
software development. ' ’

1. FLADT

Besides typical applicative language features . [Lané&éb,
geQYO], FLADT supports wuser cantrolled delayed/forced
eévaluation and higher order functions, and provides language
canstructs for data abstraction and function modularization.
The data abstraction and the function modularization can be
type parametrized.

Programs in FLADT consists of a sequence of units which

are explained below. Data types (or data structures}) are
represented by the use of a rich repertoire of standard
types and type generators. (Since FLADT is a functional
language. functions and operators are described as

expressions. )
1.1 Units

There are seven kinds of units.
(i} type definition unit
(collection of type definitions)
(ii) constant definition unit .
) (collection of expressions which are computable in
compilation time) ‘
{1ii} function definition unit
(a definition of a global function}
(iv) +fadt (functional abstract data type) definition unit

(definitions of abstract data types and their
associated operators:, see II.1.)
(v) module definitien unit

(collection of function definitions, see II.2.)
(vi} expression unit

(an expression which can be executed)
(vii}) interface unit

(collection of interface informatiaons)

" 1-2 Expressions

(1) literal

(ii) name

(iii) data object constructor
(iv) type converter

(v) abort expression

(vi) prefix/infix expression
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{vii) <conditional expression
(viii) where expression

tix) lambda expression
(x) function application
(x1) delaying/forcing expression

(xii) first/for expression (a la Backus’s o)
1-3 Types and Type Generators

A type consists of a set of objyjects together with a set .
of aoperators to manipulate the objects. A type generator is.
a parametrized type definition, representing a set of
related types. :

Standard (built—-in) types and type generators in FLADT
are as follows.

types - —— null, bool, inpt, char, string, stream

type generators —— seq. prod, sum. delay, map
These type generators represent‘ sequance type,
Cartesian product type:; direct sum (discriminated union)

type, delayed type, and mapping type.

We can implement a new data type or type generator
using a fadt definition. However, the number of ¢type
parameters for a defined type generator is fixed. (we cannot
define a new type 1like a type generator prod or suml} An
enumeration type like one in Pascal can be uniformly defined
by a fadt definition using objects in FLADT.

Now, we show two checking algorithms concerning typesi
One is for well-formedness of type and another for
equivalence of types. :

The well-formedness of type is defined as whether or
not an object of a type can be created in finite area. -
For instance, the following type :

bad = prodl item:int, rest:bad .1

is not well-formed because it is defined by non—-terminating
recursion. : : I ’ ’

The algorithms we use for the well-formedness checking
ang type equivalence are given in Fig. 3.1 and Fig. 3.2
respectively. Note that our algorithm for type equivalence
is based on the structural eguivalence. The well-formedness
and type equivalence are performed by the following function
calls.

‘wellf( T, @) ' @ well-formedness of type T
aquiv( T1, T2, @ @ equivalence of type T1 and T2
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func wellf(T:types,BFS:set):hogl =
@ BFS denotes a set of bad-formed types

e which can be recursively checked
if setsis_in(BFS, T} then
talse '

alse 1f T?sum then
forsome t in typesselements(T)
suchthat well#( ¢, T} v BFS }
else if T7prod then
forall t in typesteiements(T?
suchthat wellf( t, {T} v BFS 2
else if t7fadt_with_params then
forall t in typestelements(T)
suchthat wellf( £, {T> u BFS )

else @ seq or mapping type
true
end wellf
Fig. 3.1

func equiv(Ti.TJ:tgpes,ES:séts):bool =
@ ES denotes a set of equivalence pairs

. e of types which can be recursively checked
if Ti7basic & Tj?basic then
Ti = Ty
else if Ti7basic xor Ty y?basic then
false .
else if Ti = Ty then
true ‘
else if sets$is_in(ES,{Ti, Ty} then
true .
else

forall ti,ty in typesselements2(Ti.Ty)
suchthat equiv( ti, tj, {{Ti. T3> v ES )}
end equiv

Fig. 3-2
1-4 Names and 0Ob jects

The basic elements of FLADT semantics are names and
objects. Ob jects are the data entities that are created and
operated by programs. Names are used in a program to refer
to objects. We show this  definitional framework in Fig.
3-3. A structured object denotes the abject which 1is
constructed with some related ob jects. A record type in
Pascal is an example of a structured obgject. A function is

an object which accepts abjects as arguments and returns an
object as its value.
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names

bind to
A4

ob jects

possess
accept structured y
ob jects return

\\\\“‘->[Functions I—-——————-—”’//

2. Examples of FLADT Program

The program in Fig. 3-4 is an implementation of set
type in the FLADT language. In general, a fadt (functional
abstract data type) definition consists of two part: the
intarface part and the definitiaon part. The interface part
specifies the names and #functionalities of the operators
which are basic to the abstract data type being defined.
(“$* denotes the type being defined. ) When the fadt is type-—
parameterized, the rtestriction to the type parameters must
also be specified in the interface part. In the case ot the
example program, the type of set elements must have "equal®
as its basic operators with the specified in the definition
part. :
The definition part specifies the representation of the
abstract data type being defined. In the example.

tupe fep = sagl t 1]

means that the set type is represented by a standard type

genarator ‘“seq". The type  identifier “"cvt™ has a special
meaning. It does the conversion between the abstract data
type and 1its representation. (The notion of “cvt" are

borrowed Ffrom CLU.)
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fadt setl t 1]
interface"

setlLtl :: empty: -> %
is_empty: * —-> bogol
insert: s # £ -> %
equal: $ ¥ $ —-> bool
member $ # t —> bool
elements: % => seqlt1]
t equal: t # t -> bool
end set :
tadt setl t 1]
definitian
restrict ¢ :: equal t # t - bool
type. rep = seqf t 1
ap empty(l:cvt = reps{}
ap is_empty(s:cvitl:bool = sTempty

ap insert(s:cvi,v:it):cvt =
if setftitmember( up(s}
else repsapndl( v,

v ) then s

S I
s )
ap equal(si, s2:setftl):pool =
( forall x:t in elements(s2)
suchthat member( si, ¢ 3} )} &
( forall x:t in elements(sl)
suchthat member( 52, t ) )

op member(s:cvt,vit) . cvE =
if sTempty then false
glse if s.hd = v then ftrue
else setltIsmember( upis.tl):, v )
ap elements(s:cvt)iség[t] = g

end set

Fig. 3-4

To show the use of higher order functiens and function
modules in the FLADT language, we will give a recognizer

program. for a simple context free grammar. The original
pragram in a simple functional language 1is given in
Hendersan‘s book CHen8O01. The defined language can be

specified by BNF as follows. (C,Vvdenote terminal symbols)

¢ | C <ecseq>

<vseq> H VvV | VvV <vseq>
<syllable> :: <cseqr <vseq>

] <vseq> <cseq>

| <{cseqr <vseq> <vseq>

{cseq> -

oo
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Fig. 3-S5

The above grammar 1s intended to describe the common forms
of syllables in an English word. Here € stands far
“consonant" and V for “vowel'.

The program given in Fig. 5-2 is the function module
which defines a recognizer for the grammar. The module
cansists of seven functions: “syllable", "cseq", “vseq",
Yorpt, “seqp ', “vawel®, and "“consonant®. Those functional
whose definitions are prefixed with “%fn" are internal
functions fthat cannot be referred to fram outside the
module. The internal functions are wused to define the
function ‘“syllable which 1is referred to from outside the
module.

module syll

fn syllable(x:stringl:bool =
orp( seqp( cseq. vseq 1},
orp( seqp( vseq, cseq I,
seqp( cseq. seqp( vseq, cseq ) )} } )

“Zfn cseq(x:string):bool =
orp( conscnant. seqp{( consonant, cseq )} )}

%Zfn vseq(x:stringl):bool =
aoarp( vowel, seqp( vowel, vseq ) }

“%“fn arp(p,q:string—>baoal)(x:stringl):bool =

if p(x) then true else q(x)

Zfn seqp(p,q:string->bool)(x:stringl:pbool =
if x = "" then
cand{ p("“"), {Lq(""}+ )
else if cand( p(""), {q(x}> )} then
true

else

seqp( AN{y:string):bool. p(string$substr(x, 1,1} & gy,

q } (stringsrest(x,2))

7Zfn vewel(s:stringl):pogol = ¢ = “Y¥
“fn consonant(s:string):bool = s = “C“
end syll

Fig. 3-6

Note that "orp" and "seqp"” are higher order functions
that take boolean functions defined on the string daomain) as
parameters. In the definition of “arp" and “seqp®“, p and q
stand for formal functional arguments and the notation:
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(x:string):bool

indicates that the returning values a# both functions are
alsa boolean function defined 1in the string domain. The
actual argument of the recursive invocation of “seqp":’

Aly:istringd:bonl.p(stringssubstrix, 1, 1)&y)

a string fupe

1s 3 boglean function whao is
ncatenatiaon.

s
variable y and "&" stands for s

=

[l

ymen
ng ¢

O cl

™
T

(3 A

It should also be noted that the wuse of +the higher
order functions enables wus to make <the form  of the
"syllable" definition a precice transiiteration of the ENF
definition of the grammar.
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IV. A New Environment Retenticn Methad

In implementing higher order functionms on conventional
architectures, how environments should be managed is a
critical paint for efficiency. The wmain issue 1i1s the
intarpretation of free variables, namely the FUNARG problem.

Though many environment management methaods have been
proposed, all of them are not sufficient in expressive power
or 2xecution speed.

This section presents a new envitonment retention -
method for free variables (called FFV method), assuming the
static binding rule is adopted as in the FLADT language.
Our method can treat uvpuward/downward FUNARGs uniformly with
practical efficiency and furthermore type parametrization
can also be }mplemented by this method

» We introduce a hypothetical language L which permits
upward/downward FUNARGs. The main features of L are as
follows: 1) L has a block structure like Pascal’s for the
scope tule, 2) L has unnamed functions (A—expressions), 3)
and in L, any value including functions 1is permissible as
arguments or result of functions. Thus, in L, data objects
are generally allocated in heap for it is impossible ¢to
determine the 1life—time of objects by the rule of block
structure.

terminology

(1} A denotes a function

(ii} )¢ denotes a  function  closure created by
evaluating a function A.

(iii) 1invocation of A denotes that A (more precisely

A“) 1is applied to its arguments and then its body is
evaluated. '
(iv) BODY (A) denotes A‘s body
(vy FREE(A) denotes the set of free variables in A
(vi) LOCAL(A) denotes the set of formal parameters and
\ local variables in A
(vii} The nesting level of a function A 1is denoted by

NL(A}Y. We define NL(AN) = 1 if A is a global
function. Let a function defined in Aa be denoted by
Aa, 1 (i20), then NL(Aa,i} = NL(Aa} + 1. « 1is an
sequence of indices k1.k2,. ...,km (m>1).

i. Basic Concepts

To treat vupward/downward FUNARGs wuniformly, it is
sufficient for invocation of A that all the values of free
variables in A are retained. This idea enables us to make
distinction between wupward and downward FUNARGs. At the
evaluation of function A, we may create a function closure
2N with embedded values of free variables. MNamely, A¥ is
represented by the following triple. (VL denotes a value
list of free variables)
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< LOCAL(A), BODY(A}, VL >

In many coaonventional languages. an environment frame
corresponds to a procedure (or a function) and all af the
local variables are canverted to distinctive values (called
displacement) in the environment frame. Thus, the access to
local variables is very efficient.

When AY is invoked, we copy from VL af AN ta A‘s  frame,
and when we access to free variables, we may use their
displacement in the #frame as lacal variables. Since all of
the wvariables in A are canverted to the displacement in its
frame, there is no distinction between free and 1local
variables.

We should note that Aa 1s already invoked when Aa,i 1is
avaluated: this 1s a natural relation derived from the
static binding rule. In other words, Aasi 1is always
evaluated in the environment of Aa.

We can summerize our method as follows. .

(i) BODY(Aa) is evaluated with the use of displacements in
the Aa’s frame

(11) Aot 1s already invoked when Aa:,1 1is evaluated

(iii) evaluation of Ao, i means construction of Xu,i. Xa,i is
constructed by copying the wvalues of free wvariables
from the Ad’s frame.

(iv) When Ao, i is invoked, values in Aw i‘s VL are copied
to the Ao, i‘s frame.

Next, we show that the following ftwo conditions for

efficient execution are held: .

(a} All the values of the free variables of Aa;i are already
in the Aa‘s frame when \a.1i is evaluated. N .

(b The cost of ‘creating a clasure P\ is din?}
(n=|FREElAu)3). and the cost of copying from VL of % to
the Frame of xa is alsc S(n)

ThefprcoF offia)}zs give in the Appendix.
Praaof of (b).

We already know that Aa:i is always evaiuated in the.

anvironment Fframe. of Ad. Each variable has been converted
to the displacement with any rule (occurrence order, |
lexicographic order, etc.) (See. Fig. 4-1) So, we may

determine the mapping function £ and g. + denotes a mapping
between the displacement of free variables of Aa to the
displacement oF vL of X« is  and g represent a mapping
between - the' .displacement of VL of M a,i to the displacement
in the frame of Aa,i. f# and g  are  easily determined at
compilation time: Note that, using # and g, we can satisfy
the cost mentioned in (b). O ‘ :
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Fig. 4-1

2. Frames with embedded Free Variables (FFV)

2.1 FFV

- We introduce a new Framé structure called FFV (Frames
with embedded Free wvariables) based on the basic concept
explained in the previous subsection.

top —>

work area

parameter and
local variable
area

free variable
area

RADDR (Return ADDRess)
Ah\\u CLINK (Continuation LINK)

3L A

2 RVAL - (Return VAlLue)
1

0

link for the parent}s frame

Fig. 4-2

We can create FFVs in the heap area as in the case of
athar data obgjects, but by using the stack area we gain mare
afficiency 1in execution speed. Then, we can -uniquely
detearmine the mapping function g which is introduced in the
previous sub section, as g{x)=x+3 for all functions, 1if we
can take a continuous area for free variables as in Fig 4-2.

2.2 Properties of FFV

(i) There is no .static—-chain (access—chain).

(ii} The object code for variables becomes compact. Un
conventional compilers, it has a pair attribute such
as <block-depth, displacementd>, but on the compiler
using FFV, only the displacement suffices.

(iii} The size of FFV is usually greater than that of a
conventional frame like one in Pascal. (Remark: if the
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number of free variables is zero, the size aof FFV is
smaller than that of conventional one because of the
extra area for static—chain. )

(iv} If a variable defined in A« is only referred to. 1in
ANoo k1. 000 km, it is alsae free in Ao kl, Ao, ki, k2,
Aoty ki1... ., k(m—1), so it is embedded in their frames.

(v} Values of free variables are copied when A 1is

evaluated or the frame of A is constructed. 2#n copy
aperations are required. (n denotes |FREE(A}])

(vi} Every time A is evaluated, A% (ciosure of A} is
created. N

(vii}) MWhenever X is invoked, ob jects for local variables of
A (ref objects in Algol &8) are created.

Note that (v} and (vi) consume considerable execution

time. Now., we show some methods for improvement for each

@ace,

(vi—-1 Since the distinction between 1local variables and
free variables can be made at compile time, we can
generate code for free wvariables in the form of
indirect referencing. Thus we can omit copying VL of

A to A‘s frame. (See below)

the frame of Ao ¢

VL of ANa

local

var
area

Fig. 4-3 .

(vi—-2 We extend the above idea. I+ FREE(Ad) = FREE(Ao, 1}
the same VL should be allocated to Ao and ia,i.

(vi)—1 When A is invoked Jjust after N is created, A“ s,
in fact, not necessary. In this case, we directly
canstruct the frame of A without creating A%.

(vi}-2 A function A which has no free variables 1is always
evaluated to the same <closure abject. Once the
closure object is created, that object will be used at
every evaluation of the A.

The abave improvements bring us a practical efficiency
on the FFV methaod.

2.3 Comparison with Bobrow-Stack

In our model, we treat the free variables directly 1in
tha frame with embedded their values, (c.f. shallow binding)
so we can access to variables quickly, but context change is
a little bit slow. In the Bobrow model, we trouble with the
refarencing to variables, but the cost of caoantext change 1is
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smail. (c. ¥. - deep binding} Moreover, the Bobrow model 1is
possible to store some paramaters in the frame for handling
backtracking, carcutines:, and unorthodax control mechanisms
with practical efficiency. The FFV methaod can handle these
control mechanisms by storing necessary informations 1in the
frame.

3. Type Parametrizatiaon Problem

In FLADT, CcLU, and Iota, we <can trest types as
parametars. This feature enhances modularization of
pragrams. On the other hand, it oaften becomes a heavy
burden to language processars. Several implementation
Methods for type parametrization - have been prapesed
[ALE7B, Yua7%9, Sad811]. Yet none of them are sufficient: the
method repcrted in [ALS78] generates code which handles
actual type parameters at runtime and the area for variaus

table tends to be large. The method by T.Yuasa (Yua7%91]
requires complicated table management and needs more
ovarhead. K. Sado [5adB81i] uses compile time macra, but the

powar of type parametrization must be restricted.

The method we propose here is based on the FFV method
and does not have the shortcomings of the previous methods
(In same cases. our method is somewhat slower than the
compile time macro method, but na restriction to
parametrized types is necessary. }

The FFV method provides us with a solution to this
problem. Though our solution is less efficient than that of
ClU’s in sagme cases, gur solution need not any suppeort
routines for treating the problem. )

We use the fadt definition of set type in sectian III

to explain our solution (rewritten in Fig. 4-4). The type
parameter t in Fig. 4-4 needs an equal operator as a
restriction. (In Iota, type t 1is declared as sype. See
LYua771} :

fadt setl t 1]
. definition
restrict t :: equal t ® t -> bool

ap. empty():cvE =

ap member(s:cvt,v:t): bool =
..... tsequal .. ...

Fig. 4-4

Our idea is to regard the operator Té$equal as a free
variable of the operator setLTI$member. (Now T#OPR denotes
the operatar OPR associated with the abstract data type. T)
In other words, to evaluate setlintl¢member is equivalent to
creating & closure with embedded intsequal as a free
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Similarly, we consider the following case.
~setl u J$member @ u is also a type parameter

This operator evaluation is proper if and only if u also has
an equal operator as a restriction such as in Fig. 4-5
Obviously, there is the operator T$equal (we suyppose that
the actual type perameter associated with u is T) in the
enviraonmant frame when setlul$member is evaluated. Now., you
will know how to use the FFV method.

fadt examplel u, v I
restrict u :: equal u % u - bool
similar u # u -2 bool

end example

Fig. 4-5

Furthermore, we substitute the above settu]$member faor

setl setful Jémember. @ u is still a type parameter
setf... l$member needs an equal o¢perator, and . type setiul
needs T%equal: then the evaluation of setlsetlullémember is

tha c¢reation of the following closure object.

setlsetltlIltmember

AR VL setlTIsequal
E23~——4> Tsequal

Fig. 4-6

(In this case, each size of VLs happens ta be the same.)
) The compiler has to generate the <code which. creates
such a closure object. It is possible but not easy.

The above discussion reveals that the type
parametrization can also be treated by the FFV method. But
1t has a paor efficiency as it is. So, we can perfarm some

cptimizations 'intrqduced in the previous section to the FFV
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methad. The optimizatiaons an usual programs cause
remarkable effects: '

1) When the actual type parameter contains no formal
parameters, (e. g. setlintIl$member) the closure ob ject
of the operator is created anly once.

2) When the operator with the type parameters calls <the
operator with the same tupe parameters (for example;,
the woperator setltldmember directly calls itself with
the same type parameter &), the clesures associated
with the calls are created only once. More precisely,
when several operators which have the same restriction
with type parameters are called., the same VL is used in
each closure. In this case, we need not treat closures
as value, they need not be created at all.

The above—-mentioned 1is applied.to'not anly the simple
case such as one type parameter, but also to more general
cases such as in Fig. 4-7.

fadt generall ti,t2,...,tn 1
definition
restrict ¢t1 :: opll .
eplz ...
t2z :: opZi
tn :: opni
gpnm ...

Fig. 4-7
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V. FLADT System

This section describes an interactive FLADT program
devalaopment system. It <consists aof 2 FLADRT language
processor (translator, intergrster:, optimizer), database far
interface information and various sditaors

editor

N

Main

high
k/////jacontroller 119 level
1mperative’
‘ﬂ languages

\‘ |
!

Translator

Fig.

Translator

o

-
Interpreter Optimizer
—_ I
fladt—trees
database
e low level
languages
S5—-1

The franslator translates source programs in FLADT inte
intermediate tree structures called fladt-trees. at
translation time, it makes rigid checking about types wusing
the informations stored in the database

Z. interpreter

The interpreter directly interprets fladt-trees.

- 3. Optimizer

This part is not implemeﬁted yet; we are still studying
algorithms for optimization, but the planned optimizer is

supposed to do the following

things.

(1} Optimizes fladt—trees into fladt—trees

(ii) Translates fladt-trees into programs written in high
level imperative languages such as Fascal.

(1iii} Translates fladt—-trees into FLADT machine code ar
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grograms writften 1n low level ianguages.

4., Datzbase

The FLADT system has a database af interface
information and dependency information about FLADT units,
The database is constructed by extracting information fram
interface wunits. And the database helds the following
inrormatiaon. (See Fig. S-2, 353-3 ) .

{1 Compile states cf units (compiled cr uncempiied?
(11} List. of wusage infarmation (list of external

operators and functions)

1ii} MHModification information (notification and detailed
information about the modified aperators, functions,
and interface specifications)

~

3. Simplie Programming Support System

The language FLADT can be caonsidered as an .egxecutable
spacification lanquaqge which facilitates the software
development based on hierarchical abstraction.

" We may abstract data structures as abstract data types,

and then implement fadt definitions hierarchically. These
definitions are stored in the database as a unit. Tests for
each wunit are easily done by the interpreter. Once all the

units are tested, the optimizer translates all the programs
.into more efficient-code. '
In such a system. we must guarantee the consistency of

interfaces for each wunit. A modification to a unit A is
notified to all other units associated with A by the. system
automatically. The notified units are changed te the

uncaompiled state.
When modifying a unit, the wuser mainly manages the

database for the unit and its related uncompiled units. . All
the modifications are done to source programs, not directly
to fladt-trees. We <can debug programs interactively using

the interpreter on fladt-trees.

i The above programming support system has the following
advantages.

{1} The consistency between <source programs and ab ject
code is always guaranteed.
(ii} The wuse of the 1interpreter grovides us with

affective informations foar debugging.

(iii) The modification of 1interface specification are
easily and safely done with the database of
interface information and dependency information.
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FLADT System

database

e RN

unit A « e e e e unit Z
Fig. S-2
unit & : coempiled
unit B compile&

uses unit C, D, E

unit Z  XXXXXXXX
unit A(opil) modified
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Appendix

Proaf of (a).

The proof is done by induction an the level of nesting.
Befcre we start the proof, we must notice the following

graoperties

(i) FREE(Aa) U LOCAL (Aa) 2 FREE(Ae, i) for all o, .1i
(11} Aot is already 1invoked when Ao/ i 1s evaluated.
(111} That the frame of Ax is well-faormed i1s defined as
follouws.
(for a3il v € FREE(Aa} U LOCAL(Aa))
L the value of v ics - in the Aa’s frame 1]
(ivy That 2. i is well-formed is defined as follows
(for all v € FREE( o, 13}
[ the value of v is in the Aa ‘s frame J
(v} Aa’s frame is well—formed, if AN is well—formed.

-

The proof might be obvious to the reader familiar with
the properties (i) and (ii).

Induction on nesting level

I. FREE(Ak)=f for all k.
Ak is well-formed. (by definition (iv}}
The frame of Ak is well—-formed. (by definition (iv})
(Ak denotes a global function. free variables of & global
function rvepresent either global wvariables or global
functions. Both of them have fixed locatiens, so we can
treat them as constants. Thus, FREE(Ak)=#)

I1. Suppose that the #frame of Ada (for all A} 1is well-

formed. For all o,i, Ao,1 is always evaluvated in the
frame of Aa. (by definition (i1)}))}.
Definition (iv) is held. (by detinition (i), (iii}}

i.e. X, i (for all i) is well-formed.
Sa, the frame of Aa.,1 is well-formed.

From I and II, all the frames of A are well—-formed. M



