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AFFINE SEMIGROUP RINGS AND HODGE ALGEBRAS

Takayuki Hibi (Hiroshima Univ.)

A Hodge algebra is a commutative algebra having a special
basis which allows one to determine many features of its structure
by a relatively simple combinatorial study of its generators and
relations, | |

Many interesting examples, such as coordinate rings of
Grassmannian varieties, determinantal varieties and varieties of
complexes, turn out to be Hodge algebras governed by "good' ildeals.,

Tn this paper we study some Hodge algebra structures of

affine semigroup rings.

8 1. Definition of Hodge algebras.

Let H be a finite set and IN the set of non-negative integers.
We denote byNH the set of maps from H toN, A monOmial M on H is
an element ofJ)\TH. If M and N are monomials, then the product is
defined by (MN)(x)=M(x)+N(x) for all x € H. We say that N divides
M if N(x)SM(x) for all x€ H. The support of M is the set Supp(M)

= { X€H; M(X)?{O}. An ideal of monomials is a subéetECﬁ\TH such

that M € & and Ne_iNH imply MNeZ . A monomial M is called standard
with respect to = if M¢¥. A generator of an ideal ¥ is an element
of 27 which is nof divisible by any other element of§:.

If A is a commutative ring and an injection P :HesA is given,
then to each monomial M on H we may associate(P(M):;Q%QKX)M{X)
€ A. We will usually identify H with ©(H) and write M €A for
(M) € A, |
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Now let R be a commutative ring'and let A 5e a commutative
R-algebra. Suppose that H is a finite partially ordered set,
called a poset, with an injection<P:HCeA, and that 2} is an ideal of

monomials on H,.

We call A a Hodge algebra governed by 2. and generated by H

i1f the following axioms are satisfied:
(Hodge=1) A is a free R-module admitting the set of standard
monomials (Werete.o,) as a basis.
(Hodge-2) If N €S is a generator and
(*) ¥N= E:rN ity 1 o Oer,i R,
is the unique expression for N€ A as a linear combination of
distinct standard monomials guaranteed by (Hbdge-l), then for

each x € Supp(N) and each M there is N, 1 € Supp(’Vl ) which

N,i
satisfies Yy i< Xe
b

The relations (*) are called the straightening relations

~for A

If we put the right-hand sides of all the straightening
relations to be 0O, then we can construct the "simplest" Hodge
algebra, called the discrete Hodge algebra, Which is isomorphic‘
to AozREH]/ER[H}, where R{Hl is the polynomial ring over R whose
indeterminates are the elements of H,

A Hodge algebra A is called square-free if X is generated

by square~free monomials. We say that A is ordinal if & is
generated by the products of the pairs of elements which are
incomparable in the partial order on H, then > consists of all
monomials whose supports are not totally ordered, and is, of

course, square=free.

— D
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All the examples treated in { 23 are ordinal or square~free.
It seems to be interested to construct more general Hodge algebras.

Let A (resp. A') be a Hodge algebra governed by an ideal (
resp. 3.') and generated by a poset H (resp. H') over a base ring
Re The tensor product A*;A@hA' turns out tQ be a Hodge algebra
in the following way. We make H*=HUH' (disjoint union) a poset by
preserving the ordering of H and H', and by setting ol <al' for all

cl¢ H and d'€ H', We inject H* to A* by sending o€ A (résp.«ﬁ' €A")
| too®1 (resp. 1®a') € A*, We regardEJH (resp.ﬁJH') as the subset
{N*éﬁiﬂ*; Supp(N*)CIH (resp. H’)} 4

ofN_:: and define T°* to be an ideal ofNH*which is generated by
SUZ'e Now it is easy to see that A*:A@hA' is a Hodge algebra
governed by 3 * and generated by H* over R, and that A* is ordinal

if and only if both A and A' are ordinal.

8 2., Affine semigroup rings.

Let k be a field, SCN' (r>0) an affine semigroup, i.e.,
a finitely generated additive semigroup with identity, and k{T]=
kal,...,Tr] the polynomial ring in r variables over k. We denote
by k£S1 the affine semigroup ring of S over k
k[T"; we s1CKIT,
where TW=TW1...TVrVr 1f W=(Wyyeee,W.)e

1
OQur first result is the following:

THEOREM 1., Any affine semigroup ring has a structure of Hodge

algebras.
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Proof: Suppose that S is generated by hl,...,hp;(write S=
(hl,...,hp>). We put H to be'{Thl,...,ThpL and make H a poset by
setting

Thl< .00<Thp’
namely H is a chain (totally ordered set), We define

( There exists MGﬂGH such that
1) %N(T Dhy = ZM(T 1)hy,

(2.1) 3 =4 nen
2) (N(Thl),...,N(T P)><(M<Thl),...,x M(TP))

v

in the lexicographic order inﬁ@p;

Obviously 2 is an ideal, and the axiom (Hodge-l) follows
immediately from the definition of ). If N €3>, is a generator and
[ hj & : hj |
1:1 i1
is the straightening relation guaranteed by (Hodge-1l), then
Supp(N) N Supp(M) = @
Since N is a generator. Accordingly
(N(TPL), ..., N(TPP)) < (u(TPLY, ..., M(TPP))

show the axiom (Hodge-2). B

Let A be a Hodge algebra governed by an ideal 2 and generated
by a poset H, and H' another poset with an order preserving
bijection A:H=H', If we identify o€ H with X(ol) € H', then A
turns out to be a Hodge algebra generated by H'. In particular,
if we take a chain H' which consists of the same number of elements
as H, then we have an order preserving bijection A:H—H',
Consequently, any Hodge algebra turns out to be a Hodge algebra

generated by a chain. This is a key point in the proof of THEOREM 1,
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§'3. Cohen=-lMacaulayness of Hodge algebras.

Let A be a Hodge algebra governed by an ideal E:and generated .
by a poseth over a base ring R. We denote by AO the corresponding
discrete Hodge algebra R{HI /T RiHl.

The following result, which is obtained in {21, is a

fundamental theorem in the theory of Hodge algebras,

17 A is a Cohen~Macaulay (resp., Gorenstein) ring, then Ag

is

3]

Cohen=Macaulay (resp., Gorenstein) ring for every prime ideal

3 of A which contains H.

The converse of the above theorem is false. A counter example
of the Corenstein case is well-known,,While that of the Cchen-
Macaulay case does not‘seem to be known (see [ 2] P.38). In the»
following we construct a Gorehstein ring A such ﬁhat AO is not

a Cohen=Macaulay ringe.

EXAMPLE, Let S=Chy,h,,hg,h > CIN® be an affine semigroup with
hlz(Z,O),hZ:(a,l),hB:(l,Z) and h“:(O,Z). Firstly if we make k(g1
a Hodge algebra so that the total order of H={1"1,7"2,7"3 rfy}
is Thl<;Th2 <'Th3<Th‘L*’ then Z=((Th2)2,(’fh5‘)2). Since the
corresponding discrete Hodge algebra

k[X,Y,z,%'v'J/(Ya,zz),
(write X,Y,Z,W for Thl,ThZ,ThB,Th4) is a Gorensteinrring, k[s] is
a Gorenstein ring. Secondly if the total ofder of H is Th2<(Th3<Z
1<t thenY =((TML)20ly, 01 (P2, (p03)% M1 (pP3)2) ang the
corresponding discrete Hodge algebra is

—_—5—
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klx,v, 7, W/ (x2w,xw’,2,x2%)
_(klx, 27,1/ (x20,xw2, 7%, x28)) (Y1
By the primary decomposition
2w, xwl, 24 ,x78) = (x,z)n (x2,22,w%) N (xZ,w),
we have , ’
depth(kfX,Z,Wl/(XZW,XWE,Zq,XZZ))(X’Z’W)v= 0,
50 k[X,Z,W]/(XZW,XWZ,Z4,X22) is not a Cohen-Macaulay ring.
Accordingly, k[X,v,2,wl/(x%W,xw®,z%,X2°) is not a Cohen-Macaulay

ring.

§ 4. Cohen-Macaulayness of affine semigroup rings and the

corresponding discrete Hodge algebras.

In this section we study the converse of the fundamental
theorem (83) in the case of affine semigroup rings.

An affine semigroup ring is a subring of a polyﬁomial ring
over a field k, which is generated by a finite number of monomials,
while a discrete Hodge algebra is a residue ring by an ideal which
is generated by a finite number of monomials. Both of them are
investigated as natural ekamples of commutative rings. It is
interesting that these two classes of commutative rings are

associated under the concept of Hodge algebras.

PROPOSITION Lo Let S=<f7,eee,f, ,875000,8, >CN' (r>0) be an
£

affine semigroup (n=dim k[Sl). We assume that T i,Tfj is a k[S]-

sequence for all i,j (i#j). If we make k{S] a Hodge algebra so that

f

the total order of H={T'l,...,7in, 781 ,,,,78n} satisties

—_—
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rfs < o8t ( Ys,t)
then the corresponding discrete Hodge algebra is a Cohen-Macaulay

I“ing.

For the proof of PROPOSITION 1, we need some lemmas. By the
definition of affine semigroup rings, k[s]:k[Thl,...,Thp] (s=<
hl,...,hp>) is a subring of kCT):k[Tl,...,Tr}, the polynomial ring

in r variables over k. Then,

LEMMA 1, If a monomial M in T (in usual sense) is contained

in k{s), then M is a monomial in Thl,...,Thp.

By using LEMMA 1, we prove the following

hl,...,Thp satisfy M

hy

LEMMA 2. If two monomials MandN in T
€(N), then there exists a monomial N' in T ,...,Thp such that
M=NN'. Here we denote by (N) the principal ideal in k[S] which is

generated by N €k[s].

Proof of PROPOSITION 1: To begin with we show that Supp(N)
ci{r81,,,.,78m} if N is a generator of$,. Suppose that Supp(N)(t

f

{781,.,.,78m}, and that T'1 is a minimal element in Supp(N). If

the straightening relation of (Hodge-2) is
m
Tt (pfeyV(T78) T} (p&t)N(TEY) | (nfeyM(T7S) TT (p&yyM(TED)
S=1 k=1 T g1 kz1 s
then Supp(M) must contain Tfj which satisfies Tfj<foi..Suppose
that N=TTin', M=TEiM' as the elements of N, then we have Tiin!

f

:Tfjhl'in k{Sl. Since Tfi, 7*J is a k[S)-sequence, we have M'E(Tfi).

_‘7_._..
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Therefore, by using LEMMA 2 there exists M"EQIH such that
wr=rfim in k[sl. Thus N'=713 M1, Now by the minimality of Tfi ang

id < Ti, Supp(N') does not contain pf

s which is $TYJ. Accordingly
by the definition (2.1) of, N' must be contained in¥, . This
contradicts to the fact that N is a generator of2.. Consequently,
we have Supp(N) C {781,,,.,78m},

In this case, the corresponding discrete Hodge algebra is

kIHl/Sk{H] = (k(H,1/gk(H,1)(H,],

where leinl,...,Tfn}, sz{Tgl,...,Tgm}. Since dimkfSl=n, thé
dimension of the corresponding discrete Hodge algebra is also n
({21, Theorem 6.1.). Thus dim k(HZ]/gk[Hzlzo, and it follows that
kEHal/Zk{HE] is a Cohen-Macaulay ring. Accordingly, k[H] /Sk{H]

is also a Cohen-Macaulay ring. &

COROLLARY, If S(:ﬂir\satisfies the assumption of PROPOSITION 1,

then k{S) is a Cohen-Macaulay ring.

We call an affine semigroup SCN' a simplicial monoid if

there exist fy,...,f €S (O<nsr) such that

(441) fl""’fn are linearly independent over @ and

(42) SCQUE +enetQ,f,, |
where (Q and @, denote the set of rationals and 6f non-negative
rationals, respectively.

Note that n=dim k(S], and that the aséumption above is always
satisfied when rg2.

The following lemma concerning simplicial monoids is apparent

intuitively.
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LEMMA 3, If s:(hl,...,hp> is a simplicial monoid, then fl,...;

£, (n=dim k[S]) which satisfy (4.1) and (4.2) can be selected from

hl’.‘.’hp.

Now we get to our second result in this paper.

THEOREM 2. Let 5=Chy,...,h > be a simplicial monoid. It k(s]
is a Cohen-Macaulay ring, then for one of the Hodge algebra
structures given‘in THEOREM 1, the corresponding discrete Hodge

algebra is a Cohen-Macaulay ring.

Proof: By using LEMMA 3, we can select fl”"”ﬁxes (n=
dim kfs]) which satisfy (4.1) and (4.2) from hl""’hp' We may
arrange hl,ooc,hp into

fl,-oo,fn,gl,ooo,gm (p=n+m>

f

Letrn:(Tfl,,x,,T n,Tgl,.d.,Tgm) be the relevant maximal ideal in

In,781,...,7m]. By (4.2) M is nilpotent modulo

f f
l’ICC,T n

k[S]:k[Tfl,..”T
’(Tfl,,.,,Tfn), and we have dimk[S}=htf=n. Therefore, T
is a system of parameters infl. Since k{8l is a Cohen-Macaulay

fl,...,Tfn is a kisl—sequence in any order. Now we can

ring, T
apply the PROPOSITION 1, and this completes the proof of our

theorem.

Supplement: By using the COROLLARY of PROPOSITION 1, we can
give another proof of the following result when S is a simplicial

monoid:

1f k[S) satisfies the Serre's condition (52)’ then k(S] is

a Cohen-Macaulay ring.
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Prof. S.Goto and K.Watanabe remarked the author that the

above result is essentially in [3] and [ 4],
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