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ABSTRACT: Individual facts in the real world are represented by tuples
in database relations (instances), while universal (time-independent)
facts are treated as semantic donstraints regarding database relation
schemata. One important role of these semantic constraints is their use
as integrity constraints that must not be violated by update operations.
Among these, static constraints are rgpresented py assertions, which are
‘extended relational calculi in which every tuple variabie is bound over
a- relation, and become true in a consistent database. When an update has
been made on a consistent database, it is necessary to ascertain if the
updated-database is still consistent. It can be done by evaluating all the
assertions in the updated database, but this is very time-consuming. If
a given assertion is in one of some classes, it is possible to devise an
efficient validation procedure, which before the update is actually
applied determines if the update violates the given assertion. In many
cases a simplified form can be found, by examining whose value the pro-
perness of the given update is determined. Theé existence of such an
efficient procedure and simplified form depends on what class the given
assertion belongs, .and also on what type of the update is to be made on
what relation. This paper presents a method of finding such a procedure
and simplified form using. several simple syntactical transformation
rules regarding extended relational calculi. This method is based on
?evgra] basic properties in propositional logic and many-sorted predicate
ogic. :

KEYWORDS AND PHRASES: assertion, aggregate function, consistency, database
updates, extended relational calculus, integrity, validation
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INTRODUCTION

The two major enhancements expected in future database systems are the
integration of advanced integrity checking function and that of infer-
ence execution. These two are different uses :of ‘the same semantic const-
raints. In such an environment, it is very desirable to develop an
integrity checking mechanism which is applicable to constraints of any
type described in a standard form - probably in the form of predicate
calculus. This paper first introduces the notion of extended relational
calculus which is appropriate to represent integrity constraints of
some type (static constraints).

A database is consistent when all assertions, which are extended
relational calculi expressing integrity constraints, are true in it.-
When an update has been made on a consistent database, it is necessary
to ascertainn that the updated database is still consistent. This can
be achieved by evaluating all assertions in the updated database, but
this is too much time-consuming in many cases.

If the given assertion is in one of some assertion classes, it
is possible to devise an efficient procedure which before the database
is actually updated determines if the update violates this assertion.
In many cases a simb]ified form can be found, by examinig whose value
(instead of the value of the given assertion) the properness of the
update is determined.

| The existence of such an efficient procedure and simplified form
depends on what class the assertion belongs to, and also on what type
of update is to be applied to what relation. Sometimes the simplified
form becomes (constantly) true or false. Sometimes & simplified form
acting a necessary asd sufficient condition for the update being profer
exists, but sometimes only a simplified form acting a necessary condition
or a sufficient condition is found. Also there are the cases where no
simplified forms exist.

This paper presents a method of finding such an efficient procedure
and simplified form using several simple transformation rules in many-

sorted predicate calculus.
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B3 sevairic constrarars ON_DATABASE RELATIONS:

The real world can be thought as consisting of various objects, and various
facts which are some kinds of relationships among objects. These facts
can be described by natural language sentences, which can in turn be
transcribed into predicates of the form

p(a],az, ceady )s
where each ak is an individual constant corresponding to a real world
object and p is a predicate symbol. Each predicate is given a truth value
with regard to the real world state "at a certain time."

A database "relation" R' is defined by |

.R ={(a CIRLPPIRRL. )!p(a],az, cedp ) is true at the time t}.

An element % in a relation is éalled a "tuple." The individual constant
ay is ca]]ed the k-th "attribute value" of the tuple t, and denoted by

ak=Ak(t)
Here Ak can be regarded as a function of tup]es and called the k-th "attribute."

A famlly R ({A], 03+ An}) of relations with a pred1cate symbol p and
attributes A]’AZ’ .. An, each realizable at a certain time, is called a

“relation schema."

What a tuple in a database relation can represent is an individual
fact in the real world. It can be seen that there exist somewhat
universal facts such as "a person is les$ than 120 years old" and "a flather
is male." Such universal facts are obtained inductively from a historical
observation of the real world, or deductively from the basic properties of
the real world. To express such universal fact$; it is necessary tolintrqﬂuce"
(bound) variables and logical operators into the predicate. The abolve"
two facts, can be represented by ”

(Vz)((éx)(Hy)person(x,y,z):z<120)
and ‘ '

(Vx) ((Bw)father(x,w) (@ z)person(x,'male',z))
where person(x,y,z) is the predicate representing "x (name) is a person
whose sex is y and age is z," z<120 is the predicate representing that "z
is less than 120," and father(x,w) is the predicate representing "x (name) is
w's (name) fatner."

If individual facts regarding predicate symbols person and father are

represented by tuples in relations RY and R;ather’ and if the truth

person
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value of a<b can.be'cbmpufed whenever two individual constants a and_
b are given, the above two facts can be represented by

(Vo) (v t/Rperson)age(t)<120
and

V " H - x =|‘ '
Vo) (Vt /Rfather)( tz/Rperson)(fatner name(t,)=name(t,)ase (tz? male')
which are predicates regarding database relations. Predicates of this

type are used throughout this paper. The necessity of time variables

could be understood when one wishes to express some facts like "the age

does not decrease," which is written as

(V1) (V' Ma<t'
’ CVt/Rperson)(vt /Rperson)(name(t) =name(t')oage(t)<age(t' N).

These universal facts are called Wsemant1c constraints. " “This is
because they can be regarded as representing some part of mean1ngs behind
individual facts, which are represented by database relations.

Note that predicatés régarding time variables, if exist, must be
explicitly described. That is, notations like R60n and RTHO are not
permitted. A semant1c constraint is said to be "static" if it has just one
universally quantified time variable and no restrictions (predicates)
regarding this time var1ab1e 0therw1se 1t is said to be “dynamic."

‘Semantic constraznts as well as 1nd1v1dua] facts can be regardeu as
axioms. Together with axioms in formal logic, tnese two types of facts consti-
tute an axiom system. Using inference rules in formal logic, it is poss1b1e
to infer some theorems from this axiom system.- That 1;, some otner--
(individual or universal) facts can be deduced. ,

In the database env1ronment, semantic’ constraints may bé-registered
somewhere in the database (probably in the conceptual schema) in a certain
form. Some tuples or semantic constraints which are imincit in the database
can be deduced from those explicit in the database using a certain built-in
inference mechanism. One more important role of these semantic constraints
in the database environment is their being used for validating update opera-
tions. '

A database D' is said to be in a "consistent state" if all the
registered static constraints hold in D'. That is, all relations RE in D'
satisfy the static constraints. A database update DT—»DTl is said to be

"proper" 1f it transforms a consistent database D' into another consistent
| database D' without violating the registered dynamic constraints.



In this paper, the author tries to find update validation procedures
to preserve given "static" constraints in database relations. Although it is
necessary to validate updates against dynamic constraints in order to assure
the properness of database updates, va11dat1on procedures for dynamic constra1nts

are left to future study. Let us say a database update is "S- -proper"

Alf it transforms a consistent database 1nto another cons1stent database.

RELATION SCHEMA CALCULI REPRESENTING STATIC CONSTRAINTS

For expressing static constraints, it is better to introduce a little siﬁb]er
notation. Since every static constraint has a single universally quantified
time variable, it is possible to omit the time variable description. Instead,
it is appropriate to replace the R; notation in the quantification of tuple
variables by the name Rp of the relation schema to which Rg belongs. The two
examples of static constraints shown previously can then be written as

(Vt/r )age(t)<120

person
and : : v
v d = ’ = '
("t /Rfather)( tZ/Rperson)( father_pame(t]) name(tZ)Asex(tz) male').
This simplification is reasonable because a static constraint is a state-

ment regarding some relation schema rather than regarding relations

(instances at a specific time). Let us call this form the "relation schema

calculus." It must.be distinguished from the relational calculus because
the Tatter is a statement regarding relations (instances at a specifié
time). That is, the value of relational calculus is time-dependent in
contrast to the relation schema calculus whose value is time-independent.
One more major difference is that the relational calculus can contain
free tuple variables, which the relation schema calculus cannot contain.

The .relation schema calculus is a many-sorted logic, whose sorts

are relation schemata. Its variables are tuple variables bound over some

relation schemata. It contains functions of tuples. Formal definition of

the relational schema calculus is as follows.
First it is necessary to provide an enumerably infinite»humber
of tuple variables t],tz,..., rejation schema symbols Rl’RZ""’ attribute

symbols AT’AZ""’ value sets V1,V2,..., and individual constants. Also
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assume that each attribute is associated to a value sets, and each individ-

ual constant is associated to the value set to which it belongs.
(1) Domain terms: For a tuple variable t and a relation schema symbol R,
the form t/R is ca]]éd a domain term.
(2) Domain-coupled quantifiers: If I' is a domain term, then the form
(er) is called a-domain-coupled quantifier, where ¢ is either & or V.
(3) FOTs (function of tuples)::Following three are FOTs.

3-1 An individual constant is an FOT wifh any number (can be zero) of
tuple variables. There must be two special individual constants
"true' and 'false’. | . |

3.2 An attribute A is an FOT with one tuple variable t. This FOT is
denoted by A(t). . , o .

3-3 Let V V_and V, be m+1 value sets where a function (operator)

]’VZ""’ m p
@ V xVx...xV *-V¢

is def1ne§ If fi is an FOT with m(k) tuple var1ab1es CRPLPP
kmg ) whose range is Vk’ then
f] :fzs .. af )
is an FOT. Its range is V¢. As a special case, k(m) can be 0, that
is, {tk]’ K22 km(k)} can be empty when f, is an individual
constant. The sets of tuple variables of FOTs j},fé, ..,f are
not necessarily mutually d15301nt Tuple variables .of "the function
constructed above are those in
Uk=1ttistias -+ st -
This definition is very general. It is possible to use any function (operator
defined in various value sets. For example, it is possible to use unary and
binary arithemetic operators to combine arithemetic FOTs, which are FOTS whos
range is a arithmetic set. In combining string FOTs, various string operators
can be used. :
An FOT is called a logical FOT if its range is the truth value set
{'true','false'}. Relational operators can be used to construct a logical
" FOT by combining two FOTs with a common range. One more operator used
to construct a logical FOT is eV. The FOT feV becomes.a logical FOT.
Logical operators can be used to construct another logical FOT from one
_or two logical FOTs. However, these are left to a little more expanded defini

tion of logical expressions shown below.
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(4) LEXs (logical expressions): -Following three are LEst

4-1 An FOT (defined by (3)) is an LEX if its range is the truth value set.

4-2 'If both f and g are LEXs, then all fag, fvg, f>g and ~f are LEXs.

4-3 If £ is an LEX and (et/R) is a domain-coupled quantifier, then
(et/R)f is an LEX. The LEX F is called the scope of the domain-
coupled quantifier. The tuple variable t is said to be quantified
over R in the scope f. ‘ '

One more type of FOTs can be added to the definition (3).
3-4 Let V be :an aggregate operator defined in avalue set V and g

be an FOT with tup]e:variébles tl’tZ""’tp’tp+1""’tq whose range
' t

is V. Let f be an LEX with tuple variable t],tz,.--,tpth+]’~-f’ r
among which t],tz,...,tp are not quantified in f. Finally let
t]/R],tz/Rz,...,tp/Rp' be domain terms for tuple variables t],tz,
. Then
v[t 1/Ryst5/Rys. ..t /R sflg
is an FOT. Tuple var1ab1es t, (1=ksp) are sa1d to be bound over
,k by the aggregate Operator V. Here {tp+], . tq} and {tq+], 'f’tr}
are not necessarily disjoint. Tuple varaibles of this aggregate
function are those in {tp+]”“’tq}”{tq+]""’tr}’ which are said
to be free with respect to V. _
The interpretation of aggregate function defined above is that
values of ‘function g'are aggregated according to the aggregate operator
V for the ordered sets (t],tz,...,tp) for which the LEX f becomes 'true',
where each tk belongs to the relation kain Rk' If t/R is regarded as
an LEX whose value is 'true' when t belongs to the relation R in R, the
condition of aggregation can be written as

t /R A‘l.‘.z/l-?2 At /R Af.

(It is a somewaht extended relational calculus.) By this means it becomes
possible to_use_aggregate operators such as I, II, max, min, average,
standard deviation and so forth.

Aggregate ‘operators /\ and\/ which correspond to a and v in the truth
value set can be considered just like £ corresponds to +. Then it is pos-
sible to construct an aggregate function

VIt/R:flg
where v is A or V. unlike other aggregate functions, both f and g are
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LEXs in this function. If V is ]\, then this function is equjva]ent to

(Vt/R)fog,
while if v is V, then this function is equivalent to
~ (3t/R)frg. .
Conversely, the domain-coupled quantifier (et/R)g can be rewritten as
vlt/R;1g

where the default of the function r specifies that y is a constant

(function) 'true'. This gives an interpretation of domain-coupled qunati-

fiers. Obviously quantified variables are bound variables.

(5) Relation schema calculus: A relation schema calculus is an LEX in
which no free variables exists, and every attribute A(t) appearing
in it is an attribute defined for the relation schema over which t

is bound.

Y ASSERTIONS A EXTENDED RELATIONAL CALCULI

One universal method of validating database updates is to use a query

evaluation procedure that processes a given extended relational -

calculus. Definition of the "extended relational calculus" is obtained

by applying some modifications to that.of the relation schema calculus.
~ First it is necessary to prowvide an enumerably infinite

pumber of -relation symbo]s”R],RZ,...Finstead of-relation.schema

_symbols...Definition of domain terms must be

(1) Domain terms: For a tuple t and a relation symbol R, the form t/R
is a domain term.

Definition of domain-coupled qUantifiers and FOTs are left unchanged.

“Fo the definition of LEX, o

4-4 A domain term is an LEX.

must be added. F1na1]y the extended re]ational calcu]us is def1ned

by | ‘ '

(5) "Extended relational calculus: ‘An extended relational calculus=is
an LEX in which every free tuple variable has one corresponding
domain term in it, every bound tuple variable ‘is bound by one

- aggregate function (can.be: quant1f1er), and every attribute A(t) is
“defined in the relation in which the:tuple variable t moves.



‘In particular, it is possible to obtain an.extehdedfrelationa]'ca]culus
without free variables by replacing each relation schema symbol in a
relation” schema calculus répresenting,a static constraint by a relation
symbol. Such an extended relational calculus is called an "assertion."
To examine if a database is consistent, it is .sufficient to show that
all assertions become '‘true' in this database. ’

In general, when an extended relational calculus with m free tuple
variables is given, it is possible to extract the set of ordered sets of m
tuples qualified for this extended relational calculus from the database. If
the given relational calculus has no free tuple variables, the answer is
‘true' or 'false'. An optimal algorithm of evaluating queries based on
the extended relational calculus was presented in [1]. Such an algorithm
can be applied to examining if a database is consistent with respect to
@ set of static constraints.

If an update has been applied to a consistent database, and if the
updated database is still consistent, then this update is S-proper. One
can’a$§Ure7an"assé¥tioh"beihg’itrue' in the updated database by evaluat-
ing its value using a universal query evaluation algorithm. If at least
: one.assértion has been found to be 'false' in the updated database, the
update is not S-proper, and the database must be restored.

Obviously, however, this validation procedure :is unnecessarily
time-consuming in many cases. First it is not necessary to examine
any assertion’whose value is not affected by the given update. Then what
_ agéertion.would be violated by the update? Let us first consider.only
“the "unit updates" each adds, deletes or replaces just one tuple in a
database relation. An assertion is said to be "relevant" to a unit
update if it contains one or more tuple variables bound cver the relation
to be updated. Only the assertions relevant to the given update could be
violated by this update. Tuple variables bound over the relation to be
updated are called "update-relevant” variables.

There are various types of assértions. Some contains only one tuple
variable, while others contain two or more tuple variables. In the latter
case, tuple variables can be all bound over a single relation or over
different relations. Tuple variables can be universally quantified,
existentially quantified or bound by some other aggregate operators.
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~ Assertions can be classified according to these characteristics [2].
Some assertion classes ¢an be examined if they would be violated by an
update before this update being actually applied to the database._Let
-Us next consider if a va]idation'procedure which is more efficient
“than eveluating assertions in the updated database exists for a given
‘assertion class. Assume that all assertions are written in prenex form.

E ASSERTIONS WITH ONE UPDATE-RELEVANT VARIABLES

‘First several basic properties of domain-coupled quantifiers must be
examined. The following two lemmas are used in proving all theorems.
LEMMA 1 (Substitution.rule); Let Q be an LEX without domain terms for a
tuple variable t, and t be a tuple (constant), then
(t/{t}=Q)= (t/{t AQ)-Q[t+t]
~where Q[t+t] is- the LEY obtained by subst1tut1ng t for all 1nstances of t
_in Q.
‘This is directly deduced from the 1nterpretat1on of domain terms. This
lemma can be generalized as follows:
LEMMA 1': Let Q be an LEX without domain terms for a tuple varlab]e t
and let € be a tup]e (constant) then :
t; /{t}:Q[t+t1,t2, oty 15t H{EIQLE Lt . oot Y
' SalEty e .t
where Q[E-t,,t gs-eeaty ] is a LEX obta1ned by substituting T for all
instances of t],tz, ...t_in Q.
The next ]emma is in many sorted 1oglc

LEMMA 2: Let R™ be the rslat1on obtained by adding a tuple t to a
relation R, that is, R =Ru{t}. Then

(1) (Tt/-%)0=("£/R)QnQLEt]
(2) ("t/R%)q=(*t/R)QuQLExt]
PROOF: The proof is straightforward.
(1) ("t/R7)Q=(Ve) (t/R™5Q) =(Vt) (~t/R™VQ) =(Vt) (~( t/Rvt/ {E} JvQ)
=(7t) ((~t/Ra~t/{E})vQ) =(Vt) ((~t/RVQ) A (~t/{E}vQ))
=(Yt) (t/RoQ)A(t/{E}20)) =(Vt) ((£7R3Q)AQ[E+E])
=(Yt) (t/RoQ) Q[ E+t]=(Vt/R)QrQ[E+t]
(2) (%t/R")0=(%t) (£/R*AQ)=(Tt) ((t/Rvt/{E})AQ)
(F£) ((t/RaQ)v(t/{E}2Q) ) =(2t) ((t/RAQ)VQ[E+t])
(%t) (t/RaQ)vQLE>1=(2t/R)QuQL E>t]

1"

"

-10-
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Let t be only one update-relevant variable in-the given assertion P.
Let us denote Ru{t} by R+, R-{t'} by R™, and R-{t'}ult} by R*.
THEOREM V: If the assertion is of the form
P=(Vt/R)Q
and Q contains no other update-relevant variables than t, then
(1) Adding a tuple T to R is proper with respect to P if and ‘only if
Q[E+t] is 'true' in the current database.

(2) Deleting a tuple t' from R is always proper with respect to P.

(3) Replacing a tuple ' in R by t is proper with respect to P if and
only if Q[t+t] is 'true' in the current database.

The following 1émmq;in:propQ§itiohall]ogic must be used in proving this
theorem. . ‘ - e
LEMMA. 3A Let P, Pl -and P2 are propositions, then

(1) (P ZPAP ) (P:(P =p ))

(2) (P:(P AP NIE (P:P )

(3) ((PD(P AP 5))a(P, ‘P AP,))>(P> (P 2P,))

PROOF: Cases (1) and (2) snould be obvious. ,
(3) ((P=(PjaPy))a(Py=P1aP )) ((P:P )a(P; :(P]_P ))=(P2(Py=P,)) O
PROOF of theorem V: From lemma 2, )
\Vt/R )Q=(Vt/R)QaQ[t+t],
(Vt/R)Q=(Vt/R7)QaQ[E'+t]

and o
(VE/R )Q=(VE/R™ )QaQ[Et].

Since (Vt/R)Q is 'true' in the current (cons1stent) database, it is

possible to apply lemma 3a (1), (2) and (3) for adding, deleting and

. replacing a tuple, réspective]y. _ 0
THEOREM Z: If the assertion is of the form '
P=(¥t/R)Q

and Q contains no other update-relevant varaibles than t, then

(1) Adding a tuple t to R is always proper with respect to P.

(Z) Deleting a tuple t' from R is proper with respect to P if Q[T'+t]
is 'false'. (If Q[t'»t] is 'true'. it can be ejther proper or
improper with respect to P. )

(3) Replacing a tuple £' in R by T is proper with respect to P if
Q[Et'>t] is 'false' or Q[t+t] is 'true'. Otherwise, it is proper

-17-



with respect to P 1f and on]y if Ht/R )Q 1s eva]uated to be
‘true’.

The following lemma in propositional ]6gic must be used in proving this
theorem.
LEMMA 3v: Let P, P] and P2 be propositions. Then

(1) ((pp ):P )>(P=Py)

(2) (P:’P vP,) ) (P:( ~P»oP1))

(3) ((PD(P vP )) (P]-P vP )):((P:( 3P ))A(P :P )A(~P :(P Pi)))

PROOF: Cases (1) and (2) shouid be obvious.
(3) ((PD(P]VPZ))A(P]:P]VPZ))
3((P3(~P'3P'))A(P'DP )A(P oP )A( P :(P ’P')))
- :((P:(G«P :P )A(P :P )))A(P :P )a ( p :(P]_P 1))
:((P:( P 3P ))A(P DP )A( P :(Pl—P ))) ad
PROOF of. theorem 3 From lemma 2,
Eg/RY)ez(Et/R) vl Bt
 (3t/R)Qx(Tt/R7)QVQLE ]
_and
(Zt/R )0’£3t/R )QVQ[t+tJ
S1nce (%t/R)Q is 'true’ in the current (cons1stent) database, it is
possib]e_to;aﬁ&iy'Iemma$,3vh(1), (2).and (3) for adding, de]etlngwand
rép]acing_a tuple, rgspeétivé]y. - | : ]
This theorem shows that if the update involves deleting a tuple and
Q[Et'>t] is ‘'true’, 6r if it involves replacing a tuple, Q[t'»t] is 'true’
and Q[t»t] is 'false', then the (2t/R7)Q value must be evaluated directly.
However, it can be noted that the (2t/R7)Q value can be evaluated before
the update is actually applied to R, for it can be transformed into
(gt/R)(A (t)74,(2)aQ)
where 4_ is the concatenat1on of attributes constituting a cand1date key.
In?the above two theorems, Q may contain any number of update-
irrelevant variables. Let Il be a-series of domain-coupled quantifiers for
update-irrelevant variables. If all quantifiers in Il are universal, then
n(Vt/R)Q=(Vt/R)IQ,
and the theorem v is still valid. If all quantifiers in Il are existen-
tia] .then = - ‘
- m(8t/R)Q=(3t/R)Q,
and ‘the theorem ¥ is still valid.

-12-



138

The following lemma is nécessary for the further discussion.

LEMMA 4. Let T be a series of domain-coupled quantifiers.
be LEXs. Then

(1) H(Q]AQZ)DHQ]AHQZ
(2) HQ1 VI'[QZ:J'[(Q.l VQZ)

and,Q] and 02

PR?:F(mZ:;Sio:::d?re obtained by combining the following four properties
- predicate ]OQIC
(1) (Ve/R)QuA(TE/RIT, (Vt/R)(Q AQy)
(2) (Vt/R)Q]V(Vt/R)QZD(V‘t/R)( vo )
(3) (Ft/R)(Q1Q,)>¢Tt/R)Q; A(Ht/R)
(4)"(Tt/R)(QyvQ,)= (Ht/R)Q]V(Ht/R)QZ
THEOREM 71v: If the assertion 1s_of the .form
P=(Vt/R)Q . |
and Q conta1ns no ‘other update- relevant var1ab1es than t, where I
is. a serles of domain- coupbed quantifiers for update- 1rre1evant varxab]es,
of which the last one is exxstentoa] then
(1) -Adding a-tuple T to R is improper with respect to P 1f
nQfit+t] is 'false’.
- (2) Deleting a. tuple:t' from R is always proper with respect to P.
(3) Replacing a tuple &' by T is 1mproper with respect to P if
‘nQ[t+t] is 'false'.
One ‘more lemma in propositional Togic ‘is. necessary
LEMMA 5: Let P], P2 and P3 be propos1t1qns.,Then
(P]D(PzAPS))D(c~p23~P])A(~p3s~P])).
PROOF of theorem NIV: From lemmas 3 and 4,
T(ve/R™Qzn( (V£/R)QAQLE-t]) s1(¥2/R)QARALE-E],
H(Vt/R)an((Vt/R')QAQ[E'+t])an(Vt/R’)QAHQ[f‘+t]
‘and )
(Vt/R )Q=n((Vt/R7)QAQ[E+t])om(VEt/R™ )QAQ[Et].
: Lases (1) and (3) are obtained using lemma 5, while (2) using Temma 3.0

Here :(1) and (3) give only a sufficient condition for adding and replac-
ing a tuple being improper with respect to P. There are no other cases
where H(Vt/R+)Q or H(Vt/R*)Q can be evaluated indirectly except in

very special cases such as QLt+t] becomes. a tautology (where add1ng'

and rep]ac1ng a tuple are a]ways proper with respect to P).
THEQREM NTa: If the assertion is of the form

-13-
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P=n(¥t/R)Q
and Q contains no update-relevant varaibles than t, where II
is a series of domain-coupled quantifiers for update-irrelevant variables,
of which the last one is universal, then
(1) Adding a tuple T to R is always proper with respect to P.
(2) Deleting a tuple T' by T is proper with respect to P if
nhQ[E'+t] is ftrue' or, equivalently, HeQ[f'+t]vis 'false', where
¥ is a series of domain-coupled quantifiers obtained by replacing
every existential quantifier in II by a universal quantifier coupled
with the same domain, while 1% is that obtained by replacing every
universal quantifier in I by an existential quantifier coupled with
the same domain..
(3) Replacing a tup]e E' by t is proper with respect to P if H(Et/R )Q
or HQ[t*t] s~ 'true The former is’ 'true if I Lore +t] is 'fa]se .
To prove this, it is necessary to 1ntroduce an add1t1ona] Temma in (many-'
sorted) pred1cate logic.
LEMMA 6: Let P be a propos1t1on I be a series of domain- coupled quant1f1-
ers, and Q] and Q be LEXs. Then
(P:nm]qunawo 40,210, ).
PROOF: It will be easy to see
| (PD(Vt/R)(Q1VQ2)\D(PD((Vt/R)*QZD(Vt/R)Q]))
and
(Pa(ﬁt/R)(Q‘]vaz))':(P:((Vt/R‘)ﬂ‘éa(ﬂt/R)o])).
The lemma can be obtained by combining the above two. g
PROOF of theorem Id: From lemmas 2 and 4,
m(at/R")Qzn( (at/R)QvQLE>t])<m(at/R)QuIQLErt].
“Case (1) is obtained by applying ?emmai3vAtp this.
Also we have
n(at/R)Q=m(at/R7)QvQ[E'>t]).
The case (2) is obtained by using lemma 6. Finally by combining
m(Et/R")Qzn(at/R™)QVQLE-t])em(at/R™)QuIQLEt]
‘and the result in case (2), case (3) is obtained.
Gases (2) and (3) present sufficient conditions only. It can be noted,
“however, that all T*~Q[E'+t] (or n®Q[E'>t]), mQ[E+t] and
H(Ht/R_)QEH(Ht/R)(Ap(t)pr(f’)AQ)
can be evaluated in the current database (before applying the update).
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B0 ASSERTIONS WITH MORE THAN ONE UPDATE-RELEVANT VARIABLE

Let us next examine assertions with two or more update-relevant
variables. First let us assume that the given assertion has two update-
relevant var1ab]es t] and t2
THEOREM VV If the assertion is of the form
P=(Ve /R) (Y, /R)Q
.and. Q contains no other update-relevant var1ab]es than‘t] and tz
‘then v : -
(1) Adding a tuple T to R is.proper_uith respect to P if and only if
all (v,/R)Q[Est,], (Ve,/R)QE-t;] and QLEst,,t,] are 'true’.
(2) De]etlng a tuple t' from R is always proper with respect to P.
1(3) Repa]acung a tuple t' in R by % is. proper with respect to P-if and .
on]_y if a]l (Vt /R )Q[t->t2_], (vt /R )Q[t+t ] and Q[E\j;; ,t;J are
, true . : :
PROOF This theorem is a simple extention of theorem V. It is. ObtAIn&ﬁ
“from: )
(vt /R )(Vtz/R )Q= (’v’t /R )((Vt JR)AGLE5t, 1)
| ~—(Vt /R (vt /R)QA(%:J/R )QLEt,]
~r-th /R)(Vt, /R)QA(Vt /R)Q[t+‘tJ
A(th/R)Q[t—r }An[tﬂt; R
(78 /R) (T /RIQE(V ) /R) (Ve /R )qA(Vt JRQLE ]
A(Vt /R7)Q[E'+t, ]AQ[t >ttty
(vt /R )(vt, /R7)Qz (Vt /R” )(Vt /R )Qa(vt,/R7)A[Et, ]
A(VtZ/R )Q[ ot a0l t],tz] | g
It should be noticed that
(vt1/R)QLErt, Ja(Vt,/R)QLE L TAQL Bt s T T
being 'true' is a sufficient condition for replacing a tuple being proper
with respect to P. However, it is not a necessary conditipn. In fact,
(Vt]/R)Q[f-*tz]E(V t]/R“)Q[E+t2]AQ[E'+t] Ert,]
and .
(VtZ/R)Q[t->t JE(vt,/RT ATt ]AQ[t—*t],t +t,]
hold, where Q[% +t],t£+t2] is an LEX obtained by substituting t] for t]
and t2 for t, in Q. Therefore, (Vt /R )Q[t+t2] is equivalent to
(vt /R)Q[t+t2] only when Q[t' +t],t*t2] is 'true', and (VtZ/R )Q{t+t ] is
_equivalent to (Vtz/R,Q[t+t ] only when Q[t+t1,t -t ] is ‘true'.
THEOREM d4: If the assertion is of the form
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PE(Tt,/R) (P t,/R)Q |
and Q contains no other update-relevant varaibles than t; and
2, then
(1) Adding a tuple T to R s always proper with respect to P.
(2) Deleting a tup]egf' from R is proper with respect to P if all
(Ht]/R')Q[Efftz], (HtZ/R')Q[E‘+t}] and Q[E'+t],t2] are 'false‘:
(3) Replacing a tuple T' in R by T is proper with respect to P if
all (at /R')Q[E';{Z] | (aty/R7)Q[E'+t;] and Q[E'~t;,t,] are 'false’
or if at least one of (“t JRTIQ[T> t2], (th/R )Q[t+t ] and Q[t+t], 2]
is 'true!. Otherwise.it’ 15 proper with respect to P-ff.and only if
(at /R )(H‘Z/R )Q is 'true’.
PROOF: Th1s theorem is a simple extention of theorem &, It is obtained-
from
(@ 7R @ey/R")02 (Ht /R )@ /R)QVQ[t-*t )
-(Ht /RY) (At /R)QV£ ¢ /RT)QLEt,] -
-, /R)(ﬁtz/R)uv(th/R)Q[m ]
o 1/RIQLEt) IvalEst ) 5t
@) /R)(Ttp/R)Q=(Tty /R (Ft,/R7)Qu(Et; /R7)QLE 8, ]
/R )o[t ot ]vQ[t +tyt,]
and.
(2t /R )(3t2/R )Q=(3t,/R7) (Tt,/R" )Qv@t /R )o[t+t21
(th/R )JalE-t, ]v(‘[t—>t Jt,1. 0
THEOREM VH If the assertion is of the form
P=(Vt, /R) (3t,/R)Q
and Q contains no other update-relevant variables than t, anq
tz, then
(1) Adding a tuple t to R is proper with respect to P if and only if
(EtZ/R)Q[f+t ] or Q[E+t], ] is 'true'.
(2) Deleting a tuple t' from R is proper with respect to P if
(Ht /RO)Q[E! +t2] ig 'false’.
(3) Rep]ac1ng a tuple ' in R by t is proper with respect to P if
and oniy if (Vt]/R')((HtZ/R')QvQ[E+t2]) is 'true' and at least one
of (3t2/3°)0[f+t]] and Q[E+t],t2] is 'true'. The former is 'frue: |
if (Vt]/’R-)(th/Rd)Q or (Vt]/R-)Q[ﬂtz] is 'true'. If (Ht]/R )Q[t'—»tz]
is 'false', (Vt]/R-)(HtZIR')Q is 'true’.
PROOF: It can be seen that
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vty R) (e, R Q=(T e, /R (Bt /Rt ])
'(Vt /R)((th/R)QvQ[t+t 1)
A((3,/R)QLEst, VT Et, ).
Since
(V) @, /R RIQLE T (72, /R) (e, R)QLEAE, 1)
the first term is always 'true'. This is case (1).

Since _ ) _
(Vt;/R) (Et,/R)Q=(Vt,/R7) ((Tt,/R7)QvQLE'+t])

A((thlR )Q[t »t JVQ[t +t], 2]),
(Vt,/R7) ((Bt,/R7) Qv E! -»tZJ)

s a]ways 'true’'. From lemma 6, if (¥t /R')~Q[E'+*2] is 'true', that is,
if (3t /R7)Q[E +t2] is 'false', then (Vt /R )(3t2/R )Q must be 'true'.
This is case (2): F1na]1y, case “(3) can- be obtained from

(Ve /R%) (Tt,/R*)z (T4, /RT) ((Rt,/R7)QvQ[Est;])
| AlE /R )Q[m valetytl) 0
THEOREM av: If the assertion is of the form '
 P(at /R) (V,/R)Q
and Q contains no other update- re]evant‘var1ab1es than t] and t2,
tnen _ :
(1) Adding a tuple t to R is proper with respect to-P if and on]y if
(%, /R) ((Vt,/R)QAQ[Et,]) s ‘true’ or both (Vt /R) Q[t+t J.and -
[t+t],t2] are 'true'. Here (3t JR)((Vt. /R)QAQ[t+t2]) is 'false’
if (%t;/R)Q[E+t,] is 'false’.
(2) Deleting a tuple ' from R is proper w1th respect to P if
(Vtz/R )Q[t! +t]] or Q[t! >t 2] is 'false’.
(3) Replacing a tuple &' in R by T is proper with respect to P if and
| only if (%t,/R° )((th/R )QrQ[E+t,]) is 'true' or bdth (Vt,/R7)QLEt4 ]
and Q[t+t],t2] are 'true'. Here (Ht /R )((VﬁZ/R )QAQ[t+t2]) is ‘fa]se'
if (Ft,/R7)(Tt,/R7)Q or (3t /R )Q[t+t2] is 'false’
PROOF: It can be Seen that
‘( t]/R )(Vt t,/R Q= (Ht /R. )((Vtz/R)QAQ[t+t2])
. “(Ht /R)((VtZ/R)QAQ[t+t2]
V((VtZ/R)Q[t+t JaQ[ Bt 5 t,])
It implies that (%t /R+)(Vt2/R+)Q is 'true' if and only if
(Tt /R)((VtZ/R QaQLE+t,]) or (VtZ/R)Q[t+t] 1aQ[Et,,t ] is 'true'. For
the former, lemmas 4 and 5 can be applied to obta1n cafe (1).
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Next, in
(% 1/R)( tZ/R)Q ( tl/R ("t /R )QAQ[t +t,])
_ v(( t2/R )Q[t >t ]AQ[t *tl,tzl),
the first term must be ’true if the second term is 'false'. Then
lemmas 4 and 34 can be applied to obtain case (2).
F1na]1y, 1t IS seen that-
(T /R (PR )02(%, /RO (Vep/R)OMLE, )
v((VtZ/R JalE-t ]Ao[t»ft], t,1),
and hence ( i /R )Vt /R }Q is ‘'true' if and only if one of
( t /R )(( tZ/R )QAQ[t+t2]) and (Vtz/R )QLt~t ]AQ[t+t],t2]) is 'true’'.
For the former, lemmas 4 and 5 can be applied to get case (3). D
Let us next consider assertions with three update -relevant var1ab1es
Let tl’ t2 and tg be such tuple variables. It will be very easy to deduce
theorems VvV and 3 because they are simple extuntlons of theorems YV and
qg. Only a theorem correspond1ng to assertions, which frequently appear
in practical app11cat10ns, is shown below.
THEOREM vva: If the assertion is of the form
P /R) (FeprR) (Tey/R)Q
and Q conta1ns no other update-relevant varaibles than t], t2 and
3, then
(1) Addlng a tuple t to R is proper with respect to P if and only if
all
(Veq/R) ((Ft4/R)QLE, 1AL EEy, t51),
(Vt,/R) ((3t,/R)QLEt, MALEty t51)
and
(Ft5)QlE+ty,t, VARt 5t 5]
are 'true'.
(2) Deleting a tuple t' from R is proper with respect to P if
(Ht]/R_)(HtZ/R')Q[E'+t3] is 'false'. |
(3) Replacing a tuple T' in R by T is proper with respect to P if and
only if all _ '
(V£1/R7) (Ve,/R7) ((Bt5/RT)QvaLBt,])
(¥, /R7) ((Bt5/RT)QLEt, WAL Est, 1)
(Vt,/R7) ((Fty/R7)QLEA, ALt 5 t5T),
and
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CENLIL R Ve R
are 'true'. The first term 1s "true' if 63t /R” )GitZ/R )Q[E! +t3]
is 'false'.

This theorem can be proven in a similar manner to proving the theorem v,
If hecessary; it is'poSsiblefto deduce theorems correspondina tp any
other casés ‘such as-Tvv, Ilag, vagy gav gnd so forth. Deduction of each
theorem is composed of'th_steps;?(]),transformation of three extended
relational -calculi corresponding to adding, de]éfing and replacing a .
tuple, and . (2) application of several lemmas as deductive rules. In step
(1) 2N terms are generated, where N is the number of update-relevant
variables. Step (2)-uses only a small number of deductive rules in a:-
limited number:of-combinations: .Therefore,-the: time necessary -to - -
deduce a~theorem is estimated to be less than. 0(2 ).

" From the -two transformation.-rules presented as lemma 2, it can be e
shown that theorems which are useful for f1nd1ng certain efficient valida-
tion procedurés can be deduced only in the cases corresponding to V, &, vZ,
av, nv, 4, VAV, 44, VIZ and AV where ¥is a series of domain-coupled
universal quantifiers regarding update-relevant variables, & is a series
of domain-coupled existential quantifiers regarding update-relevant
‘ vafiéb]és?-and II is a series of domain—coup]ed (universal and/or exist-

‘ ential) qunatifiers regarding update-irrelevant variables. From the prac-
tical point of view, only a small limitted number of prefix patterns
appear. Therefdore, one may prefabricate a limitted number of theorems
instead of deducing a theorem each time an assertion and an update are

specified.

Sy 8 CFFECTS OF SUBSTITUTIONS

In the theorems presented so far, the following three cases

exists:

(1) An assertion P becomes 'true' in the updated database if an extended
relational calculus P is 'true' in the current database (P' is a
sufficient condition for P). _ |

(2) P becomes 'false' in the updated database if P' is 'false' in the
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“current database‘(P{ is-a necessary conditionvfor P).

(3) P becomes 'true' in the updated database if and only if P' is 'true'
in the current database (P' is a necessary and sufficient condition
for P). :

(4) P is always ‘true' in the updated database.

‘These cases are useful because it can be évaluated in the current data-

base. Bes1des, in most cases, P' contains less domain-coupled quant1f1ers

thaa P ltse]f '

. One more 1mportant effect is caused by substitutions applied in
obtaining P'. Substituting a tuple (constant) for a tuple variable
decreases the number of tuple variables by 1. Application of n substitu-
tions decreases the number of tuple variables by n.

. The extended relational calculus P' may consist of "several component
LEXs combined by relational operators. If P-is symﬁetric with respect
to'two'pr,more tup]e'yariables, some of these componenthEXs;become:
equivalent with each other. : '

-As the result of substitutions, some of these LEXs becomevsimp1y1

‘true', and some others simply 'false'. Such LEXs can be eva1uated yeny

- quickly. ’

In part1cu]ar, if P contains an LEX of the form A, (t])eA (tz)

where 8 is a relational operator (join term), it is transformed into

an LEX of the form A (t )eA (t) (= const) (selection term) in P'.when

substituting & for t2 The database .search algorithm [1]. takes °

advantage of this property; which.is -named “"complacency" in [3].

What a simple extended relational calculus P' is obtained depends
on the furm of the matrix part Q of the given assertion P. Let us next

examine several typ1ca1 assertions.

TUPLE CONSTRAINTS: Assert1ons corresponding to tup]e constraints [2] are
of the form
P=("t/R)Q |
where Q contains no other tuple variables than t. Theorem V states
that adding and replacing a tuple is proper with respect to P if and

only if P'=Q[E+t] is 'true', while deleting a tuple is always proper with

respect to P, The P' value can be quickly evaluated:since it now contains

no tuple variables.
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FUNCTIONAL DEPENDENCIES Assert1ons for FDs are of the form
P=(Ye,/R) (Vt,/R)Q
where
0=y (t)=a1 (t)aa, () )=ty (£5))
with A] and 42 being two sets of attributes of the relation R.
Theorem VV states that adding and replacing a tuple is proper with
' fespect’to‘P if and only if -
/R 2/R)ALEt; 1ALty 1] |
'is 'true 5 whlle deleting a tuple is always proper with respect to P.
The assertion P is symmetric with respect to tl and t2. This imb]ies
(Vt]/R)Q[f-*FZJE_(V tZ/R)Q[f-*t] 1.
- Furthermore, whatever t might be,
’ Q{€+t],t2]“(A (t)=4 (E):AZ(E):A'(E) »
is 'true' Therefore, to validate adding and rep]ac1ng a tuple, it
j1s sufficient to ascerta1n that :
p! (Vt /R)(A (t)=4,(E)=4,(t, )—Az(t))
Ttruet: _ ;
(EMBEDDED) MULTIVALUED-DEPENDENCIES: Assertions for EMVDs are of the form
’ ’Ps(vt]/R)(Vtz/R)(at3/R)Q
‘where
Q=(4y (t)=4, (t5)o (45 (t3)=4, (1] ad5(t5)=45(t;))
with Ays 4y and Aq being three sets of attributes of the relation R.
- If there are no attrlbutes of R which are not included in Audyulg,
‘the assertions are for MVDs. Theorem yva can now be applied: For adding
a tup1e, all
(CH/RCey/RIALEt, MLEy. ),
( tz/R)(< Tty/R)Q[Et MQLEt |, t5])
and
((Tt3/R)QLEt, st 1MQLEt 1, 5]
must be 'true'. In this case,
Lty t,,t512(4,(E)=4, ()5 (Az(t)—A (t)AA3(t)—A3( )))
- 1s 'true' whatever t m1ght be, and hence the last term is always ‘true’.
Therefore, it is necessary and sufficient to examine whether both
(7t,/R) (F4/R)QLE+t, 1vQL st ,t,])
=(Ve) /R) ((Ttg/R) (4, (£ )24y ()54, (£5) 24, (£ )nd5 (£5) =45 (E)))
vi(aq(ty)=4;(8)a(4,(E)=a,(t, )AA3(t)-A3(t)))}
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=(Ve, /R) ((aq (t7)=4, (E)> (@ t5/R) (4p(t5)=a, (£ ) a5 (t5)=a5(E)))
v(4,(ty)=4,(2)24,(t)=4,(%)))
=(Vt /R) (44 (t1)=4; (B)a(a,(t,)=ap(E)
» v(Bt4/R) (4, (t5)=4, (t))ady(5)=45(E))))
=(Vt,/R) (4, (t )=4, (t) (Ao(t )#4,(%)> o
(Bt R) (a0 by Dy £ (£5))))
=("t, /R)((A (t1)=47(B)ady ()74, (%))
| :(3t3/R)(A2(t )-Az(t )AA3(t )=45(EN)
and
(e, /R) (A t4/R)QLExt, VAL Bt 851)
=(T,/R) (4 (t5)=4 (tm3( ,)#a5(E))
o t3/R)(A2(t3) Az(t)AA (t3)=45(t5)))
are 'true There are no- simpler extended relational calculus which.
ictgras a necessary and sufficient condition for deleting a tuple to be.
proper w1th respect to"P. The sufficient condition
~(Tt, /R7) (T /RT)QLE5T2(7E) /R7) (Ve,/R)~QLEst5]
E (Vt IR )(VtZ/R )~(4,(t)=4, (t )>(4, (t )=4,(E)ra,5(ty)=45(E)))
(Vt /R7) (Vt,/R7)~ (A (ty)74, (t )v(AZ(t )=4,(E)ra5(t,)=45(E)))
—(Vt IRT) (V,/R7) (4 (t ) =4, (t Jalay(t)74,(B)va4(t, )#A (£)))
is use]ess in this case because it becomes 'false’ whenever R™ contains
more than one tuple. For replacing-a tuple, it is necessary to examine all
(V4 /R7) (Vt,/R7) ((T£53/R7)QvA[E>t3])
. (Vt IR )(Vtz/R ) (4 (t7)=a (£))ala, (£)) 74, (E)va(£,)245(E)))
>(E t3/R Ja,(t3)=a,(t))ad5(t5)=45(t5))),
(Ve /R ((Fg/R )Q[t+tZJVQ[t%t2 t3J .
(Ve /RT) (4 (£ =4, (B)my(t)7#45(2))
| 3(3t3/R’)(42(t3)=A2(t])AA3(t3)=A3(E)))
and '
("<, /R ") (Ety/R7)QlEt, VLB, t5])
-(th/R )((A 1{t2)=4; (t)AA (t,)#45(2))
:(Ht3/R ") (4,(t —Az(t‘AA (t5)=45(t5))).

. As seen above, va]idation of updates for MVDs (and EMVDs) is much
less easier than that for FDs, in particular, if the update involes delet-
ing or replacing a tuple.It may be concluded from this point of view that
the non-first normal form [2,4] is rather desirable than the first normal
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form, and if the first normal form is employed then the fourth normal form
decomposition is mandatory.

Note that in calculating P' for an (E)MVD several properties in
.propos1t1ona1 Jlogic and (many- sorted) pred1cate logic ‘are used. They are:
"LEMMA 7; Let Pl’ P2 and P3 be propositions. Then,

(]) (PIVPZ) (~P P, )
(2) ((Py=y)v(P =3 TV=Pya(P, 2?3
- (3) (P]:(PZDPB)) =((P APZJDPq) . :
LEMMA 8: If I is aseries of domain-couple: quant1f1ers for <tuple variables

FJ’FZ""’?n’ and Q] contains none>pf.tup1evvar1ab1es F]fEZ”"’Fn then

(1) m(Q4Q,)=0Q;~10Q,
(2) m(QqvQ,)=q,viQ,

.x(3)'n(QT:Qé)EQ1:HQé;a

".One.more important notice must. be made on the evaluation of P or .
components of P for FDs and (E)MVDs An extended re]at10na1 calculus of
the form ; :
| (vt /R (VEp/Ro) . (Ve /R 1D(Qy3Q,) -

is said to be a “Horn ca]cu]us" if Q] does not contain. tuple variables

other than t],tz, ..,tn Here R],Rz, Rn are. not necessarily mutually
distinct. Since the database search algorithm [1] was devised mainly for
dealing with extended relational calculi with free.tup]e-variab]es, and
it first obtains the set-of ordered sets of tuples (satisfiers) each
satisfies the matrix part of the given calculus, it does not make any
special treatment for Horn calculi. However, Horn Calculi can be evaluated
in a little more efficient manner. Since the given calculus is 'true'
whenever (Vt]/R])(VtZ/RZ)...{th/Rn)Q is 'false', One may first obtain

L={(ty,tys. oot ) [£1/R At R oA oAt /R AQ; )
Then the'given Horn calculus becomes 'true' if‘and only if

(V{t]stys. et /L), ' |
is 'true'. .

In validating adding and replacing a tuple for an FD, it is suf-
ficient to examine whether Az(t])=42(f) is 'true' for all tuples ty in
R that satisfy A](t])=AI(E)._SUCh tuples can be quickly obtained if the
database file representing R is organized as a sequential, tree-structured
"~ or direct file Using the Ay value, or is indexed by the Al*v&Tue.

-23-



209

In validating adding .a tuplevfbr (E)MVD, a similar procedure can be
applied. Deleting a tuple must be validated by evaluating the
( t]/R')( t,/R7)( t3/R7)Q value directly. However, since

(7e)/R) (Ve,/R ) (At5/R7)Q |

~-(Vt /R )(VtZ/R ) (4q (724, (L5} .

' >(Tty/R" )(Az(t )=4 (t )nds(ts) 43(t )
7:’Vt /R)(VtZ/R)((Ap(t )#Ap(t )AAp(tz)#Ap(t Jady(t;) =4 (tp 1)
, “(Et/R) (4, (t4)#4, (B*) M, (£5) =4, (1, )AA3(t Y=t
one may - f]rst obtain the set of tuple pairs. (t >t ) in RxR.all- sat1¢fy
CAC (t )#A (T')md (tz)#A (t* )AA (t ) =4 (t ), and then for each pair-dn-this-
;set exam1ne whether
(3t3/R)'A (t3;#A (T )Md: (t3)—42 tilad;(ts)= A3(t2))
'true
: All*three‘tekms to be examined for validating replacing a tuple
are also-Horn calculus. Similar_procedures can be used for examining these.
A1l (embedded)imutual depéndencies, subset- dependencies, join
~dependencies, and, in geberal, template dependencies [5] are Horn calculi.
The above procedure can be applied..in validating database updates for ’
these dependenc1es, a]though the resulting procedures can still be time-
~ consuming.’ '

Tuple constraints, functional dependencies and other (temp]ate)
dependencies are intrareiation constraints [2]. A1l tuple variables are
bound over the same relation. Let us next consider some interrelation
constraints, which have two or more tuple variables bound over distinct
relations.

INCLUSION CONSTRAINTS: Assertions corresponding to inclusion constraints

are of the form

P= (Yt /Ry ) (%, IR ) a4 t5).

If 4, is a cand1date key of the relation R,, the constraint is an into

constraint, while if Ay is a candidate key of the relation R], it is
-an onto constraint, both from R, to R, [2]. Two distinct cases must

be_discussed: the case where t] is update-relevant, and the case where
Ctz‘is update relevant. For the former case, theorem V is applicable.

Therefore, ‘both adding a tuple t to R and replacing a tuple t' in R]
by T.are proper with-respect to P 1f and only if

Q[t"’t] ]z(ztz/Rz)Az(t2)=A] ( )
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is 'true’. De]etlng a tuple ' from R] is always proper with respect
to P. For.the latter case, theorem II¥ is app11cab1e “Therefore, add-
ﬁlng a“tuple T to R] is always proper with respect to P. Delet1nq 2
:tup1e t' “from 32 is proper with -respect to P if
o (Te R4 (1),
“is 1true SUor: equwva]entiv
(iR ag)=ap (B
s ‘fa]se This is only a sufficient. condition but is effective
| “because it can be evaluated eas11v Rep]ac1ng a tuple £ in Rngy B3
is proper w1th respect to P IT ’
(e tZ/RZ)A](t )=t5(t2)
—or
(%t /R1 Jaq(t1)=45(%)
js ‘true'. The‘latter is useless because it becomes 'false' whenever
- Ry contains a tuple ty for which A](t )fAz(t) Howeveri the fqrmen,'
can be used because it is 'true' if -
(T /R4 (E)=a, (R )
is 'false', although it is only a sufficjent condition.
RELATIONSHIP CONSTRAINTS: A relationship constraint [2] is’a conjunct -
-of two or more into constraints , and hence .the validating procedure(‘
for inclusion constraints can be applied. - '

After deducing an appropriate theorem, necessary subst1tut1ons
must be applied and, if possible, the obtained relational calculus must
be somehow simplified. The time required for this process can be estimat-
ed to be 0(L) where % is the length of the calculus.

-4 NICOLAS' EXAMPLES

Nicolas in [6] presented a method of improving validation procedures,
which is based on a similar idea to that used in developing the method
presented in this paper but was developed using notions in (ordinary)
first-order 1ogic.'The method presented here is §uperior to Nicolas' in
'several points. Among them two major advantages are: (1) it deals with
existentia]yquantifiers and unversal quantifiers in the scope of an exist-
 ential quantifier as well as other universal quantifiers, and (2) it pre=
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sents a_necesséry or a sufficient condition sometimes even when no neces-
sary and sufficient condition for the unit update being proper exists.

These makes this method much more powerful than Nicolas'. Here let us

demonstrate these points by applying this method to the examples that

Nicolas used in [6].'(Extended) relational calculi are used instead of

(one-sorted) first-order predicates to represent assertions.

~ There are four relation schemata
(a) Rsupp]y {{comp,dept, item})--EaCH'tuple t,=(C,D,I) 1in a relation Ry .
belonging to this.relation schema represents that ' company C sup-
plies depertment D with item I."

C]ass({item, type}): Each tuple t, =(I,T) in a relation R, be]ong-
ing to this relation schema represents that "I is a tgpe T item. u
(c) Rsa]e({dept,1tem}). Each tuple ty= (D,I) -in asre]at1on.R3sbe1ong1ng

-to this relation schema represents that "department D sells-item I."
(d) Rsubord({emp mng}): each tuple t (E],E ) in relation R4 belonging
~ to this relation schema represents that "employee E] is asubordinate

- of E2

ASSERTION 1: "When a department sel]s an item then there is a company

(b) R

“which supplies it with this item." can be written as
(Ve5/R3) (at, /Ry ) (dept (t5)=dept(t, Juitem(t,)=iten(t,)).
If t3 is update re]evantz adding a tuple E4to.R]'can be validated
by examining whether '
(Ht]/R])(dept(t])=dept(E)Aitem(t1)=item(E))
is 'true'. while deleting a tuple frem R] is always proper with
respect to this assertion (inclusion constraint).
ASSERTION 2: "No other companies than company C supplies type T4 items."
can be written as
(Vt]/R])(YtZ/RZ)((item(ti)=item(té)Atype(t2)=T4):comp(t])=C)).
If tz“is update-relevant, (since two adjacent universal quantifiers) are
7 commutative) adding a tuple t to R, can be validated by examining whether
( t /R )((item(t])-item(E)Aitem(E)=T );comp(t )=C)
" is 'true . As this is a Horn calculus, one may flrst obtain
{t]1t]/R]A1tem(t])=1tem(t)Atype( )=T 4}
This becomes empty whenever type (E)#T4. Otherwise it is necessary to
examine whether comp(t])=C for all tuples t; in this set, or equivalently
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there are no tubies.tl for which comp(tl)#C. Deleting a tuple T' from
R2 is always proper with respect to this_ assertion.
ASSERTION 3: "Any company that supplies I] also supplies 12"'can be
written as
(Vt]/R])(gti/R])(item(t])=I]:(comp(ti)ecomp(t1)Aitem(ti)=12)).
Adding a tuple t to Ry can be validated by examining whether
(Hti/R1)(1tem(%)=I}:(comp(ti)=comp(§)~item(ti)=I2))
or LEr
ritem(f)=I]:(comp(f)=comp(E)Aitem(f)=12): ‘
is 'true'. The both becomes 'true' whenever item(f)#li.'If.item(5)=11,
the first term becomes 'true' if .
(Ht'/R )(comp(t')=comp(f Aitem(t')=Iz)»
is 'true , while the second term is always ‘'false'. For deleting a-
i"tuple t from Ry> no simpler form acting a necessary and sufficient.
condition exists. However, there is a sufficient cond1t1on ‘that
- (%/R]) (item(t, ) #1; acomp(t, )= comp(E*)aitem(E')= 12))
to be "false'. This becomes:'false' whenever item(f')#lz.
- ASSERTION 4: "Any company that supp11es type T, items also supplies
type T, items" can be written as - “ 5
j (Tt1/R7 ) (Ve /R,) (381 /R) ) (B4R, )
((ltem(t )= 1tem(t )Atype(t )= T ) -
"‘3(comp(t )= comp(t A1tem(t i= 1tem(t )Atype(t )=T ))
Let t] and t] be update re]evant In th1s case theorem vIlg becomes neces-

sary., App]y1ng transformat1on rules -in lemma 2,
(Y, /R (Tt /R )Q
(Vt//R) ((Ht /« )QvQ[f+t{])AH((3ti/R])Q[f+t]]VQ[f*t1’t{])'
Ts obtained. From the 1emmav4, it can be seen that
(v ty/R)ma g /Ry )Qv(Vt, /RIMQLEt4])> (vt /Ry )H((Ht /R JavalEt 1),
and hence the f1rst term is always 'true Therefore add1ng a tup1e t
to R] is proper with respect to this assertion if and only if
n((%ty/Ry )Q[t+t MLt ,t])
_<Vt2/R )(<3t ? )(HtZ/R )((1tem(tz)=ite‘m(f:)Atype(t2)=T-l)
:((comp(t')=comp(E)Aitem(t')—item(té)Atype(té)=T2))
vEty/R,) ((item(t,)= =item(t)atype(t;)=T,)
:((comp(t) comp(t)A1tem(t ) 1tem(t)Atype(t 2)) ‘
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.E(Vt /R, )((item(t J=item(%) Atype(t )= T )
:(HtZ/R )(type(t )=T, . |
((Ht /R )(comp(t]) comp(t)A1tem(t )= 1tem(t2))vitem(t')-item(f) ))

is 'true'. There is no sxmp]er form acting a necessary and sufficient
condition for the properness of deleting a tuple t' from R The suf-
f1c1ent cond1t10n, ,

("t J/R)IQLE ¢ 1 -

-(Vt /R ) (7, /R, arE" ot 1=t /R) (Tt /R, o +t4]

=( t /R ) tZ/R )(1tem(t )#1tem(t )vtype(t )#T

_vv(comp(t )= conp(t )a( t2/R )(1tem(t )= 1tem(t )Atype(t )=T )))
,be1nn'ftrue is. use]ess in this case’ because it becomes 'fa]se when- -
'ever there exxst orne-or mere compan1es supplying difféerent items, or.
there ex1sts an item of any other type than T : :

ASSERTION 5: "No company must supply. two. d1fferent departments w1th 1tem

- I" can be written as

(Vt /R YVt /R]) (comp(t comp(t )A1tem(t )= Initem(t; ) I)

v:dept(t ) dept(t )).

There is on]y a s]]ght d1fference from FDs Addxng a tuple t to R];can
be validated by examinig. whether

(Vt /R )((co p(t ) comp( )A1tem(t])#IAitem(f)=I)

_ : :dept(t])=dept(f)) )

is 'true’. This becomes 'true’ whenever item(t)#I. Deleting a tuple t'
from R, is always proper with'respect to this assertion.

ASSERTION 6: "Wnenever an employee is a subordinate of another employee
which is itself a subordinate of a third one then the first one is a
subordinate of the latter one" can be written as

(Vt4/R,)(Vt /R, ) (2t;/R,) (mng(t, ) =emp(t;)
>(emp(t, )= emp(t")Amng(t )= mng(t")3}
Adding a tuple t to R, can be va11dated by examining whether all
(Ve,/R ) ({3657R DAL 1L Tt . £51),
(Vt4/R >((Ht /R >o£t+t41vq[t+t4,t )
and
((3t/R,)QlEty,ta LBty thu 0 ])
are 'true If there exists a plausible assertion tnat
(Vt4/Ry)emp(t,s#mng(ty).
then the first and second terms become
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(V%4)R4)fmn9(t4)=emp(f) (Ht"/R )(emp(t") emp(t,)amng(t;)=mng(t)))
and
(VtA/R4)(emp(t&)=mng(E) (Ht"/R4)(emp(t )= emp(t)Amno(t")—mng( -)))
respectively. The third term is always ‘true'. There is no simpler
form acting a necessary and sufficient condition for deleting a tuple
t from»R4 being proper. It js-obvious that the éufficient'cdndition
(Tty/Ry) (Ety/RIQLE 3T |
(3t4/R )(3t4/R )(emp(t4)#mng(t4) (emp(t4) emp(t)Amng (t; )-mng(t)))
being 'false’ is. useless in this case. -
ASSERTION 7: "There is at least one type T item wh1ch is supp]1ed by- every
- company" can be written as
(Tt,/R,) (4, /R, ) (Eti/R;)
(type(t ) TAcomp(t ) comp(t )aitem(t ) 1tem(t ).

If o and t] are update re]evant we must deduce theorem VL. We have

m(Ve,/R]) (3Li/R)DQ | D
- _H((Vt /R )((St /R, )QVQ[t+t Da((Fty/R;)QLEt ]vO[f+t1;t'J))

In this case, however, no s1mp]er form act1na a necessary cond1t1on

suff1c1ent cond1t1on or necessary and sufficient condition can be -

obta1ned for either add1ng a tuple t to R] or de]et1ng a tuple t' from

R] being’ proper with respect to this assertion.

~ As seen above a result equivalent to that obtained by Nicolas'
method has been obtained for each assertion. Besides much more informa-
tion has been obtained, in particular, regarding necessary conditions

and sufficient conditions.

fii'AGGREGATE CONSTRAINTS

In contrast to Nicolas' method which is based on the first order logic,

the method presented here takes advantage of properties of domain-coupled

quantifiers as aggregate functions. Let us remember the lemma 2 that

states
(Vt/R")=(Vt/R)QaQ[ Et]

and
at/RY)=( Tt /R) Q[ Bt | ' |
(/R )=("t/R)QvQ[E+t]. nd V.

These are equivalent to the properties of aggregate functions A
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that is,
| ALt/R™5105ALt/R; 19AQ[E-t]
and '
Vit/R"; 102Vt/R; JovalE-t]. |
| A similar property is possessed by every aggregate operator For example,
Z[t/RT 5 Irzz /R 1A (E)
H[t/R slrnft/R; ]f*f(t)
-.and ]
max[t/R"; Jf=max(max[t/R; If, £(E)) | , m
are propert1es of‘aggregate operators Z I and max. For the average and
'istandard dev1at1on, from the definition that
avg[t/R,]FEZ[t/R ]fVZ[t/R ]count
and
olt/R; 1f~(z(avg[t/R,Jf=f) /LR ]count)‘/2
L =Clt/R I8 /Rs Teount - (avg L t/Rs 1)) /2, |
where count is a constant function which a551gns 1 to eveny tuple, it is
poss1b]e to obtaln
avg[t/R" ,]f‘(Z[t/R ]f+f(t))/(2[t/R Jcount+1)
and
Tt/RY Ip=((2 Lt/ I+ A(8))2)/ (5L4/Rs Teount)
-((2Lt/Rs 1p+(E))/( (2 /Rs Teount 1)) ) V2.

[f the values of .aggregate functions defined by operators such ‘as-
Z[t/Ri]f, Z[t/R;]fz, n[t/R;1f, max[t/R;]f and £[t/R;]count are known in the
current database, values of aggregate functions such as Z[t/R;]f, nft/R;1f,
max[t/R;1f, avg[t/R;]f and o[t/R;]f in the updated database can be cai-
culated quickly before the database is actually updated. Such a technique
can be applied to validating database updates for aggregate constraints
like '

P=z[t/R;JA(t)<K
and

P=max[t/R; ]A (t)-min[t/R; ]A (t)<K.

Like domain- coup]ed quant1f1ers, aggregate functions can appear in

combination. For examplie, in
P=("t,/R) (2[t,/R;A; (t,)=A; (t1) 1Ay (£;)<K)
and '
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Pzz[t]/R];]z[tz/Rz;Az(t2)=A1(t])]A3(t2)<K,
two aggregate functions appear. In statistical databases, aggregate
constraints such as

P=(ty /Ry ) (Ay (1) =20ty Ry3A5(£5)=A, (£1) 1A ()
are very popular. In these three -examples, an efficient validation is
possible if the-value of second aggregate function is known for each
tUp]e'ti‘in R or R, in the current database.

TEMPORARY INCONSISTENCY

Let us next cons1der a ser1es of unit updates called a "transaction.'
When a s1ngle update woald v1o]ate some assertion, one can reject this

wvupdate However, sometimes when th1s update is in a transaction, it may

be executed and tne generated "temporary inconsistency” is removed. by
one or more other updates executed'snéeeeingly.

' Two different cases can be considered.-One is the case where. the -
generation bf teMporary inconsistencies can be avoided-by an appropriate -

. exécut1on séguence of unit.updates in-the transact1on Let us assume, for

examp]e that an assertion
PVt /R (Fp/R)) A (1) AL Ey)
correspond1ng to an inclusion constraint is.given. If a tuple EI is
added - to R], for which no tuples t, satisfying A (t )=A (tz) exist,
this assertion is violated. This temporary 1nconszstency is removed by
adding a tuple t2 to R2, for which A](t]);AZ(tZ) is satisfied. It is~
obvious, however, this temporary inconsistency can be avoided by adding
EZ to R, followed by adding t] to Ry. | |
The other is the case where na execution sequences of unit updates
that do not generate a temporary.incomsistency-exist: If given both
P1=(ty /R ) (Fty/Ry)A, (£1)=A,(t5)
and
Po=("ty/Ry) (Bt /Ry A, (t)=A,(t,),
then any update sequence generates a temporary inconsistency. Sometimes
a single assertion is violated by any unit update. For example, an
assertion :
P=(Vt,/R))A (1)) = ZLtp/Ry3A5(t))=A, (£1)1A, (L))
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is violated by any one of adding a tuple to Ry de?eting a tuple from
R];Aédding a tuple to R, and deleting a tuple from. R,.

There are two ways of dealing with the latter case. One is to
allow the user only to invoke built-in standard "collective update
procedures” which include several unit updates that may generate tempor-
ary inconsistencies but are assured to restore the database into a con-
sistent state before the control is returned to the user (user's program).
_ Rep]ac1ng a tup]e can be provided as a collective update procedure
Prov1s1on of such co]]ective update procedures are part1cu]ar1y
desirable when a relationship constraint-is defined, that is, -there is’
a relationship relation among several other relations [2]. According to
the type of relationship relation, which is also characterized by several
other constraints determining the relationship relation type, various
collective update procedures shéuld‘be"providgdl v /

"Tﬁé other way is to provide a device by which the user direct the.
database mahagement system to postpone consistency checking until a
series of unit updates has'been’COmpIete1y executed. This can be .achieved
" by dec]ar1ng start and end of transaction.
 When the end’ of transaction 1s ‘reached, the database must be ascertained

to be consistent. Th1s can be achieved by eva]uat1ng va]ues of a1] the '
registered assertions in the updated database However, thls is aga1n a
time-consuming task. It is only necessary to ascertain all the assertions
which were viélafed’by'some Unit'updéteévinvthe transaction have made
‘true' again by some other unit updates in the transaction. Furthermore,
there can be the cases where it is not.necessary-to reevaluate assertion
values in the updated database,:that is, there exists some simpler from
acting a necessary condition, a sufficient condition or a necessary and
sufficient condition for the given assertion becoming 'true'iin the
database updated by the transaction. Such a form must include two or
more tuples (constants) that were added to or deleted from the database.

For example, assume that a transaction adds a tuple f] to R] forming
R; and also adds a tuple Ez to R2 forming R;. For an assertion

P=(Tt1/R)) (Fty/Ry)A; (£q)=Ay (1)
corresponding to an inclusion constraint, it can be seen that

-37-



(e, /R]) (Ft,/R5)Q=(7e, /R) (Rt /R)QVALE o, )
A( (th/RZ)Q[f]-»t]]'YQ[E]+t] Epty]).
Since the first term is always 'true', this transaction is proper with
respect to P if and only if
- (y/R)ALEt]
op e
Qft +t],t2+t2]_A (t )=A (t )
is 'true It is very easy to check the second sufflcxent cond1t10n
" A generalized form of the 1emma 2
LEMMA 2':
(1) (Vt/RUR,)Q=(Vt/R, ) (VE/R,y) O
(2) (Ft/RyuR;)Q=(Tt/Ry)Qv(*t/R,)Q.

5becomes necessary to deve]op a method app11cab]e to more general- -

cases

CONCLUSION

Database updates shonld‘notnconflict with any incegrity constraints. Two
t}pes'of integrity'cdnstraints,'static"constraints and dynamic constraints,
exist. Update validation procedures for 1ntegr1ty constraints of the '
;former type have been d1scussed

A static constraint can be expressed by a relation schema calculus
defined on database relation schemata. To each relation schema ca]cu]us,r
an assertion which is an extended (in the sense that any function of
tuples can be used in defining it) relational calculus corresponds. A data-
base is consistent if all the registered assertions are true in it. An
update is S-proper if it transforms a consistent database into another
consistent database. | ’

The S-properness of an update can be examined by evaluating all the
registered assertions in the updated database. However, this procedure ‘is
unnecessarily time-consuming. It is sufficient to evaluate only update-
relevant assertions that can be falsified by the given update-in the
updated database.

Furthermore, in many cases there exist.some simplified extended
relational calcu]us, which can be evaluated in the current database



219

—usingrtup]es (constants)4£o be added to ana/or deleted from the database,
and which (being true) acts a necessary condition, a sufficient condition,
or an necessary and sufficient (equivalent) condition for an assertion
(being true) in the updated database.

A method of finding such simplified forms for a given assert1on and
a-given unit update (adding, deleting or replacing a single tuple) was
'presented first. This method is based on several basic properties of
propositional Togic and (many-sorted) predicate logic. The latter pro-
perties regard those of domain-coupled quantifiers as aggregate functions.

v Thé method consists of two major steps: (1) Finding simplified forms
by processing the prefix part of the -given assertion (in prenex form), and
(2) Further simplification by substituting tuple constants for some tuple
variables in the matrix part of thehbiV¢n assertion. The result varies
according to.Whaf the aSsertion form is and what update is to be applied to

~ what re]atidn (what the update-relevant variables are).
The time required for finding an efficient validation procedUre

by this méthod is less than 0(2N£)_where N is the number of update-

relevant variables in the given assertion and g is the length of .the

assertion formula. For most assertions N=1. There are very few cases

where N>3. On the other hand, the time saved by applying the obtained
procedure instead of directly eveluating the assertion can be 0(Zogn)

to 0in ) or more, where n is the number of tuples in the relations on
which the assertion is defined. It varies according to what search pro-
cedures can be used for evaluating the assertion!’P and the obtained
simplified form P'. Since n can be fairly 1érge, it seems quite safe to
say that the proposed method is practical.

Some parts of the method can be extensively applied to validating
uatabase updates against aggregate constraints. Also it is possible to
generalize the method for improving procedures of validating transactions.
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