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1. REVIEWS ON FILE SEGMENTATION SCHEMES

File segmentation is inevitable to cope with large files of information. If
files are segmenged arbitrarily, most queries require accesses to all the
segments, which severely abates the system performance.

File segmentation schemes are clustering techniques that appropriately
distribute records to segments so as to balance and minimize the number of
segment accesses necessary to process various queries., Every segmentation
scheme consists‘of two components, a directory and a set of segments. A
directory is a set of rules that specifies how to distribute records to a set of
segments. It may be represented by a hash function, a table, or a search tree,.
Every segment has the same finite size, and hence it may possibly overflow.

A segmentation scheme is static if its directory is apriori constructed
based on an estimated probability distribution of record values. The overflow

of segments does not change the directory. It is resolved by chaining a nev



224

segment to the overflowing segment (Fig. 1 (a)). The increase of the file size
may cause the excessive chaining of segments and severely increase the number of
segment accesses necessary for the processing of each query. Excessive lowering

of performance needs the reorganization of the whole file.
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Fig. ] A static segmentation scheme and

an adaptive segmentation scheme.

An adaptive segmentation scheme, however, does not presuppose the
distribution of record values. When a segment overflows, the directory is
locally rewritten to split this segment into two new segments so that the
records in the old segment may be almost equally distributed to the two new
segments (Fig. 1 (b)).

A file is said to be relational if it stores a relation defined by E.F.
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Codd [1]. A primary key of a relational file is an attribute of the relation
that uniquely specifies a record in the file. Some query may request a search
based on the values of other attributes in the records. Such attributes are
denoted by secondary keys. For the retrievals on a single key, whether it is
prime or not, a lot of segmentation schemes have been proposed. Some of them
have been practically used and approved. Among them are hashing as a static
segmentation scheme, the B-trees of Bayer and McCreight [2], radix search trees
( also known as tries ) of Fredkin [3], expandable hashing of Knott [4], dynamic
hashing of Larson [5], virtual hashing of Litwin [6], and extendible hashing of
Fagin [7] as dynamic, or adaptive, segmentation schemes,

However, segmentation for the retrievals on secondary keys has not been
much explored yet. Only several schemes are known as static schemes, and one as
an adaptive scheme. Static schemes are essentially classified into two schemes,
a combinatorial hashing scheme of Rivest [8] and a balanced filing scheme of
Abraham [9]. These schemes can be applicable to restricted cases in which the
number of segments and the number of secondary keys have some special
relationship. Besides, their directories can not be adaptively rewritten.,

An extended k-d tree of Chang [10] is an only known adaptive segmentatior
scheme for retrievals on secondary keys. It is an extension of a k-d tree of
Bently [11] that was originally a search tree whose leaf has a single record. |
k-d tree is a binary search tree except that one of the secondary key attribute
is assigned to each of its levels. Each internal node splits a set of record
into two subsetg‘by.the values of the attribute assigned to the level of thi
node, i.e., a set of records with the smaller attribute values, and a set o
records with the larger attribute values. The splitting value of the attribut
can be arbitrarily chosen at each node.

An extended k-d tree scheme has several disadvantages. The removal of tt

restriction that the secondary keys used for the segment splitting should t
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fixed at each level of the tree may decrease the average or the maximum number
of segment accesses necessary for query processing. Actually, a k-d tree does
not ensure the minimization of them. Besides, the scheme does not specify how
to analyze the value distribution of records in an overflowing segment.
Generally, an overhead it causes is inevitable.

This paper proposes a new segmentation scheme classified into the same type
as an extended k-d tree scheme, namely it falls into adaptive segﬁentation
schemes for retrievals on secondary keys. Its directory is represented by a
binary trie whose node is labeled with one of the secondary keys., Different
from an extended k-d tree, its node is labeled with an arbitrary secondary key.
The splitting of segments is based upon the values of a certain bit of this
attribute values, and hence, it can be arbitrarily chosen either to minimize the
average number of segment accesses or to improve the worst case performance,
Besides, if the values of secondary keys are independently and uniformly
distributed, a search of the directory for N segments and its local rewriting

need only O(log N) time for large N.

2. COLORED TRIE SCHEMES FOR RELATIONAL FILES

2.1. Abstract modeling of a relationmal file segmentation problem

Suppose first that we have a relational file of records each containing n
secondary keys, where each secondary key has a fairly large number of possible
values. We can map the records whose secondary keys are (kl, Koy eee s kn) to
the (n*m)-bit number

hl(kl)hz(kz) .o .hn(kn) ’
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where each h; is a hash function taking each secondary key into an m-bit value,
and the above expression stands for the juxtaposition of n m-bit values.

Now the above segmentation of a relational file is defined in an abstract
manner as follows. Suppose that we have a lot of beeds each colored with one of
the different colors, COs C1» ese s € _j+ This set of colors is denoted by C. A
bead with c; color is referred to as a c;-bead. Each bead is labeled with an m-
bit value. There may be beads with a same color and a same label. A roéary is
a string of n beads each having a different color. The c-label of a rosary is
defined as the label on its c-bead.

Rosaries are made one by one, choosing an arbitrary label for each color.
They are stored in a set of drawers each having a constant capacity. While the
number of produced rosaries is less than the capacity of a drawer, they are all
stored in a single drawer. If it overflows, the rosaries stored in it are
appropriately distributed into two new empty drawers. The number of drawers
used to store rosaries is increased by one.

Suppose that each customer requests a search for rosaries with a specified
label v on a bead with a specified color ¢. This request is expressed by c=v,
In order to decrease the wait time of customers, rosaries should have been
appropriately distributed iﬁto a set of drawers. The wait time is proportional
té the number of drawers to be searched. This number varies for various colors
and labels. If we desire to minimize the maximum responce time, the maximum
number of drawers to be searched should be minimized., If the throughput of
services is desired to be maximized, the average number of drawers to be

searched should be minimized.
2.2, A colored binary trie

Initially, only a single drawer is used to store rosaries, and hence its
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directqry has only one entry (Fig. 2 (a)). If an overf}ow occurs, the rosaries
in the drawer should be divided into two classes. They can be divided based
upon the valués of a certain bit of a certain color label. For this division, we
use the most significant bit of some color label. The directory will come to
have two entries corresponding to two new drawers that store the two classes.
It can be represented as a binary trie with two leaves and a root that is
painted with a color whose labels are used as a basis of the division (Fig. 2
(b)). I1f one of the drawers overflows again, its contents are further divided
into two classes. In general, the division of a cluster can be based upon any
bit of any color label that is not already used as a basis of another division
in the process of having proéuced this cluster. We use, in every division, the
leftmost unused bit of some color label. The directory of drawers that
describes the rules of cluster division can be represented as a colored binary
trie. It is a binary trie whose each internal node is painted with one of the n

colors.

a directory a drawer ‘a directory drawers
(a) initial state (b) after the split by

a color C

Fig. 2 pivision of the contents of a drawer based on

a bit of the C-labels of rosaries.

A left branch from a node colored with c is represented by ¢, while the
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right by c. The concatenation of the representation of branches along the path
from the root to a node uniquely identifies that node in the trie. This
identifier is referred to as a node code. For a node with a node code a and
each color ¢, we define the c-code of that node as a bit sequence that is
obtained by first deleting all the appearances of c' and c' from a for each c'
different from c, and then replacing c¢ and c respectively with '1' and '0'.  The
c-code of a node with a node code o is denoted by c(a), while the length of a
and that of c(a) are respectively represented by p(a) and p(c(a)). A node a of
a colored binary trie stands for a cluster of rosaries whbse c-labels begin with

c(a) for each color c.

2.3. Access cost

Each customer requests a search based on the values of some specified c-
label. It requires a search of a directory for drawers necessary to search, and
searches of these drawers for requested rosaries. The wait time of a customer

is approximately proportional to the number of drawers to be searched. Fig. 3
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Fig. 3 An example directory
represented by a colored
binary trie with 3
colors. '
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shows an example directory represented by a colored binary trie with three
colors, R, G, and B, They are labeled with the numbering from 1 to 6. Let the
search for rosaries with a c-label v be referred to as a 'c=v' search. For the
search R=00...00, it is necessary to pull out three drawers 1, 2, and 3. For
R=00...01, a set of necessary drawers is same. Generally, these drawers are
necessary and sufficient to search for the R-labels beginning with 00. These
search requests are represented by R=00**,..*, where '*' stands for an arbitrary
binary value. A search request B=0**...x requires to pull out four drawers, 1,
2, 4, and 5. The number of necessary drawers varies depending on the color ¢
and its label v. This number is denoted by naccess(T, ¢, v), where T denotes a
directory trie.

Let Cavg(T, c¢) and Cworst(T, c) respectively denote the average and the
maximum number of segment accesses necessary for searches based on the values of
the c-label, i.e.,s

Cavg(T, c) = average (naccess(T, c, V))
ve{0,1}m
Cworst(T, ¢) = max (naccess(T, c, v)).
ve{0,1}™
Two kinds of access costs can be defined:
1. average cost

costl(T) = average (Cavg(T, c)),
ceC

2. worst cost

cost2(T) = max (Cworst(T, c)).
ceC

Suppose that we have a directory T and that one of its drawers overflows.
We want to choose the most desirable color to split the overflowing leaf of T so
’ that the result trie may have the least cost. Suppose that the overflow occurs
at a leaf with a node code a. Let a trie obtained by splitting this leaf based

on a bit of c-label be denoted by new(T, a, c). The most desirable color is



formally defined as the one that minimizes

Ccosti,f’a(c) = cost*(new(T, a, c)).
There can be three different schemes corresponding to the two cost functioﬁs.
The best average scheme minimizes Ccost.}_.,u(c), while the best worst scheme
minimizes CCOSt%,u(c). The best average scheme results in a good performance

throughput, while the best worst scheme improves responce time.

3. ADAPTIVE SEGMENTATIOR SCHEMES

3.1. Best average scheme

For a colored trie T and an overflowing leaf a, Ccost.}’a(c) is calculated

as follows (Appendix A.l).

Theorem 3.1

Ceostd (c) = costH(T)+(1/n) sum (1/2)PLe’ (@) _(1/n)(1/2)P ete)) (1)

The first two terms in the right hand side of the equation (1) do not depend
on c. Besides, the equality (1) implies that the minimization of Ccost%’a(c) is
equivalent to the minimization of p(c(a)). Therefore, in the best average
scheme, the split of a leaf with a node code & should choose a color that
minimizes p(c(a)). As a special case of this scheme, a scheme is a best average
scheme if it selects, for the splitt;ing of a node at the i-th level, the color
¢; whose suffix j is congruent to i-1 modulo n. Such a scheme is called a
regular best average scheme. 'We show an example trie in Fig. 4 that is built

based on the regular best average scheme. If the node 2 overflows, it will be
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split by the color ''.

/G\ B/G\. |
3/\4 R/\7 |
/A

S 6

Fig. 4 A colored binary trie with 3 colors that is

built based on the best average scheme.

3.2 Best worst scheme

When an overflow occurs at some leaf of a colored trie, the best worst

scheme splits this leaf by such a color that minimizes Ccost%.,u(c). If both c!

-

and ¢~ are different from c then Cworst(new(T, o, c'), ¢c) is equal to

Cworst(new(T, @, ¢ )5 c). Let c* denote a representative of the colors that are

different from c. Then the following theorem holds.

Theorem 3.2 (Appendix A.2)

If a color ¢ maximizes Cworst(new(T, a, c*), g) then it minimizes Ccost%’u(c).
For each color c, the leaves of a colored trie T can be divided into three

classes. The first class consists of those leaves whose node codes do not

include c nor c. A subtree of T that consists of these leaves is denoted by

T/c. The second class consists of such leaves whose each node code has ¢ that

is not preceded by c. A subtree of T cons’isting of these leaves is denoted by

Tlc. Each of the remaining leaves has a node code that has c¢ before any

10
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appearances of ¢ in it. A subtree consisting of these remaining leaves is
denoted by T|lc. An example of a trie T, and its Tlc, Tlc and T/c are shown in

Fig. 5. Then Cworst(T, c) is recursively calculated as follows.

/ \ " R\B
AN\ /!
A A
I\
T|G T|G

/\ G/R\‘

f/// \\\h \\\h Q\\\b
6/ R/\4 \7
A

Fig. 5 An example of a colored trie, and its T/G, TIE; and T!G

Theorem 3.10 (Appendix A.3)
Cworst(T, c)
= card(leaves(T/c)) + max (Cworst(Tlc, c)» Cworst(T|lc, c)),
where leaves(T) denotes a sét of the leaves of T while card(S) denotes the

cardinality of a set S.

For each finite binary sequence over {0,1}, let TIS denote

(Coeel(Tlep)leg) e leg-1) legs

11
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where k is the length of v, and ¢; is ¢ (, ¢) if the i-th bit of v is 1 (, 0).

We define a set P(v) for a finite binary sequence v as a set of prefixes of v,

le€Coys
P(v) = { u | there exists u' in {0,1}*, and uou' =v }.

Let L.(v) and WC(V) be defined as

L.(v) card(leaVeS((ch,)/C))o

it

We(v) = Cworst(T|gs c).
Then they satisfy the following relation;

Wo(v) = Lo(v) + max (W (ve0), W (vel)).
Let S, be

8. = { c(a) | a € leaves(T) }.

The algorithm for the best worst scheme is stated as follows.
Algorithm

1. Compute Cworst(mew(T, &, c*), ¢) for each c.

Let L&(v) and WZ2(v) be defined as

L%(v) = card(leaves(new(T, o, c+)|$)/c))-

W2(v)

Cworst (new(T, o, c*) IS, ).
Then W%(e) is Cworst(new(T, a, ¢t)y ¢), where € denotes an empty string. Since
new(T, a, c*) 1S is TIS for any vaP(c(a))s LE(v) and WE(v) are equal to L (v) and
W (v) for such ’v. For veP(c(e))s L (v) and W _(v) may have to be updated. Since
the leaf ¢ is also a‘leaf of T lg(a), and o is split into two leaves by a color
differeﬁt from c, the number of leaves of new(T, a, c¥) l‘é(a) increases from that
of T1g(qg)s by one. Therefore, LE(v) is

Lg(v) = if v=c(a) then L (v)+l
else L.(v).

The computation of W%(e)- is recursively performed by the following formula;

12
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Wg(v) = if veS. then 0
elseif vkP(c(a)) then W, (v)
else Lg(v)+max(Wg(v°0). Wg(wl))- (2)
Since v°0 and vel can not simultaneously belong to P(c(a)), only one of W _(v°0)
and W (vel) needs further computation in (2). Therefore, the number of steps
necessary for the computation of Wc(a) is proportional to the length of c(a),
which is bounded by the height of the colored trie.
2. Choose a color c¢ that maximizes‘Cworst(new(T, as c¥), ¢).
Since Cworst(new(T, &, c¥), ¢) is Wc(e), what we have to do is to find out a
color that maximizes Wc(/e). If there are more than one candidates, choose one
that minimizes p(c(a)).
3. Split the overflowing node by the selected color cg» and update Lc(v) and
W.(v) for each c and veP(c(a)).
For any c diffe;'ent from c;, and any veP(c(a)),
L.(v) « L%(v),
Wo(v) « We(v).
For c=cq»
528V « (S -{c(a)}) u {c(a)e0, c(a)ell,
L2®¥(v) « if v=c(a) then L, (v)-1
elseif v=c(a)§0 or v=c(a)eol
then L (v)+1
else Lc(v).
WREV(v) + if vésgew then 0
elseif v§P(c(a))
then Wc(v)
else L3®W(v)+max(WQ€¥(ve0), WI¥(vel)).
Because of the same reason, the number of steps necessary for the update of

L.(v) and W (v) is proportional to the length of c(a), which is bounded by the

13
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Fig. 6 The splitting of an overflowing segment based on the best

worst scheme

14
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height of the colored trie.

For each ve{c(a)| o is a node in T.}, let T.(v) be a tree defined
recursively as follows. Its root is labeled with a pair (W _(v)-L (v), L (v)).
Its left and right subtrees are respectively defined as Tc(v°0) and Tc(v°l).
For va{c(a)| o is a node on T.}, T (v) is considered empty. Fig. 6 (a) shows an
example colored trie and its corresponding Tc(e) for each color c. The
overflowing node is indicated by an arrow. For the selection of a color that
minimizes Ccost3.1.’a(c), the value of Cworst(new(T, a, c¥), ¢) is computed for
each ¢, which is shown in (b). In this case, G is selected. For each c, the

change of T, by the spiitting is shown in (c).

4, ANALYSIS OF COLORED BINARY TRIES

4.1. Theoretical analysis

It is well known that the average height of a randomly constructed binary
tree with N external nodes is 2*In(N-1) $1.386 log,(N-1) [12]. Since a colored
binary trie is also a binary tree, the average height of randomly constructed
colored binary tries with N leaves is also 1.386 log,(N-1).

For the regular best average scheme, we can get a fairly good lower bound

and a upper bound of cost}(T).
Theorem 4.1 (Y. Tanaka [13])

The regular best average scheme makes cost1(T) as

COStl(T) < 2(n+1)/n N(n"l)/n_

15
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Theorem 4.2 (Y. Tanaka [13])
The regular best average scheme makes costl(T) as

A (1+AN-2_948-1)

cost1(T) 2 ( N<n*m ),
4(1-4)
A (1+AMm"2_gpn¥m-1) A
cost}(T) 2 3 ( N2n*m ),
4(1-4) 4(1-A)
where A = (1/2)1/n,  Especially, if the label values on rosaries are uniformly

distributed, costl(T) is bounded as

costl(T) b3 N(n-l)/n_
4.2. Experimental analysis

The experimental analysis by computer simulations has shown desirable
features of these proposed schemes.

In the best average scheme, the loading factor of a segment is about 70 %,
which Vdoes not depend on the size of segments, the number of different colors,
nor the distribution of the label values on rosaries. Theoretically, if the
label values on rosaries are uniformly distributed, the lower bound of cost1(T)
becomes N(n'l)/“, which can not be crossed by any segmentation scheme regardless
of whether it is static or adaptive. Fig. 7 (a) shows the simulated values of
cost!(T) in the case of the best average scheme together with the theoretical
lower bound. The two curves coincide almost everywhere. The average cost
costl(T) is almost independent from the distribution of the label values on
rosaries. However, the worst cost costz(T) seriously depends on how the
distribution of the label values deviates from uniform distribution.

For a trie constructed by the best worst scheme, both the average cost
costl(T) and the worst cost costZ(T) are almost independent from the value

distribution (Fig. 7 (b)). Besides, the difference between costl(T) and

16
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(a) the simulated average number of segment accesses in the

best average scheme' together with its,theoretical lower
bound.

(The loading factor is assumed to be 70 % in the computation

‘of the theoretical lower bound.)
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(b) comparison of the two schemes, the best average scheme and
the best worst scheme, in the case in which record values

are not uniformly distriﬁuted.

237

Fig. 7 Experimental analysis of the proposed segementation schemes.

17



238

. the total number of segment size = 10
segment accesses the number of éolors =
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(a) The total number of segment accesses necessary for

the processing of a restriction operation in the

case of the best average scheme.
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(b) The total number of segment accesses necessary for

the processing of a restriction operation in the
.case of the best worst scheme.
Fig. 8 The improvement of the file access cost in the

processing of a restriction operation by using

our new adaptive segmentation schemes.
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cost2(T) is very small. The loading factor of a segment is almost same as in the

case of the best average scheme.

The two cost functions above correspond to the average and the maximum
number of segment accesses necessary for the processing of selection operations
on a relation, such as R[A='v'], where R, A, and v are respectively a relation,
an attribute of R, and an attribute value of A. We have also simulated our file
segmentation schemes to know the number of necessary segment accesses in the
processing of a restriction operation on a relation, such as R[A=B], where A and
B are two different attributes of a relation R (Fig. 8). The figure shows that
the access cost of restriction 9perations is mostly similar to the cost of
selection operations. Although our schemes are designed to decrease the access
cost of selection operations, they have also shown a remarkable improvement in

the access cost of restriction operations.

5. CONCLUSION

We have proposed new adaptive segmentation schemes for the retrievals on

secondary keys. They have the following advantageous features.,

1. It is completely adaptive, and has no restrictions on the number of segments
and of attributes.

2., It can be arbitrarily chosen either to minimize the average number of segment
accesses or to improve the worst case performance. This property is different
from an‘extended k-d tree scheme, which can minimize only the average. Besides,
the minimization in an extended k-d tree scheme is performed under the

restriction that the node splitting at each level uses a same secondary key.

19
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Our new scheme assumes no such restrictions.
3. If the values of the secondary keys are independently and uniformly
distributed, a search of the directory for N segments and its local rewriting

need only 0(log N) time for large N.

The computer simulations have shown various desirable features of these

schemes. Among them, the following features are worth mentioning.

1. The loading factor is bout 70 7, which is fairly good.

2, If the record values are uniformly distributeds the expected number of
segment acesses in the best average scheme almost coincides with the lower bound
of the average cost.

3. In the best Qorst scheme, the responce time is almost independent from the
distribution of record values. Besides, the maximum number of segment accesses

becomes very close to the expected number of segment accesses.

All of these desirable features of our schemes shows their applicability to
the practical relational files and also to the large relational database

machine.
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APPENDIX

A.l. Proof of Theorem 3.l.

For a colored trie T, let L(T) and R(T) denote the left subtrie and the
right subtrie of its root, and C(T) be a color of its root. Then the following

equalities hold.

Lemma A.l
Cavg(T, c) = if T has only one node then 1
else
(1-(1/2)A(es €(T)))
*(Cavg(L(T), c)+Cavg(R(T), c)), (A.1)
where
A(c, ¢') =1 if c=c',
0 otﬁerwise.
proof
Assume that T has more than one nodes. If cXC(T) then Cavg(T, c) is

Cavg(T, ¢) = (1/2)™( sum naccess(T, ¢, v))
ve{0,1}m

=(1/2)®( sum (naccess(L(T), c, V)
ve{0,1}m

+naccess(R(T), c, v)))
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= Cavg(L(T), c¢) + Cavg(R(T), c).

Otherwise, Cavg(T, c¢) is

Cavg(T, ¢) = (1/2)™( sum naccess(L(T), cs V)
ve{0,1}m"1

+ sum naccess(R(T), c» v)).
ve{0,1}m-1

Since naccess(L(T), c, v) equals to naccess(L(T), c, vo0) and also to
naccess(L(T), ¢, vel), the first sum in (3) becomes

(1/2)( sum naccess(L(T), c, ve°0)
ve{0,1}m-1

+  sum naccess(L(T), c, vel))
ve{0,1}0°1

(1/2) sum naccess(L(T), c, V)
VE{Ogl}m

(1/2)Cavg(L(T), c).
Similarly, the second sum in (3) becomes

sum naccess(R(’f), cs v) = (1/2)Cavg(R(T), c).
ve{0,1}™°

Both cases can be summarized as shown in this lemma. Q.E.D

Theorem A.2

Let leaves(T) denote a set o‘ftnode codes of leaves in T. Then Cavg(T, c¢) is

Cavg(T, ¢) = sum  (1/2)p(c(@)), ~ (A.2
acleaves(T)

proof

This is proved by a mathematical induction on the number of leaves in T. If th
number of leaves in T is one, then o is an empty string, and hence p(c(a)) i
zero for any c. Therefore, the right hand side of (A.2) becomes one for any c
which is consistent with the definition of Cavg(T, c). Suppose that the theore
holds for every trie that has less than N leaves., Let T be a trie with

leaves. From (A.1), Cavg(T, c) is

Cavg(T, c)
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= (1-(1/2)A(c, C(T)))*(Cavg(L(T), c) + Cavg(R(T), c)).
Since each of L(T) and R(T) has less than N leaves, this equality can be
changed to
Cavg(T, c)
= (1-(1/2)A(c, C(T)))

*( sum  (/2)pCeled)y  gun  (yzyplelad)y (A.3)
aeleaves(L(T)) aeleaves(R(T))

The set of leaves of T is clustered into two subsets;
leaves(T)

= {CU{T)ea | aeleaves(L(T))}

u {C(T)ea | aeleaves(R(T))},
where c°a denotes a concatenation of ¢ and oa. Besides, the following relation
holds;

p(c(CTT)ea)) = plc(C(T)ea)) = p(cla))+Alc, C(T)).
Therefore, (A.3) becomes

(1-(1/2)a(c, C(T)))

*( sum (172)p(c(CTTTea))-A(c, C(T))
aeleaves(L(T))
+ sum (1/2)p(c(C(T)ea))-A(c, C(T))
aecleaves(R(T))
= (1-(1/2)ACc, C(T)))*(  sum (1/2)p(c(a’))ypalc, C(T))
= sum (1/72)pCela®))
a'eleaves(T)
Therefore, the theorem also holds for T. This completes the proof. Q.E.D.

Lemma A.3

Cavg(new(T, &, c)s c') = Cavg(T, c') + (1-A(c, c'))(1/2)P(e'(@)) (4. 4)
proof
From Theorem A.2, Cavg(new(T, a, ¢), c') is

Cavg(new(T, a, c), c') = sum (172)pCe’(@)) = (a,5)

aeleaves(new(T, a, c))
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Since it holds that
leaves(new(T, a, c)) = (leaves(T)-{a}) u {acc, accl,
the equality (A.5) becomes

sum  (1/2)P(e’(@"))_(1/z)p(e’(@))yp(1/2)p(c’ (a))+Alc, ')
a'eleaves(T) '

= Cavg(T, c")+(1-A(c, c"))(1/2)p(c’ (@), Q.E.D.
Now the computation of Ccost%’a(c) is an easy task, since it holds from
Lemma A.3 that

.Ccost%,a(c)

average(Cavg(new(T, as c)s c'))
cleC

(1/n)sum (Cavg(T, c')+(1-A(c, c'))(1/2)p(c'(@)))y
c'eC

costL(T)+(1/n)sum (1/2)PLe"(@))_(1/n)(1/2)PCc(0)),
A.2. Proof of Theorem 3.2.

Lemma A.4
Each color satisfies the following relation;
Cworst (new(T, &, c), c) < Cworst(new(T, a, c*), ¢),
where ct denotes a representative of the colors that are different from c.
proof
For each ve{0,1}®, it holds that
naccess(new(T, @, ¢c), ¢, v) = naccess(T, ¢, Vv).
Since the cost of the new trie is more than the Qld trie, it holds that
Cworst (new(T, o, c*), ¢) 2 Cworst(T, c)

max naccess(T, cs V)
ve{0,1}m

max naccess(new(T, ads C)s Cs V)
ve{0,1}m

Cworst (new(T, a, c)s C)s
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which proves the lemma.

Q.E.D.

Assume that ¢ maximizes Cworst(new(T, &¢s c¥), ¢c). From the definition,

Ccost%.a(c) is

Ccost%’a(c) max Cworst(new(T, a, c), c')

c!?

max ( max Cworst(new(T, as c)s c')s
. c¢'Xc

Cworst(new(Ts o, c)s c) ).
From Lemma A.4, this becomes

Ccost2 (¢) € max ( max Cworst(new(T, o, c'+), c'),
T,a otk
c

Cworst (new(T, a, ct), ¢c) )

max Cworst(new(T, a, c¢'t), c').
C'

n

< Cworst(new(T,a, c*),c).

Let c' be different from c. Then the followings hold.

Ccost%’a(c') max Cworst(new(T, as c')s c)

c

max ( max Cworst(new(T, o, c')y ¢ ),
c ¢!

Cworst(new(T, a, c'), c') )
> Cworst(new(T, a, c¥), c).
From (A.6) and (A.7), it holds that
Ccost%’a(c') 2 Ceostd 4(c).
Therefore, ¢ minimizes Ccost3 (c).

T,a

A.3. Proof of Theorem 3.3.

From the definition of Cworst(T, ¢), it becomes

Cworst(T, c) = max ( max naccess(T, cs 0°v),
‘ VE{Opl}m

26

(A.6)

(A.7)

Q.E ‘D.



max naccess(Ts ¢, lov) )
ve{0,1}m

Do
rolam
-~

(A.8)

Consider a search specified as 'c = Oov'. The search fails in T|c, while all

the leaves in T/c satisfy this search condition. Therefore,

equality holds.

max naccess(T, cs 0ov)
V€{0,1}m-1
= card(leaves(T/c)) + max naccess(T|cs cs Oov).
Vﬁ{Oal}m-l

the following

Since a leaf with a node code & does not belong to Tlc if c(a) begins with '1',

the subtree T|c satisfies

max naccess(T|c, ¢, lov) = 0.
ve{0,1}m1

Therefore, the followings hold.

max naccess(T, c, Oov)
ve{0,1}m-1
= card(leaves(T/c)) + max naccess(T|cs c, Oov)
. ve{0,1}m"1 '
= card(leaves(T/c))
+ max ( max naccess(T|cs c, 0ov),
ve{0,1}m1
max naccess(T]|c, cs lov) )
ve{0,1}m1

= card(leaves(T/c)) + max naccess(Tlc, c, V)
v€{0,1}m ’

card(leaves(T/c)) + Cworst(T|c, c)

(A.9)

The substitution of (A.9) and the similar result for max(naccess(T, cs lov)) in

(A.8) proves the theorem.
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