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1. Statement of the problem

Let p(x; 0, §) be a family Qf probability density functions
of a (vector) random variable x with res?ect to some dominating
measure P, specified by two scalar parameters & and ;. The set M
={' p(x; 6, %‘)% is a parametric statistical model which we
presume. Let X1, Koy oae., X be a sequence of independent
observations such that the i-th observation X is a realization
from the distribution p(x; 0, 5;), where both f and Ei. are
unknown. In other words; the distributions of x; are assumed to

be specified by the common fixed but unknown parameter § and also

by the unknown parameter Ei whose value changes for each

observation. We call £ the structural parameter and & the

incidental or nuisance parameter. The problem is to find the
A A

asymptotic best estimator 6§, = Bn(xl, oy o xn) of the

structural parameter [, when the number n of observations are

large.



A A
An estimator Gnis said to be consistent, when &

converges
to the true parameter ¢ in the sense of mean square as n tends to
infinity. The goodness of a consistent estimator is measured by
its asymptotic variance defined by

av(f, ) = lim V[JH(’H&n - B)]

n-ow

. r . e e
where V denotes the variance and !t denotes the infinite sequence

=
A
<§l’ ?2, ..) of the nuisance parameter.

An estimator O
said to be the best in a class C of. the estimators,

when its
asymptotic variance satisfies

is

N ~
Av[8, 31 = Avig, 2

ol

A
for all allowable = and for all estimators H € C. Obviously,
there does not necessarily exist the best estimator in a given
class C.

Now we restrict our attention to some classes of estimators.
A

An estimator O is said to belong to class CO’ when it is given by
the equation

A
y(x;, 8) =0,

MR
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where

y(x, 8) is a function of x and # only, i.e., it does not
depend on g,

The function y is called the estimating function,

and the above equation is called the estimating equation. Let C1



be a subclass of CO’ consisting of all the consistent estimators
in Cy. We can prove the following theorem.
A
Theorem 1. An estimator § & CO is consistent, if and only

if its estimating function y satisfied

Ee[; [Y(XJ e)]=0 ’ E@,E [CGY(X: G)] 7& O »
where E gt denotes the expectation with respect to p(x; 8, §) and <
=2/36. The asymptotic variance of an estimator ékf Cl is given
by

A < 2
av(8, B) = {VIy(x;, 0)1/n}/](Z2y)/n}?

where E:agy(xi, B )/n is assumed to converge to a constant

depending on § and 5.

As will be shown later, the class C1 is often too large to

guarantee the existence of the best estimator. Some estimator

™

is good for a specific sequence v at the sacrifice of the bad

performances for other E} Hence, it is necessary to consider a
more restricted class C2 of estimators, which is a subclass of
Ci. We can always decompose an estimating function y(x, 8) into

the following sum
y(x, 8) = a(d, S)yu(x; 6, §) + b(@, S)v(x; 0,5) + n(x; §,58)
where

u(x; 0,5) =23,0(x;8.8) ., v(x;6,% =3 0(x;6,%
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j(x;@,§)=log p(x; 6,8) , D¢=0/35,

and n(x; 6, £) is a random variable which is not correlated to u

and v, i.e.,

E [un] = E

6% vn] = 0

o5 L
It is remarked that u = Beﬁ(xg ©, 5) is the part which involves
the necessary information for estimating &. Hence, when a(d, §)
does not depend on §, the estimating function y(x, 8) includes
the information with respect to the structural parameter £
uniformly in & 1In this case, without loss of generality we can
put a(®, S) = 1, because y(x, OD)/a(8) can be adopted as the

equivalent estimating function.

Hence, an estimating function y(x, §) with a(d, €) = 1 or the
A

estimator 6 derived therefrom, is said to be uniformly

informative. The class Cy consists of all the wuniformly

informative estimators belonging to C;- It is also easy to prove

that y(x, &) €:C2 can be decomposed into

y(x,0) =wx; 8,85) +n(x;0, %) (1)

where
w(x; 6, 8) = ulx; 6, §) = (Eay [wl/EDvix; 6, §)

Here,

2, .= _ 2 |
Ev™] = 8y = By ~ Bgs /83 (2)



is called the partial information, where Bog ' Sss and Bge are the

respective components of the Fisher information matrix of the

model M. By putting

N

g’ (@) = rllf_-;go»ﬁl—zﬁeﬁ [n(x; 6, 57 (3)
B = lini Vg (0, 5) =2y 6, 5) . (&)

n->m.

we have the following theorem.

A
Theorem 2. The asymptotic variance of an estimator £ in C2

is given by

A - -
avib; 21 =gt + 57%° (5)
where g is common to all the estimators in C, and only go depends

on the estimator.

2. Geometrical preliminaries
In order to analyze the structures of the classes Cl and 02
of estimators, we need to introduce the geometrical notions

connected with the manifold of the statistical model M.
R ={r(x) ‘ Eje [r(x)] =0 E [r2]<m§
6% 6,5 ’ 6%

be the vector space of all the random variables r(x) whose

expectations with respect to p(x; 0, &) wvanish and whose
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variances are finite. This is a Hilbert space in which the inner
product < r(x), x(x)> of two vectors of Ry, is defined by the

covariance as
{r(x), s(x)y =E,_[rs]

It is easy to show that u = u(x; @, £€) and v = v(x; @, &) belong

to the RB,.E . Indeed,

gy [ul = Egy [30C 6,8)] =0,
Epe [V] = Epg [050(x; 6,5)] = 0
. ) , ,
and Ebfs‘ [u®] = Boe * EQ,E [v©] = Bee - The subspace

T@,E = {au + bv} C RG,E

spanned by two vectors u and v is identified with the tangent
space of the manifoldf;oint (6, €), because u = %0 and v =l
can be identified with the natural basis vectors 2/36 and 2U9§;
respectively, of M associated with the coordinate system (&, §).
Obviously, w(x; 6, ¥ ) belongs to Tg s - Let OGLE be the
orthogonal complement of T&g in Rgg - Then, Rpye can be
decomposed as the direct sum of the two orthogonal subspaces,

R

6 = Tox @POgg



Let us attach one Hilbert space RG,E to each point (#,%5 ) of
the manifold M. Mathematically speaking, such an aggregate is a
fibre bundle with base space M. Let r(x; §, §) be a random
vector depending sufficiently smoothly on & and § and let
r(x; 8, %) belong to RB,§ for each (f, &£ ). Such a random vector
function r(x; 6, ¥ ) 1is called a vector field. Obviously, a
vector field r satisfies EG,S [r(x; 6, £)] = 0. Now we introduce

two differential operators V; and \7r§n by
Ve t(x; 0,S) =2yt - Eg ¢ [g7] , (6)

m . 3 =
\7§ r(x; 8, §) X Tt ru. (7)

It is easy to show that V;r and \7;nr again satisfies E[Vg'r] =

E[V?r] = 0, so that they are vector fields under a certain
regularity conditions. The operators \7.? and V;n are called,

respectively, the exponential covariant derivative and mixture
covariant derivative with respect to § A vector field
r(x; @, §) is said to be e-invariant when \Ug'r = 0 holds. A
vector field r(x; 8) which does not depend on § automatically
satisfies Y®r = 0. A field satisfying d¢r = 0 is said to be
strongly e-invariant or shortly se-invariant. A se-invariant
field is e-invariant.

We next define e- and m-parallel displacement of a vector.
Let a(x) be a vector belonging to R6,§’ of a point (4, £') &€ M.
We can extend it along the §-axis for all the points (#, §)

having the same fixed §-coordinate such that the extended fields



are e- and m-invariant. Indeed the extended fields ae(x, € ) and

a™(x, &) are defined by solving the equation
. e m -
~a(x, =0 and a(x, ¢ =0 ,
Vcalx, 0) 7, (x, 0)

respectively, where (¢ is fixed. We call a®(x, £) and a™(x, £),
respectively, the e- and m-parallel displacements of a(x) from
(B, &) to (8, £) along the §-axis, and denote the parallel

m
displacement operators by ﬁ; and ;, as

<
Moa = a%x, §) ,
Tya(x) = a™x, §)

It is easy to show that the parallel displacements can be written

explicitly as

Tlhat) = at B, [a@] (8
a _ p(x; 0, B | ' '
L2 = ey 2™ (9
<

A se-invariant field a(x) is by itself invariant under TTEI,

e

Tlg a(x) = a(x)

The length of a vector or the angle of two vectors does not

in general preserved by the e- and m-parallel displacements.



This is because the underlying e- and m-connections of the fibre
bundle is not metric. However, the two connections are dual in
the sense treated in Amari or more fundamentally in Nagaoka and

Amari, so that the following important relation holds,

G’_‘ ,_'",; \
= e .
GRS (T e, lps ) (10)
where <r, s>§, denotes the inner product at (f, §'), i.e., <r,
s>§, = EQE,»[rs], where £ is fixed. The differential form of

the above relation is

2 <r, s> = <§§r, s> + <r, \%s> . (11)

Now, let us fix a point ¢, ) arbitrarily, and study the

structure of the Hilbert space Rp s attached to this point.

First, let R;_ be the subspace of Rgs spanned by the vectors

5
{1, Tha | at €1gs |,

i.e., RTglg is spanned by the wvectors which are m -parallel
displacements, to (6, ¥§), of the tangent vectors spanned by
u(x; 6, ') and v(x; 6§, T©') at some (£, §'). We call R_g:-g the
tangential subspace, which obviously includes the tangent space

T We can decompose Ré,/§ into the direct sum

6,8 -

Rpo = Rp:@R% 5, (12)



where Rag is the orthogonal complement of R%E. We call R%S the
orthogonal subspace. Let us further decompose RT  as follows.
Let Rgg be the subspace of R£§ spanned by the
vectors T%év(x; ¢, §') for all §' where @ is fixed. We call Rﬁ;;
the nuisance subspace, because it is composed of the m-parallel
displacements of all the v-vectors v(x; 4, §') which are

responsible for changes in the nuisance parameter $. Then, we

have the following orthogonal decomposition

T _ 5N I
Rgs = Rgs @Ry (13)
I . N . T .
where Ry is the orthogonal complement of Rgy in Rgs. It is
called the information subspace, because it carries the
information included in u = u(x; 8, §') but not in Rgg by
m-parallelly displacing it to (8, $). We thus have the full
decomposition
I N 0]

The above decomposition can be done at each point (¢, §)e

M. Then, Riy, RN, IRy are defined for all (g, ¥). Let By,

be a subspace of Rgy defined at every ({, $). It is said to be
e-closed or m-closed, respectively, when the e- or m-parallel
displacements of a vector belonging to R%glfrom (G, §') to (8, &)
remain in Rﬁ& for all ' and §. It is clear from the definition

'gg = REEGD R%Zgare m-closed. When R?S is m-closed

(e-closed), its orthogonal complement §%S

that R%g and R

is e-closed (m-closed).

ez



This can be proved from the relation (10). Hence, R%S and Rggéﬁ
Rég are e-closed. However, R%; is in general neither e-closed

nor m-closed.

3. Conditions for existence of estimators in Cq and C,

Let y(x, B) be an estimating function belonging to Cq-
Then, it 1is a se-invariant vector field, because of the
consistency condition E&g[y(x, #)] = 0. By differentiating this
with respect to §, we have 4<y, v;> = 0 for all$ Since y(x, )

is invariant under the e-parallel displacement, we have
e ™ m
= 5 ¥ = TS
<Y’ V>§, - <ﬂ§" Y, TT;IV> - <Ys ‘;—lv >

This shows that y is orthogonal to the nuisance subspace Rgg,

i.e., y belongs to Rgs(} Rg§. We can hence prove
Lemma 1. A se-field y(x, #) can uniquely be decomposed into
_ I 0 g
y(x, 6) =y (x; 8,85) +y (x5 6,%),

gg’ yO & R%g for every (8, §). Conversely, given two
0

vectors a(x; 0 ) & RIQ,g and b(x; 6) € R é,g at a point

yI & R

@, ), the sum. a(x; ) + b(x; @) can uniquely be extended to a

se-field

y(x,0) = a(x; 0) + b(x; 8)

’/
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= yI(X; 6, §) + yO(X; 6, %)

where y'(x; 6, 5) = aCx; 6), y2(x; 6, 5) = b(x;6) at the
point §.

It should be noted that yI and yO depends on &, although
their sum is free of §. This is because Rg,’s’ is not e-closed.
Since Rce),‘g is e-closed, the I-part yI(x; B, ) of a se-field
y(x, 6 ) 1is identically O, when it wvanishes at a point € .
Obviously, for any y(x, 8) & R%,§’ E[3ey(x,8)] = - <y,uy =0
holds, so that it is mnot related to the information for

estimating . Hence, we have

Theorem 3. The class Cl of the consistent estimators is not

void, if and only if Rgg contains a vector other than O.

In order to obtain the condition for the existence of C2
estimators, we define the vector

il g, 55 5 = gl ORI us 6, 57

where P is the projection to R . THis is the é_1(§') times the
projection to RI of the m-parallel displacement of the vector
u(x; 8, ') from (#, 8') to (8, S). Obviously, all the ﬁI's span
the whole Rg,%' The set of vectors ﬁI(x; 8, 5; §') where §' is

changing and (&, §) is fixed, forms a curve in Rés. The curve

/2
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ol is said to have coplanarity, when it is on a hyprplane in Rgg»

i.e., when there exists a vector w €& Rggsuch that

o @6, 8580 =1 (17)

We call such a w the information vector and denote it by
wI(x; 6, %), when it exists. We can prove that the information
vector field WI(X; e, §) is wunique, when it exists. The

following theorem is important.

Theorem 4. The class C, of the uniformly informative
estimators is not void, if and only if the curve GI is coplanar.
When C2 is not void, any estimating function y(x, ) & C, can be

decomposed into

y(x, 8) = wi(x; §,8) +y0(x; 6,%) , (18)

where yO(S RQ . In other words, the I-part of any C, estimator
0.3 2

is unique and is given by the information vector.

The proof is omitted. The theorem elucidates the structure

of the uniformly informative estimators.

4., n-exponential family of distributions
Before obtaining the best estimators in Cl and CZ’ it is
wise to obtain the explicit form of the decomposition (14) by

using some special but widely used type of distributions. We



consider the following family of distributions whose density

functions are given by
p(x; 0, §) = explds(x, B) + r(x,6) - ¥, 3)) . (19)

This type of distributions 1is characterized by the fact that
there exists a scalar sufficient statistic for the nuisance
parameter §, when @ is known. Indeed, s(x, §) is the sufficient
statistic. The above type of distributions 1is called the
nuisance-exponential family or shortly the n-exponential family.
In an n-exponential family of distributions, the tangent

vectors are given by

Il

u = 999 }DGS - '391‘ - 99\{1 ’
v = B;Q =85 - g‘s“]& .
The m-parallel displacement is expressed as

m
Tlgax) = exp{(¥- §)s - (F&) - PG} - a0

Hence, the parallel displacements of u(x; g, §') and v(x; 8, §')

from (@, ') to (6, ¥) are given, respectively, by

ﬁ;,u = 15'%s -9, - Pt exp{(3' -5)s - ¥ (&) +¢®OY,

2
v v
<

= {s - tGEHjexp{G -X)s - fGH) +E® ]

/4
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The nuisance subspace ngg is spanned byjiyv for all §'. As is

known from the theory of Laplace transformation, the linear

combination of 1\v's yields a function f(s) - c(¢, ), where
c(9, 5) = Eeg[ffs(x, 6 )} 1. Hence, the nuisance subspace R§§ is
composed of the following random variables

RN, = {£ls(x,6)] - c(8, 5)}

91‘3 H ’ s
for arbitrary functions f. Similarly, the subspace Rrg's spanned

m m
by Tfu's and {jv's are written as

Rig = 1£'(8)9ys + £(s) (33 s + 1) + h(s) - c |,
where

c(f,3) = EG,S [f'(s)gos + £(s) (33,5 + L) + h(s)],

f' is the derivative of f with respect to s, £ and h are
arbitrary functions in s and they may depend on § and §. The
information subspace R&; is the orthogonal complement of Rgg in
Rgg. Since Rgg is generated by the random variable s(x, § ), the
projection of a random variable a(x) to RIG\’I,S is given by the
coﬁditional expectation E[a(x)\ s(x, 8 )], which is a function of

s. Hence, the projection of a(x) € RES to R%;;is given by

PIa(x) = a(x) ~ E[a] s] . (20)

Theorem 5. The information subspace R of an n-exponential

family is given by

/5
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Rfy = | (£'(s) +$E))IP oy s + £()PTopr Y 21)

It is easy to see that the class Cl is not wvoid in the
present case, unless both 9 S and’Der are functionally
dependent on s. Hence, there always exists a consistent
estimator in an n-exponential family. However, this is not true

for a general family We give an example.

Example. Let x = (yl, y2) be a pair of random variables ¥
Yo which are independent and take on two values 0 and 1. We
assume the following probability law:

1/(1 + exp{6 +3}) ,

I
1l

Py = 0)

P(y, = 0) = 1/(1 + exp{f(®)}) ,

where f(¥) is a known function, and P(yl =1) =1 - P(yl = 0),
P(y2 = 1) = 1 - P(y2 = 0). By the use of the function S&(z)

which is equal to 1 when z = 1 and otherwise equal to 0, the

above probability can be written as
20x; 8, 8) = (B+5)8 () + £6) §1(yy)

- 1ogil + exp(6-+§)§{1 + exp(f(sDS.

/6
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Hence, the distributions are of the n-exponetial type only when
f(¥) is a linear function. It is easy to show that Rﬁﬁg can be

spanned by three random variables,
Sl(yl)gl(yz) - C11 gl(yl){l - Sl(y2)§ - ClO ,

-8} § (M) - oy

where the constants cij are added such that the expectation of
the above vanish. Hence, it is a three-dimensional véctor space.
We can prove that the nuisance subspace R%;; is also
three-dimensional, when f(§) is not linear. Hence, Rag = 305,
and there exist no consistent estimators, unless f(§) is linear.
When f is linear, for example £f(&) = ¥, the distributions are of
the n-exponential type with s(x, 8 ) = Sl(yl) + gl(yz), r(x, )

Sl(yz); Hence, 2ps = 0, 9yr = gl(yz), and RE; is composed of

random variables f(s) - ¢. Since
Plges =0 , i.e., 2p S = E[9s | s] ,

R;q; is composed of the random variables of the type

£(s)EL§ (v | 8],

Let w” be the vector field obtained by projecting the @

-score u = 9y to the information subspace,

wi(x; 6,%) = Plu(x; 6, 5) . | (22)

7
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In the case of an n-exponential family, it is given by

wo(x; §, %) =f§Plaes + PIaer

We call it the u-vector field. It is e-invariant, when and only
when E[2;s | s] = 3ys. The u-vector field is, in this case, equal

to the conditional score,

I

wl(x; 0,5) = PTOyr =21 - E[Gpr| s]

conditioned on s.
We next study the coplanarity of the vectors GI(X;G , 55, 8Y)

in the n-exponential family. When they are coplanar, there

~

exists the information vector field wI(x; B, 5). Since any

vector in Ré; can be written in the form
=\ _ ' - I I
w(x; 6, 5) = {£'(x) +§E(x)|PToys + £(s)P 91 , (23)

by using a suitable function f(s; 6, ¥), the equation determing

the information vector wI
I 1§
{wix; 6,5) , P TToulx; 5,80 ) = g, (89
& b
can be rewritten as

Cw PTraps +34m) = By (8) (24)

/&



This is an integro-differential equation obtaining f(s; ¢, §),
and the information vector field wI(s; 6, $) is given by (23).
When PIZbr = 0 or 9,r = E[J,r|s], i.e., when Jd,r is

functionally dependent on s, the equation reduces to

Eg o [8(s)VIRps | s1] = gy (5')/5" (25)

where we put g(s) = f'(s) + €£f(s). Obviously, the solution of

the above integral equation g(s) does not depend on ¢.
I

Therefore, when Plger = 0, the information vector field w~ 1is

e-invariant.

5. Asymptotically<best estimators in C; and C2
We have so far elucidated the structures of the estimating
functions in Cl and C2. We can now prove the following two

fundamental theorems.

Theorem 6. There exists the best estimator in Cl’ when and
only when the wu-vector field w? is e-invariant. The best
estimating function y(x, ) is given by the e-invariant u-vector

u
W

Theorem 7. There exists the best estimator in C2, when and
only when the information vector wI(X; 6, §) is e-invariant. The
best estimating function y is given by the invariant information

vector WI .

/7
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The proofs are omitted. Instead, we apply the theorems to

the n-exponential family to get the following results.

Theorem 8. In the n-exponential family, the optimal
estimator exists in Cl’ when and only when PIQGS = 0, and the
optimal estimating function y is given by the conditional score

function PIBBQ = PIS%r =L - E[2r|s].

This includes the distributions treated by Godambe as a
special case. It is easy to show that the best estimator is
always information unbiased in the sense of Lindsay in this case.
The example of the previous section belongs tc¢ this type, when f

is linear.

Theorem 9. In the n-exponential family, the optimal

estimator exists in CZ’ when PIDer = 0, i.e., when 95 r 1is
functionally dependent on s, and the best estimating function is

given by the e-invariant information vector wI

We can solve various examples by this method. The
distributions treated by Lindsay belong to a special case of
PIEQr = 0. It should be remarked that the best estimator in C,

is not necessarily information unbiased.



